Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скачок уплотнения (волна сжатия)

Торможение набегающего потока в сверхзвуковых воздухозаборниках осуществляется в специально организованной системе скачков уплотнения. С этой целью используются профилированные поверхности, при обтекании которых образуется несколько последовательно расположенных друг за другом или пересекающихся скачков уплотнения (волн сжатия), заканчивающих-  [c.259]

Они различаются местом расположения скачков уплотнения относительно плоскости входа. В первом случае косые скачки уплотнения (волны сжатия) располагаются перед плоскостью входа. Во втором случае часть скачков уплотнения располагается вне и часть внутри канала. В третьем — все скачки находятся внутри канала.  [c.261]


Скачок уплотнения (волна сжатия) 37  [c.388]

Скачки уплотнения возникают при торможении сверхзвуковых потоков в газе какими-либо преградами. Возмущения сжатия, вызываемые отдельными точками преграды, распространяясь со скоростью звука, в сверхзвуковом потоке не могут выходить за пределы соответствующих конических поверхностей, образованных волнами Маха (см. рис. 4.2). Поэтому в ограниченном пространстве перед  [c.107]

При чисто ламинарном отрыве точка перехода лежит ниже по течению относительно точки прилипания, а при отрыве промежуточного типа место перехода располагается между точками отрыва и прилипания. Таким образом, положение точки перехода решающим образом влияет на характер отрыва пограничного слоя. Его нарастание зависит от интенсивности положительного градиента давления, а распределение давления определяется простыми волнами сжатия и скачком уплотнения, обусловленными утолщением пограничного слоя. На равновесие между этими двумя процессами может оказать воздействие изменение режима теплопередачи. Если охлаждать стенку выще области взаимодействия, то это вызовет повышение плотности и снижение вязкости газа. Большая плотность обусловливает возрастание количества движения газа и затягивание срыва. Этому же способствует и уменьшение вязкости.  [c.102]

Скачок уплотнения можно рассматривать как неподвижный относительно стенок трубы фронт ударной волны в газе (называемой также волной сжатия), распространяющейся против течения, в случае, когда скорость фронта оказывается равной скорости течения газа.  [c.301]

Рассмотрим сначала случай распространения волны сжатия в одномерном потоке скачок уплотнения называется в таком случае прямым.  [c.301]

Ударная волна — скачок уплотнения, возникающий перед телом, движущимся со сверхзвуковой скоростью, при прохождении через который резко увеличивается плотность, давление и температура. Область, находящаяся между ударной волной и поверхностью тела, называется сжатым слоем (см, 2-2, 2-3).  [c.373]

Действительная скорость потока на выходе из камеры смешения Сп1 может очень сильно отличаться от из-за следующих явлений, приводящих к изменению кинетической энергии фаз. При встрече струй на срезе парового сопла в сверхзвуковом потоке пара при определенных условиях возникает система волн сжатия или даже косой скачок уплотнения, скорость потока пара за которым зависит от угла скачка Pi,  [c.141]


Для получения высоких значений КПД ступени при M i>l,3. .. 1,35 необходимо переходить к другим схемам течения в решетке рабочего колеса, например к схеме, изображенной на рис. 2.45. Ее отличительные особенности а) отрицательная кривизна начального участка спинки, обеспечивающая торможение (а не разгон) потока на начальном участке в системе воли сжатия б) наличие косого скачка уплотнения вместо прямого скачка (головной волны) в схеме  [c.96]

При вытекании из сопла сверхзвуковой струи в пространство, где давление выше, чем на срезе сопла, образуются скачки уплотнения (рис. 5.29, а). Интенсивность скачков определяется тем, чтобы давление после них было равно давлению в окружающем пространстве. Граница струи на участках АО и ВЕ параллельна скоростям потока после скачков. Скачки после пересечения падают на свободную границу в точках О и Е. Давление в потоке после прохождения двух скачков становится больше, чем давление в окружающем пространстве, поэтому скачки отражаются от границы струн волнами разрежения. Дальнейшая картина строится точно так же, как на рис. 5.14, так как волны разрежения отражаются волнами сжатия. Построенная система волн не является единственно возможной.  [c.125]

