Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

КОРПУСЫ Технология

Неправильные окружные зазоры или контакт в зацеплении пары цилиндрических зубчатых колес Неправильное изготовление (зубчатых колес, корпуса) Технология  [c.628]

Современная тенденция состоит в разработке коллекторов с малой удельной массой и хорошими оптико-теплотехническими характеристиками. При этом легко осуществляется их монтаж. Примером может служить коллектор МЕГА, разработанный совместно Швецией и Канадой. Особенностью коллектора является применение сворачиваемого в рулон абсорбера, представляющего собой медную трубку с алюминиевым ребром с селективным покрытием. Он может иметь большие длину (до 100 м) и поверхность (до 250 м ). На место монтажа солнечной установки абсорбер поставляется в виде рулона, а там он разматывается и монтируется в корпусе. Технология монтажа демонстрируется на рис. 82. Вначале (/) анкерными болтами закрепляют опорную конструкцию и подкладывают резиновую надувную подушку под корпус коллектора. Затем на закрепленный в корпусе слой тепловой изоляции укладывают разматываемые по-  [c.173]


Толщину 8 стенки, отвечающую требованиям технологии литья и необходимой жесткости корпуса редуктора, находят по формуле  [c.179]

В работе [25 толщину стенки, отвечающую требованиям технологии литья и необходимой жесткости корпуса редуктора, рекомендуется определять по формуле  [c.234]

Для корпусов, не имеющих плоскости разъема по осям валов (например, корпуса коробок передач), выбор посадок колес обусловлен технологией сборки. Сборку производят внутри корпуса в стесненных условиях. Поэтому для колес  [c.78]

Для редукторов толщину стенки, отвечающую требованиям технологии литья, необходимой прочности и жесткости корпуса, вычисляют по формуле  [c.257]

Базирование корпусных деталей выполняют с учетом их конструктивных форм и технологии изготовления. Рассмотрим наиболее распространенные схемы базирования. Схема базирования по поверхности и двум отверстиям диаметром 15. .. 20 мм, выполненных с точностью по 7-му квалитету, показана на рис. 12.5, а. Эти отверстия являются вспомогательными базами, в которые входят установочные пальцы приспособления. Заготовки деталей фланцевого типа базируют по торцу фланца и точно обработанной поверхности буртика (рис. 12.5, б). Вместо поверхности буртика в качестве базы может быть принята поверхность основного отверстия. Корпуса призматической формы, у которых отверстия малы, базируют по трем поверхностям, причем базирование возможно либо по наружным поверхностям, либо по одной наружной н двум внутренним (рис. 12.5, в).  [c.177]

В этом разделе ОСТа приведены общие требования и требования к изготовлению основных конструктивных элементов аппаратов. В отдельных подразделах изложены нормативно-технические требования по изготовлению обечайки, корпуса, днища, фланца, штуцера, люков, укрепляющих колец, змеевика, отводов и труб гнутых. Значительное место в этом разделе ОСТа занимают требования по выполнению сварочных работ и сварных соединений сборочных единиц и деталей при изготовлении аппарата. Отдельными подразделами вынесены также требования к качеству сварных соединений и к проведению термической обработки сосудов, обо рочных единиц и конструктивных элементов сосудов и аппаратов в зависимости от применяемой технологии изготовления, материального исполнения и рабочих условий эксплуатации.  [c.38]

Описанная технология позволяет получать базовый элемент с минимальным защитным слоем, доводя его толщину практически до нуля, а эффективную теплопроводность — до 8...10 Вт/ (м К), а следовательно, использовать его при исследовании поверхностных теплообменников. Чтобы еще более увеличить Я ф, можно ленточку 1 уложить в корпус 2 с пазами (рис. 3.3) и закрыть секцию металлической  [c.62]


