Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Турбокомпрессоры схемы

Как видно, неустановившиеся режимы работы автомобильного двигателя во многом определяют его токсические показатели. С целью снижения повышенной инерционности топливоподающих систем, являющейся причиной повышенных выбросов вредных веществ на режимах разгона, в конструкции бензиновых двигателей вводят сложные быстродействующие системы приготовления топливовоздушной смеси заданного состава, стабилизации температурного режима, впрыск бензина во впускной коллектор. Наиболее эффективны системы с использованием электронных схем. В дизелях, на которых с целью их форсирования все более широко используется турбонаддув, применяют малоинерционные турбокомпрессоры с высокой частотой вращения ротора.  [c.19]


Редукционные клапаны применяются в схемах с несколькими потребителями, питающимися от одного насоса, по требующими разных давлений. Примером является гидравлическая схема маслоснабжения турбокомпрессоров ТК-250 и ТК-500, где от одного рабочего насоса осуществляется и принудительная смазка подшипников (давление 0,05—0,1 МПа), и управление регулятором подачи компрессора и антипомпажной защиты (давление 0,4—0,5 МПа) [10].  [c.196]

Схема холодильной машины с турбокомпрессором и регенерацией теплоты приведена на рис. 8.42. Воздух, сжатый в турбокомпрессоре I и охлажденный в холодильнике 2 посредством воды, поступает в регенератор 3, где его температура дополнительно понижается. Охлажденный воздух расширяется в детандере 4 (а следовательно, и дополнительно охлаждается), а затем подается  [c.556]

Схема холодильной машины с турбокомпрессором и регенерацией тепла приведена на рис. 15-9. Воздух, сжатый в турбокомпрессоре 1 и охлажденный в холодильнике 2, поступает в регенератор 3, где его температура дополнительно понижается. Охлажденный воздух расширяется в детандере 4, вследствие чего охлаждается еще больше, и затем подается в охлаждаемое помещение 5. Отняв тепло от охлаждаемого помещения, воздух поступает в регенератор < , имея температуру, еще достаточно низкую для того, чтобы охладить воздух, поступающий из холодильника 2.  [c.476]

Схемы основных типов турбин и турбокомпрессоров  [c.180]

Рис. 6.7. Структурные схемы газотурбинных двигателей Простой цикл / — блокированный привод винта и компрессора 2 — свободная сило-вая турбина 3 — два турбокомпрессора и свободная силовая турбина. Цикл с регенерацией 4 — свободная силовая турбина. Цикл с регенерацией и промежуточным охлаждением 5 — блокированный привод винта и КНД Рис. 6.7. Структурные <a href="/info/109905">схемы газотурбинных двигателей</a> <a href="/info/702876">Простой цикл</a> / — блокированный привод винта и компрессора 2 — свободная сило-вая турбина 3 — два турбокомпрессора и свободная силовая турбина. Цикл с регенерацией 4 — свободная силовая турбина. Цикл с регенерацией и промежуточным охлаждением 5 — блокированный привод винта и КНД
Таким образом, агрегат большой мощности работает при повышенном давлении и имеет малые удельную массу и габариты. Дополнительный турбокомпрессор выполнен по открытой схеме, расход рабочего тела через него в 5—6 раз меньше, чем в основном контуре. В этой схеме, как уже говорилось, решен вопрос исключения нагревателя, однако еще больше повышаются требования к топливу во избежание коррозии и загрязнения не только дополнительной, но и основной турбины.  [c.203]


В гл. HI были рассмотрены колебания валов с сосредоточенными массами. Эти схемы вала соответствуют таким конструкциям, в которых масса самого вала пренебрежимо мала в сравнении с массами деталей, расположенных в его отдельных точках, вследствие чего ее можно не учитывать. Сюда относятся, например, роторы турбин (паровых и гидравлических), центробежных вентиляторов, турбокомпрессоров, центрифуг и других подобных машин.  [c.199]

