Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Цинковые применение

Сплавы цинковые — Применение 79  [c.291]

Катодная защита. Катодная защита за счет сдвига потенциала ниже критического обеспечивается или с помощью наложенного извне тока или применением покрытия протекторного действия (например, цинкового).  [c.339]

Электрические печи сопротивления (тигельные и отражательные) находят широкое применение для плавки алюминиевых, магниевых и цинковых сплавов. Тигельные печи применяют в цехах с небольшим выпуском, а также в тех случаях, когда производят отливки из большого числа сплавов, разнообразных по химическому составу (рис. 117). Однако эти печи имеют низкую производительность и невысокий тепловой коэффициент полезного действия. Температура нагрева в печи находится в пределах 900 - 1100°С.  [c.242]


Так, легирование цинковых покрытий Mg, А1, Ti позволяет повысить их коррозионную стойкость, особенно в хлорсодержащих средах. Получило применение цинковое покрытие, легированное различными металлами в количестве, % 0,05-Mg, 0,01 - Fe, 0,1 - Al.  [c.54]

Защитные свойства цинковых покрытий в морской воде достаточно высоки, и оцинкованную сталь широко используют для защиты от коррозии стальных сооружений, морских нефтепроводов. Эффективно применение цинковых покрытий для защиты от коррозии стальных опор нефтепромысловых сооружений. По данным литературных источников, диффузионное цинкование позволяет повысить коррозионную стойкость стальных опор в зоне переменного смачивания (0,5 м над водой), где стойкость незащищенной стали наименьшая при этом скорость коррозии составляет для оцинкованной стали 5—10 мкм/год, для незащищенной 300 мкм/год. 15-летний опыт эксплуатации труб с диффузионным цинковым покрытием на морских нефтепромыслах Нефтяные камни и о. Артема показал эффективность этого вида защиты. Алюминиевые покрытия позволяют повысить защитные свойства стали по сравнению с цинковыми в хлорсодержащих растворах в 2-3 раза. По данным лаборатории морского флота США, металлизационные алюминиевые покрытия толщиной 120 мкм обеспечивают долговечность защиты в морской воде до 10 лет, в сочетании с однослойным виниловым лаком — до 12 лет.  [c.80]

Состав, свойства и применение цинковых сплавов, обрабатываемых давлением  [c.392]

За последнее время цинковые сплавы начинают находить применение в типографском деле для изготовления шрифтов для линотипа и монотипа. Состав этих сплавов приведен в табл. 9.  [c.393]

Ферриты, обладаюш,не наиболее интересными магнитными свойствами и нашедшие техническое применение, представляют собой, как правило, твердые растворы нескольких простейших соединений, в том числе и немагнитных. Так, например, общая формула широко распространенных никель-цинковых ферритов имеет следующий вид  [c.284]

В настоящее время известно несколько методов получения диффузионных цинковых покрытий, однако широкое применение в промышленности нашли только два метода — жидкий и парофазовый. При жидком методе диффузионного цинкования активной фазой, участвующей в передаче диффундирующего элемента обрабатываемой поверхности, является расплав цинка, при парофазовом — цинковый порошок.  [c.174]


С целью получения однородного диффузионного цинкового покрытия определенного химического состава и с определенной структурой, по своей коррозионной устойчивости не уступающего покрытию, полученному диффузионным способом с применением порошковой смеси, нами производилась термическая обработка цинковых покрытий, полученных жидким методом. Микроструктура цинкового покрытия, полученного жидким методом, представлена на рис. 3.  [c.175]

На отечественных электростанциях получили применение конденсаторные трубки, изготовленные из медно-цинковых латуней, а также из сплава МНЖ-5-1. В случае использования для охлаждения конденсаторов турбин воды с повышенной агрессивностью для изготовления труб употребляются более коррозионно-стойкие мышьяковистые и алюминиевые латуни и бронзы, мельхиор и монель-металл.  [c.82]

При периодическом травлении листа перед нанесением цинкового покрытия применяется И-1-В. Его применение по сравнению с 4M уменьшает, в частности, расход цинка при горячем цинковании кровельного листа. При периодическом травлении листа применяется также С-5.  [c.72]

В настоящее время материалы на основе термореактивных связующих, упрочненных стекловолокном, по своим характеристикам конкурируют с листовой сталью, а материалы на основе термопластических связующих — как с листовой сталью, так и с цинковым литьем. Применение в автомобильной промышленности дешевых композиционных материалов уже достигло поразительных масштабов.  [c.10]