Предельным случаем является торможение потока вдоль плавной вогнутой стенки, в каждой точке которой поток испытывает отклонение на малый угол d6 (рис. 5.16,6). При этом у стенки образуется волна сжатия, состоящая из бесчисленного множества слабых волн уплотнения. Движение газа через такую волну сжатия совершается при постоянной энтропии. Однако плавное изоэнтропийное торможение здесь может происходить только в слое газа, прилегающем к стенке. В результате пересечения характеристик уплотнения на некотором расстоянии от стенки, зависящем от скорости набегающего потока, возникает криволинейный скачок переменной интенсивности. Поток за скачком вихревой, так как скорости в разных точках за линией ВК различны.  [c.137]

При обтекании выпуклой прямолинейной стенки (рис. 1.66,й) образуется простая волна расширения (ПВР), в которой поток ускоряется. При обтекании вогнутой стенки возникает простая волна сжатия (ПВС), в которой поток тормозится (рис. 1.66, б). Если кривизна вогнутой стенки достаточна, то прямолинейные линии возмущения могут смыкаться и в результате наложения малых возмущений образуется конечный разрыв, т е. косой скачок уплотнения С. В пределе, если криволинейный участок стенки вырождается в точку излома, образуется плоский косой скачок уплотнения.  [c.76]

Высокое давление в точке О передается через дозвуковой слой вверх по течению в направлении О А. В силу непрерывности давления на поверхности раздела, в сверхзвуковой области, прилегающей к линии Д-10, давление тоже должно постепенно возрастать, т.е. линия А 0 должна искривляться вогнутостью от стенки. Искривление обтекаемой линии приводит к образованию в сверхзвуковом потоке волны сжатия, которая развивается в отраженный скачок уплотнения.  [c.69]

Разделяющая линия контакта имеет в точке падения скачка О излом с вогнутым углом в сторону дозвуковой области, так что для дозвукового потока точка О есть точка торможения с нулевой скоростью и максимальным давлением газа в ней. Простая волна сжатия, образующаяся в сверхзвуковом потоке перед падающим скачком уплотнения вследствие передачи вперед повышения давления через дозвуковую область, преломляется при прохождении скачка и дает начало отраженному скачку, который у точки О взаимодействует с выходящей из этой же точки центрированной волной разрежения. Падающий скачок отражается в этой точке от границы как от свободной поверхности с давлением на ней, равным давлению торможения дозвукового течения. При этом взаимодействии бесконечно слабый отраженный скачок возникает уже в точке О и, постепенно усиливаясь, приобретает в бесконечности интенсивность, соответствующую отражению от твердой стенки без дозвукового слоя на ней.  [c.82]


СКАЧОК УПЛОТНЕНИЯ (ударная волна)—тонкий слой сильно сжатого (уплотненного) воздуха, в котором происходит резкое (скачком) изменение его параметров.  [c.226]

Как пользоваться ударной полярой, видно по рис. 360. Предположим, что ударная поляра нам задана. Направление скачка, который отклоняет поток на угол 0, получим, проводя нормаль к линии АР здесь точка Р представляет собой точку, где прямая линия, проходящая через О и составляющая угол 0 с направлением набегающего потока, пересекает ударную поляру. Из этого построения получается также скорость 1 = ОР. Поскольку линия ОР пересекает ударную поляру еще в одной точке Р, то возможен еще второй скачок, направление которого перпендикулярно к АР. Однако эксперименты показывают, что для течения сжатия при обтекании излома или клина в действительности реализуется только один скачок, соответствующий точке Р. Касательная к ударной поляре ОТ, проведенная из точки О, определяет критический угол 0, при котором два возможных скачка уплотнения совпадают. Если 0 > 0, то проведенное выше построение становится недействительным, и в этом случае перед клином образуется отошедшая криволинейная ударная волна (рис. 362).  [c.601]