На фиг. 280 показана монтажная и центровочная схема турбокомпрессора. Измерения штихмасом производят по расточкам подшипников (Л и Г) и по расточкам уплотнений (Б и В). Если вследствие неточностей заводской обработки центры расточек подшипников и уплотнений не соосны, выверку по струне производят точно по расточкам уплотнений, а затем положение вкладышей подшипников исправляют колодками.  [c.474]

Регулирование турбокомпрессоров на постоянное давление — Схемы 12 — 581  [c.235]

На фиг. 12 приведена схема газогенераторной установки с турбокомпрессором, приводимым в действие турбиной, работающей от отработавших газов двигателя. Турбокомпрессор помещается перед газогенератором и установка работает под избыточным давлением 0,5 кг/слА. Применение наддува даёт возможность иметь газогенераторные автомобили с максимальным динамическим фактором не менее 4,5%. Следует, однако, иметь в виду, что действие наддува заметно сказывается на больших оборотах двигателя (фиг. 13).  [c.231]

Фиг. 44. Схема регулирования турбокомпрессора. Фиг. 44. Схема регулирования турбокомпрессора.
Паротурбинный привод. При наличии собственной ТЭЦ целесообразно применять паротурбинный привод турбокомпрессоров. Выбор типа турбин и рабочих параметров пара определяется тепловой схемой завода. На основе общезаводского баланса пара разных параметров выбирают параметры отборов или противодавления турбин для привода компрессоров.  [c.482]

Схема совмещенной системы охлаждения наддувочного воздуха и смазочного масла дизеля приведена на рис. 5-2. Поступающий из турбокомпрессора воздух в контактном аппарате охлаждается за счет испарения части воды, циркулирующей по замкнутому контуру через аппарат. Проходя через водомасляный холодильник, вода попутно охлаждает и масло. В контактном аппарате одновременно происходит естественная очистка воздуха водой от пыли. Подпитка системы водой осуществляется с помощью регулятора уровня. Увлажненный воздух с пониженной температурой из контактного аппарата поступает во всасывающий тракт и идет на горение в дизель. Охлажденное масло поступает в систему смазки дизеля. Выполним расчет контактного аппарата для охлаждения смазочного масла (табл. 5-1). Комментарии к расчету и исходные данные формулы и условные обозначения см. в 4-7. Дополнительные исходные данные L = 0,25 м Лв = 10.  [c.128]

Схема машины показана на рис. 5.5. Она состоит из двух контуров. Первый, включающий в себя турбокомпрессор 1 и турбину 2, соединен на входе и выходе с атмосферой и запускается в работу пусковым электродвигателем, который на схеме не показан. Засасываемый в компрессор атмосферный воздух (при Ро.с и Го.с) сжимается температура его соответственно возрастает. В теплообменнике 3 горячий сжатый воздух охлаждается (в пределе—до исходной температуры), нагревая рабочее тело второго контура. После этого холодный сжатый воздух поступает в турбину 2, расширяется с отдачей внешней работы и выбрасывается в атмосферу. Посколь-  [c.191]

Схема ВРД с турбокомпрессором представлена на рис. 10-32. В турбо-компрессорном воздушно-реактивном двигателе (ТРД) жидкое топливо, подаваемое из топливных баков, сгорает в камере сгорания и затем продукты сгорания, расширившись в сопле 2, выбрасываются во внешнюю среду. Окислителем служит кислород воздуха. Для того чтобы повысить  [c.347]


Применительно к рассматриваемой схеме двигателя. уравнения режимов совместной работы компрессора и турбины включают уравнения расхода воздуха (газа) через первый и второй контуры двигателя, а также уравнение баланса работ (мощностей) турбокомпрессора двигателя.  [c.80]