Многие детали легковых автомобилей, включая довольно сложные (обычно литые), могут быть изготовлены из формовочной композиции (листовой заготовки или формовочной массы), причем эти детали могут успешно конкурировать с деталями, полученными литьем из цинковых или алюминиевых сплавов. Постоянное усовершенствование технологии изготовления, оборудования и оснастки для производства деталей из упрочненных пластиков приведет к тому, что объем применения композиционных материалов превысит 8000 т в год, как прогнозировалось в начале 70-х годов.  [c.15]

Мостовые перегружатели и причалы (пирсы) обычно представляют собой свайные основания с железобетонной надстройкой. Они состоят из подъездного моста и расположенного перед ним собственно пирса как места причала нескольких судов. Без обслуживания и независимо от подвода тока и каких-либо ошибок в управлении работают цинковые протекторы, примененные, например, для защиты рудного погрузочного причала в Монровии (Либерия). Между столбами располагаются 186 пластинчатых цинковых протектора массой по 100 кг, объединенные в 82 цепи. Цепи соединены при помощи кабеля длиной около  [c.347]

Глубина слоя грязной воды, застаивающейся на дне трюмов, обычно так мала, что защита при помощи типовых протекторов (анодов) невозможна. Попытки применения очень плоских протекторов, закрепленных на чисто прошлифованной поверхности дна при помощи электропроводного клея, показали, что такой способ недостаточно надежен. Лучшие результаты дает протекторная проволока из алюминиевых или цинковых сплавов со стальным сердечником. Такие протекторы из проволоки диаметром 6—10 мм укладывают в виде длинных петель непосредственно на дно трюма, выводят вверх через расположенные над ними конструктивные элементы и припаивают.  [c.370]

Протекторные грунтовки и краски пока еще дефицитны, причем это обстоятельство обусловлено дефицитом как связующего, так и цинковой пыли. В некоторой степени преодолеть его можно за счет использования отходов пенополистирола, которые образуются сегодня в немалых количествах (остатки всевозможной упаковки, отходы от производства и применения теплоизоляционных плит). Эти отходы можно растворить в скипидаре или в сольвенте и получить полистироловый лак, который легко наполнить цинковой пылью.  [c.74]

Характерные области применения цинковых покрытий  [c.122]

Цинк образует анод в соединении со сталью и обеспечивает ее эффективную протекторную защиту на довольно большой площади основного металла, подверженного коррозии. Например, на участке стального листа с цинковым покрытием диаметром 12 мм не было обнаружено заметной коррозии под воздействием атмосферных условий даже по прошествии семи лет. Кроме того, применение цинковых покрытий на алюминиевые сплавы обеспечило хорошую протекторную защиту, причем покрытие наносилось методом металлизации.  [c.122]


Методом электроосаждения могут быть получены оловянно-никелевые, оловянно-медные, оловянно-кадмиевые, оловянно-цинковые и оловянно-свинцовые покрытия, применение которых обусловлено свойствами входящих в их состав металлов.  [c.91]

Для повышения защитного действия часто используют системы из нескольких покрытий, например цинковое покрытие с последующим фосфатированием и нанесением нескольких слоев лака. Расширяется применение покрытий на органической основе с наполнителем из металлического порошка так, лаковые материалы смешивают с цинковым порошком, обладающим защитным действием.  [c.35]

Металлические пигменты. Пигменты этой группы— порошки металлов, из которых наиболее широко применяются алюминиевая пудра и цинковая пыль. Ограниченное применение имеют бронзовые пудры и свинцовый порошок. Металлические пигменты по ряду свойств (электропроводность, теплостойкость, отражательная способность и др.) существенно отличаются от большинства неорганических пигментов, представляющих собой соли или оксиды. Это обусловливает и некоторые специфические области их применения. Так, при достаточном наполнении металлическими пигментами лакокрасочные покрытия приобретают электропроводящие свойства и применяются для защиты электросварных конструкций, в печатных электрических схемах, а при наполнении цинковой пылью — в качестве протекторных грунтовок [21].  [c.66]

Основное применение цинковая пыль находит при изготовлении протекторных грунтовок (на основе синтетических смол, водных растворов силикатов или водно-дисперсных пленкообразующих веществ), применяемых для катодной защиты железа и стали от коррозии. Содержание цинковой пыли в таких грунтовках составляет 95—97% (масс.).  [c.67]

