Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамическая система компонент системы

Состояние равновесия системы, как следует из постулата о равновесии, можно изменить только с помощью внешнего воздействия на нее, т. е. изменяя свойства внешней среды или характеристики граничной поверхности, поскольку от последних зависит, как влияет и влияет ли вообще на систему ее окружение. При этом в силу взаимосвязи всех свойств системы изменение одного свойства внешней среды может в общем случае воздействовать на любую из термодинамических характеристик равновесной системы. Но всегда существует свойство системы, которое должно измениться при определенном контакте с внешней средой. Действительно, для большой системы, включающей в себя рассматриваемую систему и внешнюю среду, справедливы законы сохранения экстенсивных свойств. Изменение такого свойства во внешней среде должно поэтому сопровождаться соответствующими изменениями в системе. Так, увеличение объема внешней среды равняется уменьшению объема системы, поскольку обе эти величины зависят от расположения одной и той же граничной поверхности, изменения количеств компонентов в системе с точностью до знака равняется их изменению в окружении и т. д.  [c.21]


Термодинамические функции неравновесной системы если они существуют, т. е. являются измеримыми в принципе) могут зависеть от большего числа аргументов, чем при равновесии той же системы. Например, любое внутреннее свойство Y однородной системы, внешними переменными которой являются объем V и набор количеств компонентов п, при равновесии согласно исходным постулатам можно представить как функцию состояния Y=Y U, V, п). Если же система химически неравновесная, то с помощью рассмотренного выше приема торможения химических реакций, при котором каждое вещество становится компонентом системы, это же свойство выражается в виде У= = Y U, V, п), где п — количества составляющих веществ. Число компонентов в однородной системе не может превышать числа составляющих (см. (1.4)) Поскольку и равновесная и неравновесная системы имеют в данном случае одинаковые внешние переменные (запись Y U, V, п, п ), где в набор п не включены компоненты, совпадает с Y U, V, п)), дополнительные избыточные) переменные неравновесной системы являются ее внутренними переменными.  [c.37]

Энергия за вычетом этих слагаемых называется внутренней энергией (U). Она сосредоточена в массе вещества и в электромагнитном излучении, т. е. это сумма энергии излучения, кинетической энергии движения составляющих вещество микрочастиц, потенциальной энергии из взаимодействия и энергии, эквивалентной массе покоя всех этих частиц согласно уравнению Эйнштейна. При термодинамическом анализе ограничиваются каким-либо определенным уровнем энергии и определенными частицами, не затрагивая более глубоко лежащих уровней. Для химических процессов, например, несущественна энергия взаимодействия нуклонов в ядрах атомов химических элементов, поскольку она остается неизменной при химических реакциях. В роли компонентов системы в этом случае могут, как правило, выступать атомы химических элементов. Но при ядерных реакциях компонентами уже должны быть элементарные частицы. Внутренняя энергия таких неизменных в пределах рассматриваемого явления структурных единиц вещества принимается за условный уровень отсчета энергии и входит как константа в термодинамические соотношения.  [c.41]

При формировании зернистой структуры происходит также перераспределение компонентов системы исходного расплава, заключающееся в концентрировании примесей, легирующих элементов и углерода на границах зерен. При этом данные компоненты заполняют некоторый объем пор на границах зерен, что является термодинамически выгодным фактором, т.к. приводит к снижению энергии границ зерен и, следовательно, снижается значение свободной энергии в целом по системе твердого сплава.  [c.92]


Кроме фазы важное значение при исследованиях равновесия термодинамических систем (как гетерогенных, так и гомогенных) имеет понятие компонент. Это такая часть системы, содержание которой не зависит от содержания других частей. Смесь i азов является однофазной, но многокомпонентной системой компонентов в смеси химически не реагирующих газов столько.  [c.22]

Правило фаз Гиббса устанавливает для термодинамической системы, находящейся в равновесии, связь между числом степеней свободы- (независимых переменных), числом фаз и числом компонентов системы в форме  [c.85]

С этой целью рассмотрим открытые термодинамические системы, в которых массы компонентов, а следовательно, и числа молей (а = 1,. .., р) из-за массообмена термодинамической системы с окружающей средой могут изменяться произвольным образом. Первый закон термодинамики для закрытых термодинамических систем (закрытые системы не обмениваются веществом с внешней средой) устанавливает существование функции состояния — внутренней энергии и, из второго закона термодинамики следует существование для закрытых систем функции состояния энтропии 5. Предположим, что эти функции состояния существуют и для открытых систем, когда количества молей компонент меняются в системе произвольным образом  [c.73]