Для улучшения приемистости ТРД, т. е. снижения его времени разгона, необходимо уменьшать момент инерции раскручиваемых масс (посредством перехода от одновальной к двух-вальной схеме двигателя, применения легких материалов в конструкции турбокомпрессора), повышать максимально допускаемую температуру газа перед турбиной путем использования материалов повышенной прочности для лопаток, увеличивать перепад давлений на турбине раскрытием реактивного сопла на режиме запуска. Использование этих средств позволяет в ряде случаев снизить время приемистости до 10—12 сек, а у подъемных двигателей — до 4—5 сек.  [c.191]

Нагретый газ высокого давления вначале претерпевает процесс расширения в турбине, при котором часть его энергии переходит в механическую работу. Эта работа расходуется на вращение компрессора и привод всех вспомогательных агрегатов, обслуживающих двигатель и самолет. В двигателях двухвальной схемы две механически не связанных между собой турбины приводят во вращение два последовательно расположенных компрессора. На выходе из турбокомпрессора газовый поток обладает высокой потенциальной энергией благодаря тому, что работа расширения газа в турбине (вследствие его нагрева) значительно превышает потребную работу сжатия воздуха в компрессоре. Потенциальная энергия газа в выходном сопле преобразуется в процессе расширения в кинетическую, чем и обеспечивается ускорение газового потока при его прохождении через двигатель.  [c.12]

Особенности ГТД различных схем. Авиационные газотурбинные двигатели очень разнообразны по компоновочным схемам, которые отличаются рядом конструктивных признаков и элементов числом роторов турбокомпрессора (одно-, двух- или трех-вальные), наличием или отсутствием охлаждения турбины, типом компрессора (центробежный или осевой) и способом его регулирования (перепуск воздуха, поворотные статорные лопатки или разделение компрессора на каскады), схемой камеры сгорания (кольцевая, трубчато-кольцевая или индивидуальная), наличием или отсутствием форсажной камеры и т. д.  [c.12]

Двухвальные двигатели (например, двигатель Тайн со взлетной мощностью 4050 кВт), у которых турбина высокого давления вращает компрессор высокого давления, а турбина низкого давления вращает компрессор низкого давления и через редуктор воздушный винт, позволяют достаточно просто и экономично обеспечить диапазон устойчивых режимов работы компрессора вследствие отсутствия неэкономичной системы перепуска воздуха. Кроме того, такая схема двигателя облегчает запуск ТВД, требует меньшей мощности пускового устройства, так как необходимо раскручивать только турбокомпрессор высокого давления, и улучшает его приемистость. Недостатком двухвальных ТВД является большая конструктивная сложность двигателя и его системы автоматики по сравнению с одновальными ТВД.  [c.25]

В турбореактивном двигателе (ТРД) значительная часть энергии газового потока, выходящего из турбокомпрессора, в выходном сопле преобразуегся в кинетическую энергию направленной струи выходящих газов. В результате скорость истечения газа из двигателя превосходит скорость набегающего потока воздуха. Как видно из рис. 5.8, кроме турбокомпрессора схема ТРД включает в себя входное и выходное устройства.  [c.228]

В отличие от поршневых в лопастных машинах рабочая деталь (лопасть, лопатка) совершает вращательное движение (турбонасосы, турбокомпрессоры). Схема центробежной машины изображена на рис. 3-8. На вал 1 машины насажен диск с закрепленными на нем лопастями (лопатками) 2, имеющими изогнутую форму. Диск и лопатки составляют рабочее колесо, которое находится в корпусе 3 спиральной формы. При вращении вала жидкость засасывается к приемному отверстию, на.ходящемуся сбоку, по трубопроводу 4 к центру вала и перемещается центробежной силой по каналам, образованным лопатками, к периферии, откуда поступает в спиральную камеру и дальше в напорный трубопровод. В осевых лопастных машинах жидкость движется вдоль оси. Эти машины конструируют обычно многоколесными между колесами помещены неподвижные детали, по которым жидкость Переходит из одного колеса в другое и в каждом из них происходит частичное повышение давления жидкости.  [c.65]