Наличие даже слабого скачка уплотнения приводит к резкому увеличению давления во внешнем потоке. Рост давления передается навстречу потоку по дозвуковой части пограничного слоя. Линии тока отклоняются от стенки, порождая в сверхзвуковой частя пограничного слоя семейство волн сжатия, которые распространяются во внешний поток и оказывают влияние на форму и интенсишность скачка уплотнения вблизи области взаимодействия. Продольный градиент давления в пограничном слое оказывается значительно меньше, чем во внешнем потоке. Если скачок слабый, то движение в пограничном слое происходит под воздействием небольшого положительного градиента давления и отрыв потока не происходит. С увеличением интенсивности скачка уплотнения во внешнем потоке возрастает градиент давления вблизи стенки и возникает отрыв пограничного слоя. При этом увеличивается отклонение линий тока в сверхзвуковой части течения, благодаря чему поддерживается необходимое распределение давления, соответствующее данной интенсивности скачка уплотнения. В зависимости от условий во внешнем потоке (интенсивности скачка уплотнения, местного числа М, ускоренного или замедленного характера течения) и формы обтекаемого тела возможны два случая. В первом случае поток после отрыва присоединяется снова к стенке. Сразу за скачком уплотнения возникают волны разрежения, как при обтекании внешнего тупого угла. В месте присоединения поток направлен под некоторым углом к стенке, поэтому здесь возникает новый скачок уплотнения, который может вызвать иногда новый отрыв пограничного слоя. Таким образом, могут появиться несколько 22  [c.339]

Сверхзвуковой диффузор с полным внутренним сжатием может быть осуществлен без центрального тела (рис. 8.46). В таком диффузоре косой скачок отходит от кромки обечайки А и пересекается в точке О на оси диффузора со скачком, идущим от противоположной кромки. Поток газа в скачке АО отклоняется от первоначального направления и становится параллельным стенке АС. В точке О линии тока вынуждены возвратиться к первоначальному направлению, в связи с чем возникает отраженный скачок 0D. В точке D поток вновь отклоняется от осевого направления и становится параллельным стенке диффузора это вызывает новый скачок, который отражается от оси диффузора, образуя следующий скачок и т. д. Так как в скачках уплотнения поток тормозится, то предельный угол поворота в каждом последующем скачке меньше, чем в предыдущем. Описанный процесс продолжается до тех пор, пока требуемый угол отклонения потока не оказывается больше предельного (ы > > (Omai) с наступлением этого режима вместо очередного плоского скачка образуется криволинейная ударная волна EF, за которой поток становится дозвуковым. Дальнейшее течение в сужающем канале идет с увеличением скорости, причем в узком сечении скорость должна быть ниже или равна критической в последнем случае за узким сечением может возникнуть дополнительная сверхзвуковая зона, завершаемая скачком уплотнения GH.  [c.475]

Изучение природы скачков давления представляет большой практический интерес. Различают прямые н косые скачки уплотнения. В и р я м о м скачке уплотнения угол между плоскостью ударной волны н направлением скорости газа до н после скачка прямой в к о с о м скачке у п л о т н е н и я этот угол отличается от прямого. Сжатие газа в скачке является процессом необратимым, протекающим с возрастанием энтропии, что всегда приводит к необратимым потерям энергии. Поэтому при проектировании реактивных двигателей, сверхзвуковых дис1зфузоров, газовых турбин и сверхзвуковых летательных аппаратов необходимо уметь определять состояние газа при течении сквозь скачок уплотнения.  [c.245]

Таким образом, если в решении Римана имеются участки волны сжатия, в потоке идеальной (невязкой) среды обязательно будут возникать скачки уплотнения. Разрывы не будут образовываться, если плотность в волне Римана монотонно возрастает в направлении распространения волны на всем ее протяжении, как, например, в случае волны, возникающей при непрерывном выдвигании поршня из заполненной газом длинной трубы. Скачки уплотнения могут, а скачки разрежения не могут возникать, так как профиль волны разреншния становится все более пологим.  [c.226]


Кроме этого, имеется второй корень р1фрц. В случае, если скачок бесконечно слабый, pi—>-рп и решение представляет собой, как известно, волну сжатия. Условия превращения скачка уплотнения в волну сжатия возникают при достижении потоком скорости, равной локальной скорости звука.  [c.274]

Это соотношение называется ударной адиабатой Гюгонио (рис. 12.1, кривая 7). На этом же рисунке для сравнения показана адиабата Пуассона Pi/Pi = (Р2/Р1) (кривая 2), соответствующая изэнтропическому сжатию совершенного газа. Адиабата Гюгонио характеризует адиабатическое неизэнтропическое сжатие газа в ударной волне. При прохождении газом скачка уплотнения происходит частичный необратимый переход механической энергии в тепловую, что приводит к увеличению энтропии. Особенность ударной адиабаты - то, что при неограниченном возрастании давления в скачке (ft/Pi °°) плотность  [c.182]