Бр010Ф1, оловянно-цинковой бронзы Бр05Ц5С5. Необходимость в применении бронзы с высоким содержанием олова тем выше, чем больше иск и относительная продолжительность работы передачи.  [c.237]

В 1824 г. Хэмфри Дэви [2], основываясь на данных лабораторных исследований в соленой воде, сообщил, что медь можно успешно защитить от коррозии, если обеспечить ее контакт с железом или цинком. Он предложил осуществлять катодную защиту медной обшивки кораблей с использованием прикрепленных к корпусу жертвенных железных блоков при соотношении поверхностей железа и меди I 100. При практической проверке скорость коррозии, как и предсказывал Дэви, заметно уменьшилась. Однако катодно защищенная медь обрастала морскими организмами в отличие от незащищенной меди, которая образует в воде ионы меди в концентрации, достаточной для уничтожения этих организмов (см. разд. 5.6.1). Так как обрастание корпуса уменьшает скорость судна во время плавания. Британское Адмиралтейство отвергло эту идею. После смерти X. Дэви в 1829 г. его двоюродный брат Эдмунд Дэви- (профессор химии Королевского Дублинского университета) успешно защищал железные части буев с помощью цинковых брусков, а Роберт Маллет в 1840 г. специально изготовил цинковый сплав, пригодный для использования в качестве жертвенных анодов. Когда деревянные корпуса судов были вытеснены стальными, установка цинковых пластин стала традиционной для всех кораблей Адмиралтейства . Эти пластины обеспечивали местную защиту, особенно от усиленной коррозии, вызванной контактом с бронзовым гребным валом. Однако возможность общей катодной защиты морских судов не изучалась примерно до 1950 г., когда этим занялись в канадском военно-морском флоте [3]. Было показано, что при правильном применении препятствующих йбрастанию красок и в сочетании с противокоррозионными красками катодная защита кораблей возможна и заметно снижает эксплуатационные расходы. Катодно защищенные, а следовательно, гладкие корпуса уменьшают также расход топлива при движении кораблей.  [c.216]

Известен опыт применения боридных покрытий для защиты от коррозии и наводороживания теплообменников. Теплообменники, изготовленные из стали 10, эксплуатировались в условиях воздействия конденсации паров серной кислоты, образующихся из продуктов сгорания сернистого топлива. Боридное покрытие, состоящее из двух слоев FeB и FeBj, наносили при температуре 950 °С в виде порошкообразной смеси, содержащей 98 % В4С, 1,5 % AIF3 и 0,5 % парафина. Такое покрытие позволяет повысить в 10 раз коррозионную стойкость стали в наводороживающей сероводородсодержащей среде и одновременно повысить ее циклическую прочность. Испытания теплообменников, проведенные на стенде с переменным внутренним давлением при Ртах = 0>7 МПа с частотой 0,12 Гц показали, что без покрытия теплообменники вьщерживают от 20 до 160 тыс. циклов, с боридным покрытием - не менее 400 тыс. циклов Сб . В слабокислых минерализованных растворах в условиях периодического Смачивания цинковые покрытия, полученные электрохимическим и горячим способом, менее устойчивы, чем диффузионные слои из порошковой смеси. Оцинкованные диффузионным способом трубы в 25 раз устойчивее труб с цинковыми покрытиями из расплава и в 15 раз - с покрытиями, полученными электролитическим осаждением.  [c.64]

Для защиты морских нефтепромысловых сооружений также были разработаны покрытия на основе эпоксидных смол, цинковые протекторные краски, пе.рхлорвини-ловые покрытия, резиновые металлические защитные покрытия. Но каждое из этих покрытий имеет недостатки, поэтому широкого промышленного применения они не получили.  [c.54]

Широко используется магний в качестве легирующего элемента при приготовлении сплавов на алюминиевой, сви1щовой и цинковой основах, нашедших широкое применение в качестве конструкционного материала.  [c.123]