На рис. 18-1 дана схема простейшей ГТУ со сгоранием топлива при р = onst. В камеру сгорания 1 через форсунки и 7 непрерывно поступает воздух из турбокомпрессора 4 и топливо из топливного насоса 5. Из камеры продукты его-  [c.279]

На рис. 18-5 дана схема газотурбинной установки со сгоранием топлива при постоянном объеме. В этой установке сжатый в турбокомпрессоре 6 воздух поступает из ресивера (сосуда большой емкости для выравнивания давления) 7 через воздушный клапан 8 в камеру сгорания 1. Сюда же топливным насосом 5 через топливный клапан 9 подается жидкое топливо. Продукты сгорании, пройдя через сопловой клапан 2, расширяются в комбинированком сопле. и приводят во вращение ротор газовой турбины 4.  [c.282]

Теплообменные аппараты (нагреватели и охладител1 ) применяются для поддержания нормальной температуры рабочей жидкости. Устанавливаются они, как правило, в гидробаках. Иногда в баке устанавливаются сразу оба аппарата. Так например, в схеме маслоснабжения турбокомпрессора имеется электрический нагреватель, который включается в зимнее время только перед пуском компрессора. При нормальной работе компрессора включается водяной охладитель [10].  [c.204]


В химической промышленности ГТУ используется в основном для утилизации теплоты экзотермических реакций либо энергии избыточного давления (см. 7.5). На рис. 1.64 представлена принципиальная схема использования ГТУ в производстве азотной кислоты, в процессе окисления аммиака в окислы азота (нитрозные газы). В реакторе а происходит окисление аммиака (линия 1) кислородом воздуха под давлением около 1,0 МПа, при этом выделяется большое количество теплоты. Образующиеся нитрозные газы (линия 2) с высокой внутренней энергией поступают в газовую турбину б, где они расширяются до атмосферного давления, после чего поступают в отделение абсорбции. Работа газовой турбины используется для частичного привода турбокомпрессора в, который сжимает атмосферный воздух (линия 3) до 1,0 МПа и подает его в реактор а. Газовая турбина покрывает 30% потребности в электроэнергии, необходимой для привода трубокомпрес-сора.  [c.92]

Принципиальная схема парогазовой установки, работающей по этому циклу, изображена на рис. 1.75. Воздух, сжатый в турбокомпрессоре 1, подается в горелку или форсунку 2 туда же подается газообразное либо жидкое топливо. Горелка или форсунка устанавливается в высоконапорном парогенераторе 3. В нем получается перегретый пар с давлением pi и температурой 7], который поступает в паровую турбину 7. Отработанный пар конденсируется в конденсаторе S и конденсат с помощью циркуляционного насоса 9 прокачивается через водоподогрева-тель 5 в парогенератор 3.  [c.98]

Принципиальная схема газотурбинной установки показана на рис. 19.1. Внешний воздух, засасываемый турбокомпрессором, сжимается в нем до давления и подается в камеру сгорания. В камеру сгорания впрыскивается жидкое топливо, которое, сгорая, образует газообразные продукты сгорания высокой температуры. Затем продукты сго[)аиия поступают в газовую турбину (прииципиа/Гьно не отличающуюся от паровой турбины), где расширяются до атмосферного давления. Выпуск отработавших газов из турбины производится во внешнюю среду.  [c.251]

РИС. 72. Схема турбокомпрессор-ного наддува  [c.165]

Лопаточные компрессоры изготовляют в виде центробежных или осевых. Для наддува в большинстве случаев применяют центробежные нагнетатели. На рис. 72 приредена схема установки центробел ного нагнетателя с приводом от газовой турбины. Такая установка называется турбокомпрессором. Продукты сгорания из цилиндров двигателя 1 подводятся к ресиверу Л, а из него на рабочие лопатки 4 газовой турбины. На одном валу с газовой турбиной установлен центробежный нагнетатель 5. Регулирование частоты вращения вала газовой турбины осуществляется путем отвода части продуктов сгорания в атмосферу через регулирующую заслонку 2.  [c.166]