В конденсирующих инжекторах используются сопла Лаваля. Расчетный режим работы такого сопла предусматривает равенство давлений на срезе сопла и в окружающей среде, куда происходит истечение. В конденсирующем инжекторе за срезом парового сопла продолжается дальнейшее расширение парового потока, обусловленное конденсацией пара на жидкости, т. е. паровое сопло конденсирующего инжектора работает в режиме недорасширения. Однако на выходных кромках сопла в месте встречи струй пара и жидкости возможно появление не только волн разрежения, но и скачка уплотнения или, по крайней мере, системы волн сжатия. В работе [2 ] указывается, что при определенных соотношениях кинетической энергии жидкостного и парового потоков в сечении встречи струй в сверхзвуковом потоке пара возникает скачок уплотнения. Тем не менее, в непосредственной близости от среза сопла наблюдается понижение давления пара до минимального значения в камере смешения Рктш- Оно зависит, прежде всего, от коэффициента инжекции и и температуры охлаждающей жидкости. 0 объясняется изменением температуры межфазной поверхности, определяющей статическое давление насыщения. При уменьшении и и увеличении температуры охлаждающей жидкости величина тш увеличивается, а соответствующее сечение сдвигается вверх по потоку.  [c.125]

При больших числах М2 решетка за счет сверхзвуковой части профилей может получиться слишком густой, что нежелательно по конструктивным соображениям. В этом случае обычно применяют укороченные профили, получаемые для меньших расчетных чисел Мо < Ма (и, соответственно, больших величин 2 > с учетом последующего расширения в косом срезе. Иначе (или одновременно) можно просто несколько сократить длину сверхзвуковой части профиля путем увеличения кривизны его стенок. При этом будет нарушено условие равномерности потока за решеткой и в нем могут возникнуть скачки уплотнения (как огибающие волн сжатия, выходящих из криволинейных стенок). Задача теоретического построения потока через такое сокращенное сопло, как и потока при давлении за рещеткой, большим расчетного, представляет значительные трудности. Получение надежных данных в этих случаях требует проведения экспериментального исследования на специальных установках.  [c.229]

В момент возникновения нестационарного режима (предельный подвод тепла к потоку в зоне спонтанной конденсации) линии а и Ь пересекаются в точке 5 (см. рис. 2-3). Интегрирование для этого режима производится до сечения Xq, где Рм1ш = 0, т. е. до сечения, где скачок уплотнения вырождается в волну сжатия функция (л ), равная а/с , достигает минимума]. Время одного периода будет равняться бесконечности (т=оо), а частота f равна нулю.  [c.29]

Режим работы водухозаборника, при котором возникает сверхзвуковая зона и скачок уплотнения за горлом, принято называть сверхкриттеским режим, соответствующий расположению скачка в горле, — критическим, а режим с головной волной на входе и дозвуковыми скоростями в канале — докритическим. Практический интерес для воздухозаборников внутреннего сжатия представляют сверхкритические режимы, так как только на этих режимах они могут работать устойчиво и с высокими значениями коэффициента авх-  [c.267]

Переполнение канала воздухозаборника сжатым воздухом вначале приводит к образованию головной волны перед обечайкой. Эта головная волна, перемещаясь против потока, все больше разрушает систему косых скачков уплотнения. Поток за головной волной становится резко неравномерным. Причина возникновения этой неравномерности состоит в том, что в тех струях тока, которые проходят только через головную волну, создаются более высо-  [c.287]

Если установить давление за решеткой ниже критического, то поток на выходе станет сверхзвуковым, причем возникнет отклонение потока в косом срезе. Косым срезом называется область, ограниченная треугольниками а а, причем размер соответствует минимальной площади сечения канала между лопатками. При давлении за решеткой ниже критического в точках а возникнут центрированные волны разрежения abd. При пересечении этих волн давление в потоке понижается от (на линии аЬ) до давления за решеткой < р . Эти волны разрежения изобразятся в диаграмме характеристик эпициклоидой 12 (см. рис. 5.31, б), причем при прохождении волн струйки / повернут на угол б, а скорость потока станет равной Струйки II, расположенные по другую сторону кромки, пройдут также отраженную волну разрежения bdef (рис. 5.31, а), которая изображается в диаграмме характеристик эпициклоидой 23 (рис. 5.31, б). После точек а струйки / и И имеют общую границу (отмечены точками на рис. 5.31, а), по обе стороны которой давление должно быть одинаковым, а скорости параллельны. Поэтому образуются косые скачки уплотнений ag. Если, как обычно бывает, угол отклонения невелик, то скачок уплотнений имеет малую интенсивность и может быть заменен элементарной волной сжатия. Эта волна сжатия изображается в диаграмме характеристик эпициклоидой 32. Следовательно, скачки параллельны нормали к этой эпициклоиде.  [c.128]