Опыт создания и эксплуатации описанных устройств позволил разработать дифференциальный микрокалориметр (рис. 4.17) с чувствительными элементами, изготовленными по универсальной технологии. Два элемента (один для образца, другой для эталона) закреплены на торце теплопроводного массивного конуса методом теплового удара , что обеспечивает минимальную инерционность измерительного блока. Наличие электронагревателя, навитого поверх корпуса прибора, и трех систем каналов для тепло- и хладоносителей позволяет определять тепловые эффекты в диапазоне температур— 180...120°С. Прибор используется для исследования мясопродуктов и биопрепаратов, подвергающихся криогенной, холодильной и тепловой обработке [151.  [c.102]

Сборочный чертеж механизма выполняется на стандартном листе бумаги. Сначала определяются целесообразное расположение проекций разрабатываемой конструкции механизма, необходимые разрезы и виды, а затем выбирается масштаб чертежа. Наиболее удобным является масштаб 1 1, при этом чертеж дает наглядное представление о действительных размерах конструкции. Если механизм имеет малые размеры, то для большей четкости изображения его деталей целесообразно некоторые разрезы и проекции выполнить в масштабе 2 1 или 2,5 1. Сначала на бумаге вычерчивается тонкими линиями компоновочная схема механизма в трех проекциях. Далее вычерчиваются валики, колеса, подшипники, а затем корпус механизма. При этом должна быть предусмотрена фиксация валиков и насаженных на них деталей для предотвращения их осевых перемещений. Должны быть продуманы процессы сборки, разборки и смазки механизма, контроль за уровнем масла, способы замены масла и другие вопросы технологии изготовления, эксплуатации и ремонта механизма.  [c.447]

Технологичность деталей корпусов обеспечивается их формой, возможностью изготовления методами безотходной технологии (литье, прессование, обработка давлением, сварка, пайка и др.), уровнем унификации и т. д.  [c.461]

Конструкция корпуса и параметры пара (7,24 МПа, 288°С) модернизированного реактора оставлены, в основном, без изменений. Главным отличием является расположение рециркуляционных насосов внутри корпуса реактора вместо наружной системы рециркуляции в действующих реакторах. Это позволяет упростить технологию изготовления нижней части корпуса, существенно уменьшить размеры реакторного помещения, сократить длину трубопроводов.  [c.40]

В 1930 г. во Владивостоке по инициативе и под руководством проф. В. П. Вологдина было построено первое в СССР цельносварное судно — портовой морской катер. С этого времени сварные конструкции все более широко применялись в судостроительной практике, и если на первом этапе освоения новой технологии сваривали наиболее простые и малоответственные конструкции, общий вес которых не превышал 30—35% веса металлического корпуса судна, то в дальнейшем сварка почти полностью вытеснила клепку. Транспортные суда, построенные в третьей пятилетке, имели сварные корпуса, и лишь соединения наружных поясов обшивки были еще клепаные. Более мелкие суда вспомогательного флота, предназначенные для обслуживания морских портов, и значительная часть стальных самоходных и несамоходных речных судов были полностью сварные  [c.284]

Описанную технологию дефектоскопии можно использовать при контроле отливок корпусов комбайновых электродвигателей и редукторов, грушевидных коушей подвесных устройств и др.  [c.55]

В результате автоматизации, ряда сварочных операций, конструкторских решений и более рационального совмещения различных сварочных, термических и механических процессов длительность изготовления корпуса реактора сокращена более чем на 170 дней по сравнению с первоначальной технологией.  [c.242]

Оптимизация конструкций узлов. В связи с широким применением электросварки, с совершенствованием литейной технологии и технологии обработки давлением, с развитием крупносерийного и массового производства в машиностроении значительно расширилось применение тонкостенных конструкций переменного сечения станин, стоек, корпусов, а также шатунов, рычагов и др. деталей. Развитие копировальных станков, станков с программным управлением и других автоматических станков благоприятствует применению форм деталей, приближающихся к формам равного сопротивления. Благодаря этим тенденциям номинальные напряжения в современных конструкциях распределяются по сечению и по длине более равномерно, чем раньше.  [c.58]