Во второй половине 30-х годов конструкторским коллективом В. А. Чижевского была разработана конструкция экспериментального высотного самолета БОК-1, по общей конструктивной схеме близкого к самолету АНТ-25, снабженного двигателем М-34РН (впоследствии замененным двигателем М-34РНБ с турбокомпрессором), впервые оборудованного герметизированной кабиной и предназначавшегося для полетов на высотах до 14 100 м. В 1940 г. прошли летные испытания аналогичные по конструктивному исполнению высотный самолет-разведчик БОК-11, оборудованный двигателем М-34ФРН (с двумя компрессорами), сохранявшим постоянство мощности на высотах полета до 8000 м, и высотный самолет -разведчик дальнего действия БОК-15, снабженный дизельным двигателем АЧ-40. В 1941 г. работы по одномоторным высотным самолетам дальнего действия были прекращены вследствие их невысокой боевой эффективности. Значение их для последующего развития авиационной техники ограничилось отработкой конструкций герметизированных кабин, турбокомпрессорных установок для наддува двигателей и т. п. Более заметные практические успехи были достигнуты тогда же в проектировании и постройке тяжелых самолетов-бомбардировщиков дальнего действия.  [c.357]

Дизель Зиммеринг (фиг. 20, 21) предназначался для тяжёлого танка, Тигр В, взамен ранее применявшегося бензинового двигателя Майбах. В двигателе применён наддув по схеме Бюхи с использованием двух турбокомпрессоров Браун-Вовери.  [c.209]

Фиг. 12. Схема газогенераторной установки с турбокомпрессором (работа под давлением) / — газогенератор 2 — от-сто ник 3 — охладитель 4 — фнльтр 5 — вентилятор розжига 6 — смеситель 7 — выхлопной коллектор 8а— центробежный нагнетатель 56 — газовая турбина 9 и 10—рукоятки для регулирования качества и количества газовоздушной смеси //—пружины крышки загрузочного люка газогенератора /2 —бачок для конденсата 13 — отверстие для розжига газогенератора 14—воздухопровод от нагнетателя к газогенератору 75 — газопроводы /5 — трубопровод для выхлопных газов 17—выхлоп 18 — воздухопровод к смесителю. Фиг. 12. Схема <a href="/info/219826">газогенераторной установки</a> с турбокомпрессором (работа под давлением) / — газогенератор 2 — от-сто ник 3 — охладитель 4 — фнльтр 5 — вентилятор розжига 6 — смеситель 7 — выхлопной коллектор 8а— <a href="/info/77017">центробежный нагнетатель</a> 56 — <a href="/info/884">газовая турбина</a> 9 и 10—рукоятки для регулирования качества и количества газовоздушной смеси //—пружины крышки загрузочного люка газогенератора /2 —бачок для конденсата 13 — отверстие для <a href="/info/603406">розжига газогенератора</a> 14—воздухопровод от нагнетателя к газогенератору 75 — газопроводы /5 — трубопровод для выхлопных газов 17—выхлоп 18 — воздухопровод к смесителю.
I. Автоматическое регулирующееустрой-стьо на постоянное давление. На фиг, 44 в качестве примера показана схема защиты и регулирования на постоянное давление турбокомпрессора с антипомпажнон турбиной и  [c.581]

Схема тепловоза с механическим генератором газов системы А. Н. Шелеста изображена на фиг. 23. Нормальная мощность Л к=1000уг. с. сила тяги на ободе колеса = 5400 кг при 0 = 50 км час к. п. д. т]а --30—36<>/о. Механический генератор газов можно осуществить с газовой турбиной [8. в]. Газовая турбина 1 (фиг. 22) приводит в действие поршневой или турбокомпрессор 2, нагнетающий воздух в камеру сгорания 3. Продукты сгорания переходят во вторую половину камеры сгорания, где смешиваются с холодным сжатым воздухом. вследствие чего понижается температура газов до требуемой величины. Охлаждённый газ поступает в расходный резервуар 4, оттуда в цилиндры локомотива 5 и частично в газовую турбину 7. Подобная схема применена в  [c.614]