Рассмотрим более подробно обтекание решетки тонких телесных профилей сверхзвуковым потоком, когда нормальная составляющая скорости меньше скорости звука (рис. 5.33). На тонких передних кро.мках возникают косые скачки уплотнений, а на выпуклой поверхности лопаток — волны разрежения. Скачки н волны расположены перед фронтом н, следовательно, возмущают поток перед решеткой. Скачки уплотнения интерферируют с волнами разрежения, и возмущения затухают при отдалении от решетки, так как иначе поток не мог бы быть периодическим. Характеристики каждой волны разрежения интерферируют с соседними скачками уплотнения, и скачки вырождаются в волны сжатия. Следовательно, в каждой волне разрежения имеется одна характеристика, которая уходит в бесконечность перед решеткой, не пересекаясь со скачками (допустим характеристика АВ на рис. 5.33). При достаточно слабых скачках течение можно считать изоэнтропийным и тогда характеристика А В будет прямой. Поскольку вдоль прямой характеристики все параметры потока постоянны, то, очевидно, что значение скорости и угла натекания потока в бесконечности соответствует их значению на характеристике АВ. Этим объясняется так называемое направляющее свойство решетки в сверхзвуковом потоке заданной скорости потока в бесконечности ).i соответствует только один угол натекания Pi, при котором течение всюду сверхзвуковое н безотрывное.  [c.130]


Рассмотрим подробнее только вариант отражения скачка от поверхности, покрытой турбулентным слоем, при отсутствии отрыва (рис. 7.10). Пограничный слой утолщается перед скачком, так как там возникает положительный градиент давления, вызванный передачей возмущений через дозвуковую часть слоя вверх по потоку. На этой части пограничного слоя, как при обтекании вогнутой стенки, появляются сходящиеся волны сжатия, образующие при слиянии отраженный скачок уплотнений. В том месте, где утолщение слоя заканчи-  [c.186]

Прямые скачки уплотнения в капельных жидкостях. Так как капельные жидкости сжимаемы (хотя и в значительно меньшей степени, чем газы), то и в них могут возникать ударные волны. Эти волны могут образоваться при подводном взрыве, а в трубопроводе — при выходе из строя насоса ли при внезапном закрытии задвижки. В последнем случае явление, называемое гидравлическим ударом, я вляется эквивалентом прямой волны сжатия в газе. При бесконечно большом объеме жидкости или в случае абсолютно жестких стенок трубопровода скорость распространения малых возмущений давления с выражается через модуль о бъемной упругости жидкости Е-1, (см. табл. 1-2, 1-3 1-5) формулой (1-Юб) с= -Ев/р. Значения и р в капельных жидкостях очень мало меняются в широком диапазоне давлений, поэтому скорость распространения волны давления практически постоянна. При ударе в газе картина совсем  [c.367]

Образованием ударных волн, как двим ущихся в пространстве, так и стоячих скачков уплотнения, сопровождаются многие важные для техники процессы, связанные с большими около- и сверхзвуковыми движениями газа или с распространением местных сжатий (повышений давления) в неподвижном газе.  [c.185]


Смотреть страницы где упоминается термин Скачок уплотнения (волна сжатия) : [c.401]    [c.112]    [c.101]    [c.101]    [c.101]    [c.226]    [c.100]    [c.142]    [c.162]    [c.430]    [c.309]    [c.222]    [c.224]    [c.227]    [c.123]    [c.123]    [c.76]    [c.55]   
Аэродинамика решеток турбомашин (1987) -- [ c.37 ]



ПОИСК



Волна сжатия

Волна уплотнения

Скачки уплотнения

Скачок

Скачок уплотнения



© 2025 Mash-xxl.info Реклама на сайте