Применение индия определила его высокая стойкость против коррозии в среде минеральных масел и продуктов их окисления, низкий коэффициент трения и устойчивость к атмосферным воздействиям. Индиевые покрытия используются для повышения отражательной способности рефлекторов, в качестве антифрикционных покрытий и для зашиты от коррозии в специальных средах. К сожалению, индий обладает малой твердостью и узкой областью рабочих температур, в связи с этим широкое распространение получили сплавы индия, улучшающие эти свойства. Так, электролитический сплав индия со свинцом хорошо зарекомендовал себя в условиях трения без смазки. Сплав индия с таллием характеризуется сверхпроводимостью при низких температурах, сплавы нидий-кадмий, индий-цинк во много раз лучше сопротивляются коррозии, чем чистые кадмиевые или цинковые покрытия. Хорошими антифрикционными свойствами обладают и другие индиевые сплавы индий — никель, индий — кобальт, индий — серебро. Ценными свойствами обладает сплав индий — палладий. Индиевые покрытия можно получить из различных электролитов цианистых, сернокислых, сульфаматных, тартратных, борфтористоводородных. Составы наиболее употребляемых электролитов приведены в табл. 33.  [c.79]


Первым практическим применением материала для создания сравнительно мощного источника электрической энергии можно считать изготовление большой батареи, электродвижуш,ая сила которой создавалась за счет контактной разности потенциалов между дисками из разных металлов. Эта батарея была создана в 1802 г. академиком В. В. Петровым. В ней использовалось 8400 медных и цинковых дисков с прокладками из бумаги, пропитанной электролитом. С помощью этой батареи впервые в мире была получена электрическая дуга.  [c.5]

Кюри обладают меньшим магнитострккцнонным эффектом. В настоящее время применяются следующие группы смешанны ферритов марганец-цинковые, никель-цинковые и литий-цинковые. ОркентироБочпый частотный диапазон применения ферритов различного состава в зависимости от их свойств (магнитной проницаемости и потерь) виден из рис. 9-22. Наиболее распространенная маркировка магнитомягких ферритов отражает следующее. Первое число означает величину р,,,, затем идут буквы, обозначающие частотный диапазон применения, ограничиваемый сверху значением /гр. Под граничной частотой понимают частоту, ири которой начинается быстрый рост тангенса угла потерь феррита. Ферриты для звуковых, ультразвуковых и низких радиочастот для краткости обозначают буквой Н (низкочастотные). Граничная частота их для разных марок изменяется от 0,1 до 50 МГц. В маркировке высокочастотных ферритов имеются буквы ВЧ, граничная частота  [c.286]

Золочение изделий, изготовленных из меди и латуни, а также стальных омедненных или латунированных деталей, можно осуществить с применением пористой диафрагмы и цинкового контакта. Цинковый электрод помещают в анолит-концентрированный раствор поваренной соли, а покрываемое изделие в католит следующего состава (г/л) золото в виде гремучего золота 1,2 железнстосинеро-дистый натрий (кристаллогидрат) 15,0. фосфат натрия двухзамещен-ный (кристаллогидрат) 7,5, углекислый натрий 4,0, сульфат натрия 0,15, температура раствора 70 С, продолжительность процесса  [c.86]

Некоторые специалисты выразили скептическое отношение к результатам этих исследований. Еще в 1935 г. в одной из работ Американского института нефти в Лос-Анжелесе утверждалось, что токи от цинковых анодов (протекторов) на сравнительно большом расстоянии уже не могут защитить трубопровод и что защита от химического воздействия (например кислот) вообще невозможна. Поскольку в США вплоть до начала текущего столетия трубопроводы нередко прокладывали без изоляционных покрытий, катодная защита для них была сравнительно дорогостоящей и для ее осуществления требовались значительные токи. Поэтому естественно, что хотя в США в начале 1930-х гг. и защищали трубопроводы длиной около 300 км цинковыми протекторами защита катодными установками (катодная защита током от постороннего источника) обеспечивалась только на трубопроводах протяженностью до 120 км. Сюда относятся трубопроводы в Хьюстоне (штат Техас) и в Мемфисе (штат Теннесси), для которых Кун применил катодную защиту в 1931—1934 гг. Весной 1954 г. И. Денисон получил от Ассоциации инженеров коррозионистов премию Уитни. При этом открытие Куна стало известным вторично, потому что Денисон заявил На первой конференции по борьбе с коррозией в 1929 г. Кун описал, каким образом он с применением выпрямителя снизил потенциал трубопровода до — 0,85 В по отношению к насыщенному медносульфатному электроду. Мне нет нужды упоминать, что эта величина является решающим критерием выбора потенциала для катодной защиты и используется теперь во всем мире .  [c.37]