Разработана новая технология изготовления подшипников из синтетических материалов. Эти подшипники изготовляются путем облицовки стальных стаканов или вкладышей пористой бронзой слоем толщиной 1—3 мм. Далее пористая бронза пропитывается фторопластом-4, чтобы на внутренней поверхности подшипников образовался сплошной слой полимера. Сочетание износостойкости фторопласта-4 с прочностью, теплопроводностью и постоянством размеров стального корпуса позволяет получить надежный и работоспособный подшипник. Из-  [c.142]

Наиболее надежными в эксплуатации являются патрубки, отпрессованные заодно с корпусом аппарата. Однако расположение их не может быть произвольным и производится с учетом технологии изготовления. Вполне технологичным считается размещение патрубков (до четырех) одинаковых или различных диаметров на одной или близких окружностях с осями, расположенными под углом 90°.  [c.106]

Крышка не может быть закреплена на корпусе болтами Неправильное изготовление Технология  [c.628]

Рассмотрим пример решения задачи выбора схемы гибкой станочной системы для группы из десяти деталей — корпусов спидометров и тахометров различных автомобилей, подобных по конструкции и технологии обработки.  [c.202]

Упрощение технологии изготовления изделия. Например, изготовление корпуса для радиоприемника из одного листа пластмассы, отливка металлических деталей под давлением, что целиком исключает их дальнейшую машинную обработку и т. д., выбор таких типовых размеров, которые дают возможность иметь желаемое количество моделей  [c.9]

Усиление любых фасонных элементов стеклопластиком может быть выполнено до и после монтажа. Бронирование металло.м более сложно и выполняется до монтажа. Отвод, переходник, фитинг и т. п. помещают внутрь металлического элемента той же формы и отбортовывают концы на металлический фланец. В связи с тем что тройники, крестовины и другие детали невозможно поместить внутрь неразъемного металлического корпуса, технология бронирования совмещается с технологией изготовления фторопластовой детали. В этом случае бронирующий металлический элемент служит матрицей. К его фланцам присоединяют стальные патрубки-удлинители и в такой матрице гидравлическим прессованием изготовляют изделие, после чего, отделяют патрубки-удлинители и отбортовывают выступающие концы фторопластовых патрубков на фланцы бронирующего элемента. Затем гидростатическим давлением  [c.144]

Для корпусов, не именгщих плоскости разъема по осям валов (например, корпуса коробок передач), на выбор посадок колес диктует жесткие условия технология сборки. Сборку деталей производят вн трн корпуса в стесненных условиях. Поэтому для колес коробок передач применяют переходные посадки.  [c.56]

Предметом исследования и разработки в технологии машиностроения являются виды обработки, выбор заготовок, качество обрабатываемых поверхностей, точность обработки и припуски на нее, базирование заготовок способы механической обработки поверхностей — плоских, цилиндрических, сложнопрофильных и др. методы изготовления типовых деталей — корпусов, валов, зубчатых колес и др. процессы сборки (характер соединения деталей и узлов, принципы механизации и автоматизации сборочных работ) конструирование приспособлений.  [c.13]

В технологии изготовления цилиндрических рс.к рвуаров и мокрых, газгольдеров много общего. Небольшое различие п монтаже заключается в том, что на смонтированное днни ,с устанавливают в вертикальном положении сразу рулоны всех бокоьых сгснок (корпуса резервуара, телескопа, колокола) и разворачивают их одновременно.  [c.248]

Корпус — наиболее сложная по форме и технологии изготовления деталь. При ее изготовлении применяются различные технологические процессы - липье и обработка на станках. Следуег учитывапь эту особенность изготовления детали, поскольку после отливки не все поверхности подлежат механической обработке и, следовательно, некоторые размеры заготовки останутся неизменными и Б готовой детали. Эта деталь для данной сборочной единицы является базовой (при выполнении сборочной операции). Для выяв.иения наружной и внутренней форм следует применить фронтальный разрез на месте главного вида и соединение половины вида слева с половиной поперечного разреза, расположенных на месте вида слева (рис. 346).  [c.292]