Производительность опреснителя можно повысить, а габариты уменьшить, если с помощью, например, турбокомпрессора создать большее разрежение в испарителе и более высокое давление в конденсаторе (рис, 5-13, й), В остальном с, ема ii oio uiip nuiE. iH аналогична схеме на рис, 5-13,0.  [c.155]

Экспериментальное исследование нестационарного перемешивания теплоносителя проводилось на той же установке, что и в случае стационарного протекания процесса методом нагрева центральной группы пучка из 37 витых труб, которые электрически изолировались от ненагре-ваемых труб стекловолокнистой тканью, надеваемой на трубы в виде чехла, с покрытием жаростойким силикатно-органическим лаком. Схема этой установки представлена на рис. 2.1. Она представляет собой аэродинамический контур открытого типа. Воздух в контур подается турбо-компрессорюм прюизводительностью до 3600 м /ч (до 1 кг/с) с промежуточным охлаждением его в холодильнике. Для обеспечения массовых расходов Воздуха до 1,4 кг/с к выходной линии турбокомпрессора мо-  [c.59]

Схема турбореактивного авиационного двигателя показана на рис. 48—IV. Атмосферный воздух через диффузор 1 поступает в аксиальный турбокомпрессор 2, сжимается в нем и поступает далее в камеру сгорания 4, куда подается жидкое топливо. Продукты сгорания проходят газовую турбину 3 и выбрасываются с бапьшой скоростью через реактивные сопла 5, создавая реактивную силу. Таким образом в этом  [c.324]


Конструктивная схема установки показана на рис. 5-17. Двухпоточная турбина 4 служит, с одной стороны, для привода доменного нагнетателя 11, а с другой, для привода воздушного компрессора 1 и компрессора колошникового газа 6 с турбиной 7, в которой расширяется колошниковый газ. Турбокомпрессор 1 засасывает воздух и подает его потом в теплообменник 2. Воздух, подогретый в теплообменнике, поступает в камеру сгорания 3, а оттуда — в турбину. Колошнико-  [c.170]

К уравнениям основных газодинамических связей ДТРД данной схемы относятся уравнения расхода и баланса работ турбокомпрессоров низкого давления и высокого давления.  [c.85]

Вследствие того что компрессор внешнего контура ДТРД имеет существенно меньшую степень повышения давления, чем компрессор внутреннего контура, компрессор внешнего контура обычно называют вентилятором. В двухвальном ДТРД в зависимости от схемы он может быть компрессором внешнего контура и одновременно первыми ступенями компрессора низкого давления внутреннего контура или компрессором внешнего контура и одновременно компрессором низкого давления внутреннего контура, расположенным на роторе турбовентилятора. Часть компрессора внутреннего контура, расположенную за вентилятором на роторе турбокомпрессора, называют компрессором газогенератора (компрессором высокого давления). В одновальном двигателе вентилятор соединен с компрессором и они образуют единый ротор.  [c.17]

Двигатель имеет необычный газовоздушный тракт, в котором до смешения воздушного и газового потоков направление движения потока внутреннего контура изменяется дважды на противоположное. В конструкции этого ДТРД роторы турбовентилятора и турбокомпрессора низкого давления отделены от ротора турбокомпрессора высокого давления в отличие от обычной схемы трехвального двигателя, в котором все роторы соосны.  [c.181]


Смотреть страницы где упоминается термин Турбокомпрессоры схемы : [c.85]    [c.181]    [c.290]    [c.345]    [c.138]    [c.168]    [c.202]   
Двигатели внутреннего сгорания (1980) -- [ c.86 ]



ПОИСК



Турбокомпрессор



© 2025 Mash-xxl.info Реклама на сайте