Несмотря на низкое движущее напряжение около 0,2 В, цинковые протекторы в настоящее время еще составляют около 90 % всех видов протекторов для наружной защиты морских судов [15]. В военно-морском флоте ФРГ для наружной защиты судов протекторами обязательно предписывается применять цинк [6]. Для внутренней защиты сменных танков в танкерах цинковые сплавы являются единственным материалом протекторов, допускаемым без ограничений [16] (см. также раздел 18.4). Для наружной защиты трубопроводов в морской воде применяют цинковые протекторы в виде браслетов, приваренных в продольном направлении к скобам, соединенным с трубой, или в виде насан<енных полуоболочек (см. раздел 17.2.3). В случае солоноватых или сильно соленых вод, получаемых, например, при добыче нефти или в горном деле, цинковые протекторы применяют и для внутренней защиты резервуаров (см. раздел 20). Возможности применения цинковых протекторов в пресной воде весьма ограничены. При низкой электропроводности среды стационарный потенциал и поляризация с течением времени обычно значительно повышаются. Это относится и к применению в грунте. Если не считать эпизодического применения стержневых и ленточных протекторов в качестве заземлителей, цинковые протекторы используют только при сопротивлении грунта менее 10 Ом-м. Чтобы уменьшить пассивируемость и снизить сопротивление растеканию тока, протекторы должны укладываться с обмазкой активатора — см. раздел 7.2.5.  [c.182]

Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]

Судостроение, а позднее и сооружение портов являются одними из старейших областей применения катодной защиты от коррозии (см. раздел 1.3). Для судов и сооружений, располагаемых в прибрежном шельфе, пока применяют преимущественно протекторную защиту, тогда как для портовых сооружений и мостовых перегружателей ввиду потребности в большом защитном токе предпочитают применять станции катодной защиты. Характерные проблемы коррозии для сооружений в прибрежном шельфе встретились уже в середине 1950-х гг. в Мексиканском заливе. Однако скорость коррозии здесь была меньшей по сравнению с наблюдаемой в Северном море (см. табл. 17.2). В допол-нение к этому на передний план все более выступают проблемы усталостного коррозионного растрескивания [13]. В отличие от свайных причалов н судов, на сооружениях в прибрежном шельфе в большинстве случаев не применяют никаких защитных покрытий или используют только временные покрытия. Защита от коррозии обеспечивается по катодной схеме. Значение токоотдачи (в ампер-часах) протекторов из алюминиевых, магниевых и цинковых сплавов согласно данным табл. 7.2—7.4 относятся как 3,1 1,4 1. Напротив, цена этих протекторов (в марках за 1 кг) относится как 1,3 2,8 1, так что удельные затраты в марках ФРГ на 1 А-ч находятся между собой в соотношении 1 2,4 4,7 и наиболее выгодными оказываются алюминиевые протекторы. Многолетние наблюдения за протекторами трех типов в Мексиканском заливе показали, что затраты на них относятся между собой как 1 3,5 2 [13]. Таким образом, магниевые протекторы для использования в прибрежном шельфе неэкономичны. Защита цинковыми протекторами обходится дороже защиты алюминиевыми протекторами.  [c.421]


Защитные свойства металлических покрытий определяются как коррозионной стойкостью самого материала покрытия, так и качеством покрытия (пористостью, сплошностью, толщиной и др.) Наибольшее применение для защиты стальных конструкций в атмосферных условиях нашли цинковые и кадмиевые покрытия. Результаты многочисленных натурных и ускоренных испытаний позволили Л. А. Шувахиной рекомендовать справочные данные о скорости коррозии (или сроках службы) кадмиевых и цинковых покрытий на стали в различных климатических зонах при наличии в атмосфере оксидов серы и хлор-ионов (табл. 13) [92]. Из приведенньих данных следует, что скорость коррозии цинкового покрытия может изменяться в зависимости от климатического района в сотни раз.  [c.93]


Смотреть страницы где упоминается термин Цинковые применение : [c.394]    [c.289]    [c.58]    [c.196]    [c.378]    [c.255]    [c.453]    [c.390]    [c.33]    [c.192]    [c.380]    [c.402]    [c.123]    [c.162]   
Металлы и сплавы Справочник (2003) -- [ c.719 ]



ПОИСК



Куб цинковый



© 2025 Mash-xxl.info Реклама на сайте