Исследования микроструктуры стали выявили скопление хрупких составляющих (а-фазы и 8-эвтектоида) по границам зерен (как и в случае металла спецфланца), образовавшихся вследствие нарушения технологии термообработки задвижек, а также превышения процентного содержания ферритной составляющей структуры. Исследование металла новых задвижек показало аналогичную структуру, в связи с чем вся партия задвижек была отбракована и заменена на новую. Сероводородное растрескивание 6" задвижки фирмы ДаЬазЬ К1ка1 обусловлено охрупченным состоянием материала корпуса задвижки и несоответствием его механических свойств данным сертификата.  [c.25]

Межкристаллитное сероводородное растрескивание 3" тройника инициировано технологическим концентратором напряжений, расположенным на внутренней стенке корпуса тройника. Малая толщина стенок и нерациональная технология изготовления обусловили сероводородное растрескивание тройника мета-нольной гребенки. Разрушение патрубков 0115x6 мм из стали ТТ5Т35 в зоне приварки к воротнику произошло вследствие слияния водородных треп-лн, развившихся по неметаллическим включениям вдоль стенки трубы, и их дальнейшего слияния с трещинами, возникшими в результате сероводородного растрескивания металла. Растрескивание патрубков вызвано воздействием неингибированной сероводородсодержащей среды, так как патрубки расположены в застойной зоне сепаратора, а также повышенными растягивающими напряжениями, в том числе от изгибающего момента.  [c.45]

Процесс сварки конструкции сопровождается термическим и деформационным воздействиями на свариваемый металл, производимыми при определенных условиях, связанных с технологией получения неразъемного соединения. Данные условия определяют способ сварки, тип и химический состав применяемых материалов (сварочной проволоки. электрода, флюса, газа и т. д.) и зависят от многих факторов, главными из которых являются марка свариваемых сталей и сплавов, их толщина и тип сварной конструкции (балка, ферма, оболочка, детали машин, корпуса раз/шчно-го рода изделий). При этом химический состав и механические свойства металла шва, выполненного, например, сваркой плавлением, в значительной степени отличаются от состава и свойств основного металла, так как на стадии существования сварочной ванны происходит смешивание наплавляемого присадочного металла и расплавляемого основного. Поэтому с точки зрения химического состава и механических свойств принято считать, что в сварном соединении имеются как минимум два различных металла — свариваемый и металл шва. Последний рассматривают как  [c.13]


Для определения прочностных характеристик (предела тек чести, предела прочности) сварных соединений различного рода конструкций (сосудов давления, газонефтепроводов, корпусов аппаратов химического оборудования и т п.) из последних на стадии отладки технологии их изготовления вырезают образцы поперек сварного шва, форма и размеры которьпс оговариваются ГОСТ 6996-66. В том сл> чае, когда соединения механически неоднородны, т е. имеют в своем составе %-частки, металл которых обладает пониженным сопротивлением пластическому деформированию по сравнению с основным металлом конструкций, по-л>-ченных при испытании образцов, на натурные констр> кции неизбежно приведет к созданию неверных представлений о их прочностных характеристиках. Это связано с тем, что на практике имеются существенные различия в схеме нагр> жения образцов и конструкций, относительных параметрах соединений и т.д. Кроме того, как отмечалось в работе /104/, большое влияние на получаемые результаты (а , Og) оказывает степень компактности поперечного сечения образцов k = s/t (где и / — размеры поперечного сечения). При этом отмечалось, что для получения сопоставимых резу льтатов по Sj и соединений констру кций и вырезаемых образцов необходимо соблюдение условий подобия по их нагру жению (пластическому деформированию) и по относительным геометрическим параметрам (например, к).  [c.148]

Реализация теоретических положений измерения а чисто тепломассометрическими средствами (см. 2.1) стала возможной в основном благодаря конструктивным разработкам новых альфамеров [50]. В одной конструкции (рис. 4.3,а) подбор R vi Н2 базовых элементов существенно упрощается за счет дополнительного термического сопротивления, которое закрепляется на поверхности одного из элементов. Это дает возможность использовать элементы, изготовленные из одних материалов и по одной технологии, но с разной высотой ленточки термобатареи. Равенство температур на нижней поверхности обоих элементов обеспечивается закреплением их на общей теплопроводной подложке возможные поперечные перетоки теплоты исключаются применением теплоизоляционного корпуса и перегородки между элементами. Описанную конструкцию можно назвать альфамером с параллельным по тепловому потоку расположением базовых элементов.  [c.84]

При простой и дешевой технологии феральси является весьма ценным материалом, так как не содержит дефицитных примесей. Феральси используют в виде отливок для изготовления магнитных экранов, корпусов приборов, машин и аппаратуры, деталей магнитопроводов, работающих при постоянном или медленно меняю- SOam.%AL щемся магнитном поле.  [c.149]

Соответственно с ростом перевозочной работы расширяется и совершенствуется производственная база судостроения, проводится типизация судов и унификация судовых конструкций, осуществляется сборка судовых корпусов из укрупненных элементов (секций, блоков), монтируемых вместе с элементами судового оборудования непосредственно в заводских цехах до подачи на стапели. Работы Г. В. Тринклера, Д. Б. Тана-тара, В. А. Ваншейдта, М. И. Яновского и других исследователей, конструкторов и технологов во многом способствовали производственному и эксплуатационному освоению судовых дизель-редукторных, дизель-электрических и паротурбинных силовых установок большой мощности. На основе опыта изготовления судовых паровых турбин и авиавдонных газотурбинных двигателей были построены первые судовые газовые турбины, особенно перспективные в применении к судам на подводных крыльях и на воздушной подушке. С 60-х годов по мере развития отечественной электронной промышленности и совершенствования судовых паровых котлов, двигателей, генераторов, рулевых и швартовочных устройств, погрузочно-разгрузочных механизмов и пр. все шире стали использоваться на судах системы централизации и автоматизации управления и контроля, которые значительно улучшают эксплуатационные качества судов, повышают производительность труда судовых команд и освобождают их от многих трудоемких и тяжелых работ.  [c.307]

Выпуклые формы применяют в ограниченной степени, обычно для таких деталей, внутренние поверхности которых должны быть гладкими, например кают лайнеров и трюмов. Этот способ не используют для изготовления корпусов из-за его трудоемкости и неэкономичности при окончательной обработке внешних поверхностей. Судостроительная промышленность начала проводить разработку в области создания недорогого производственного оборудования. Эта необходимость возникла в результате конкуренции при изготовлении больших корпусов из стеклопластиков, которые обычно конструируются и изготовляются либо в единственном экземпляре, либо в очень ограниченных количествах. Наиболее распространенный недорогой способ формирования однослойных корпусов исключает проведение доводочных операций и начинается с изготовления охватывающих форм (матрицы) из деревянных реек или (и) фанерной облицовки. Поверхность формы гладко шлифуется песком и покрывается либо тонким слоем материала из стеклопластика, либо другим подходящим составом. Такие формы оказались пригодными для длительного неоднократного применения, хотя их конструкция не считается удовлетворительной для массового производства. Недорогой процесс разового изготовления корпусов со слоистой структурой может сопровождаться потерей формы . Легкий каркас конструируется из дерева и имеет ряд близко располонгенных шаблонов для определения формы и размеров корпуса. Полоски материала пенозаполнителя легко прибиваются гвоздями к шаблонам и покрываются слоем стеклопластика требуемой толщины. Каркас и шаблоны затем снимаются, после чего другая сторона покрывается слоем стеклопластика. Эта технология пригодна для обработки как внешних, так и внутренних поверхностей. Ее преимущество заключается в том, что для повышения прочности связи слои стеклопластика укладываются непосредственно на сердцевину панели. Недостатками этой системы являются необходимость переворачивания детали для нанесения второго слоя и проведение окончательной обработки поверхностного слоя.  [c.249]

С целью повышения качества изделий и скижспия трудоемкости изготовления заводом освоена электро-шлаковая выплавка патрубков на крупногабаритном энергетическом оборудовании, с участием Центрального научно-исследовательского института технологии машиностроения (ЦНИИТмаш) разработана технология и освоено производство крупных отливок корпусов главных циркуляционных насосов и главных запорных задвижек для реакторных установок ВВЭР-1000 из высокопрочной нержавеющей стали. Заводом в короткие сроки созданы новые материалы, технология произ-  [c.239]

Никелевый жаропрочный сплав In onel Х750 аустенитно-го класса очень широко используют для жаровых труб, экранов, наружных обшивок корпусов и валов сверхпроводящих генераторов мощностью 5 МВт, разработанных компанией Вестннгауз [1,2]. Для оценки поведения безопасно повреждаемой конструкции такого генератора проведены исследования характеристик разрушения и механических свойств указанного сплава при низких температурах в зависимости от технологии изготовления и режимов термообработки. Изучено влияние трех промышленных методов выплавки и горячего изостатического прессования, а также двух видов термообработки закалки и закалки с последующим двухступенчатым старением.  [c.298]

В 1824 г. Соболевский возвращается в Петербург. По заданию Департамента горных и соляных дел он создает первый русский научно-исследовательский институт металлургии, обогащения полезных ископаемых и галургии Новая научная организация носила название Соединенной лаборатории Департамента горных и соляных дел, Горного кадетского корпуса и Главной горной аптеки. Одной из главных заслуг этой лаборатории явилась разработка методов очистки (аффинажа) платины и технологии ее обработки. Крайне высокая температура плавления платины (1770°) не позволяла в то время получать из нее литые изделия, например монеты (как известно, платину начали плавнхь только после I860 г., использовав для этого кислородно-водородное пламя).  [c.39]


Первый опыт становления основ поточной сборки сложных машин в СССР относится к 1925 г., когда на ленинградском заводе Красный путиловец (теперь Кировский завод) осваивалось в значительных масштабах производство маломощных колесных тракторов ФП ( Фордзон-Путиловец ) Для организации тракторного производства была предоставлена бывшая пушечная мастерская с большой производственной площадью. Персонал этой мастерской (в современном понятии — это корпус, включающий несколько крупных цехов) имел богатый опыт взаимозаменяемого производства, так как в течение ряда лет изготовлял отличные пушки для русской армии, особенно в годы первой мировой войны. Но оборудование этой мастерской, вполне естественно, не отвечало специфическим требованиям технологии тракторостроения, нуждавшегося в совершенно иных специальных станках. Это сказывалось в чрезмерно большой трудоемкости изготовления деталей тракторов и требовало в ряде случаев завершения обработки деталей в слесарном отделении сборочного цеха.  [c.157]

Технологические службы объединения представлены рядом управлений и отделов. К их числу относятся технологическое управление, объединяющее все вопросы технологии механообрабатывающих и сборочных цехов, корпусов и заводов, входящих в объединение отделы главных металлургов, ведающие технологией заготовительных цехов, корпусов и заводов (кузнечных, литейных и термообрабатывающих), управление главного конструктора по технологической оснастке и станкостроению, отдел главного конструктора по методам транспортных и складских работ, а также комплекс инструментального производства. Все эти отделы и управления решающим образом влияют на качество продукции. Они осуществляют широкий комплекс работ в области технологических процессов. В их компетенцию входят технологическая подготовка производства, контроль соблюдения процессов, изыскание силами своих лабораторий новых процессов и внедрение их в производство, выбор и заказ необходимого оборудования, проектирование широкой номенклатуры технологической оснастки, специнструмента и специального оборудования, изготовление в инструментальных цехах всей номенклатуры технологической оснастки в металле, и, наконец, разработка и реализация методов транспортно-складских работ, подъемно-транс- портных процессов.  [c.210]

Вариант 6. На фиг. 438 схематически изображен статор трубомашины, состоящий, как и в предыдущем варианте, также из трех частей с отдельно отлитыми диафрагмами и корпусами подшипников. По сравнению с предыдущим вариантом здесь имеет место дальнейшее упрощение литейной технологии при некотором повышении трудоемкости за счет механической обработки мест соединения IV корпусов подшипников с корпусом машины.  [c.499]

Таким образом, даже без учета отклонений геометрии узла цапфа — подшипник на корпус реальной роторной машины, всегда имеюш,ей радиальный зазор в подшипниках, передаются полигармонические силы, которые могут вызывать на разных оборотах резонансные колебания. Это и объясняет обилие гармоник перемеш,ения корпуса реальной турбомашины. Отметим, если систему ротор — корпус рассматривать как линейную, не имею-ш,ую зазоров в подшипниках, то дисбаланс ротора может на корпусе возбудить только первую гармонику перемещения. Можно сказать, что амплитуда первой гармоники в колебаниях двигателей в основном определяется дисбалансом. Амплитуды гармоник высших порядков определяются многими факторами. Их следует тщательно изучить. Конечным результатом этих исследований должна явиться разработанная в деталях технология вибродефектоскопии. Такая технология должна иметь возможность по величинам амплитуд различных гармоник перемещения (или ускорения) указать на основные возможные технологические дефекты, приводящие к росту соответствующих гармоник на тех или иных оборотах двигателя. Для определения такого соответствия необходимо выполнить по специальной программе достаточно большое число экспериментов, при которых в конструкцию двигателя преднамеренно вводятся типичные дефекты, нарушения геометрии и при этих условиях осуществляется гармонический анализ перемещений корпуса двигателя, т. е. определяются характерные величины амплитуд разных гармоник.  [c.217]


Смотреть страницы где упоминается термин КОРПУСЫ Технология : [c.160]    [c.395]    [c.25]    [c.142]    [c.153]    [c.420]    [c.222]    [c.285]    [c.260]   
Справочник машиностроителя Том 5 Изд.2 (1955) -- [ c.544 ]



ПОИСК



Глава IV. Технология изготовления державок и корпусов

Громаковский Д.Г. (НИИ ПНМС) ЭКСПЕРТИЗА, ДИАГНОСТИКА, СЕРТИФИКАЦИЯ, РЕСУРСОСБЕРЕГАЮЩИЕ ТЕХНОЛОГИИ И СМАЗОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ОБЪЕКТОВ РАО Чернышев В.И. (ДАО Оргэнергогаз) ПРОДЛЕНИЕ РЕСУРСА РАБОТЫ КОРПУСОВ ГАЗОВЫХ КОМПРЕССОРОВ

КОРПУСЫ - КРИСТОФФЕЛЯ - ШВАРПА ФУНКЦИ Технология

Корпус

Корпусы Обработка — Оборудование 849 Технология

Корпусы и коробки Конструкция Влияние Технология

Корпусы и коробки — Конструкция Влияние на технологию обработк

ОБРАЗЦЫ —ОТВЬРТКИ корпусов — Оборудование 849 Технология

Технология изготовления рабочего сложного тонкостенного герметичного корпуса

Технология корпусов и коробок

Технология обработки валов корпусов и коробок

Технология обработки деталей машин корпусов

Технология производства корпусов



© 2025 Mash-xxl.info Реклама на сайте