Если система находится в состоянии термодинамического равновесия, то передача теплоты от одних частей системы к другим или к окружающей среде, перемещение отдельных частей системы, а также обмен веществом между частями системы (или, другими словами, изменение массы компонентов системы) отсутствуют, т. е. термодинамическому равновесию присуще тепловое, механическое и массовое (фазовое или химическое) равновесие.  [c.11]

Все реакции и соотношения, относящиеся к химическому равновесию, рассматривались здесь применительно к гомогенным газовым системам. Условия термодинамического равновесия гетерогенной системы с одним компонентом рассматривались в 12. Большое практическое значение имеют многокомпонентные гетерогенные системы, для которых условия термодинамического равновесия устанавливаются с помощью правила фаз Гиббса. Это правило позволяет определить число произвольно изменяемых параметров (число степеней свободы), исходя из числа компонентов и числа фаз в системе. Число компонентов равно числу химически индивидуальных веществ минус число химических реакций между ними. Определение фазы было дано в 12 при невысоких давлениях возможна лишь одна газовая фаза в системе, но количество твердых и жидких фаз не ограничивается существует, например, несколько кристаллических модификаций твердых тел (льда, серы, железа), в системе могут быть несмешивающиеся жидкости, каждая из которых является фазой.  [c.258]

В [36] представлены результаты расчета термодинамически равновесных состояний системы продуктов сгорания, содержащих натрий, калий и серу в зависимости от температуры и концентраций кислорода при атмосферном давлении. Цель этих расчетов — выявление состояния в системе таких компонентов, которые наибольшим образом могут влиять на загрязнение и коррозию поверхностей нагрева.  [c.28]

РАВНОВЕСИЕ (статистическое характеризует замкнутую систему многих частиц, в котором средние значения физических величин, характеризующих систему, не зависят от времени термодинамическое — состояние замкнутой системы, в которое она самопроизвольно переходит спустя достаточно большой промежуток времени устойчивое обычно восстанавливается при малых нарушениях вследствие диссипации энергии фазовое—одновременное сосуществование термодинамически равновесных фаз в многофазной системе химическое— состояние системы, характеризуемое постоянством концентраций химически реагирующих между собой компонентов) РАДИОАКТИВНОСТЬ (есть самопроизвольное превращение одних атомных ядер в другие, сопровождаемое испусканием элементарных частиц естественная наблюдается у ядер, существующих в природных условиях искусственная происходит искусственно посредством ядерных реакций) РАДИОЛЮМИНЕСЦЕНЦИЯ — люминесценция, возбужденная радиоактивным или рентгеновским излучением РАДИО-  [c.268]


При анализе фазовых равновесий и процессов фазовых переходов важную роль играет так называемое правило фаз Гиббса. Оно устанавливает зависимость между числом независимых интенсивных переменных, определяющих состояние термодинамической системы, находящейся в равновесии (эти независимые переменные часто называют степенями свободы системы), числом фаз и числом компонентов системы .  [c.136]

Диаграмма состояния Си—Mo экспериментально не построена. Согласно обзорам [X, Э] Си и Мо не смешиваются в жидком и твердом состоянии, а взаимная растворимость компонентов при температуре 900 °С чрезвычайно мала [1]. В работе [2] диаграмма состояния Си—Мо (рис. 147) построена в основном с учетом данных работы [3], которые получены исключительно расчетным методом с использованием термодинамических параметров. В системе согласно работам [2, 3] имеют место монотектическое и эвтектическое равновесия (табл. 103).  [c.275]

Диаграмма состояния Si-Sn приведена на рис. 585 по данным работы [1], которые подтверждены в работе [2]. Диаграмма Si-Sn построена на основании обобщенных данных о фазовых равновесиях в системе Si-Sn с использованием сведений о термодинамических свойствах компонентов. Отмечено отсутствие взаимной растворимости компонентов и осуще-  [c.290]

Диаграмма фазового равновесия (диаграмма состояния) — графическое изображение соотношения между параметрами состояния (температурой, давлением, составом) термодинамически равновесной системы, т.е. фазового состояния любого сплава изучаемой системы компонент в зависимости от его концентрации.  [c.196]

До сих пор мы рассматривали термодинамическое равновесие в системах физически неоднородных, состоящих из нескольких фаз, но однородных в химическом отношении. Начнем теперь рассматривать системы сложного химического состава, состоящие из нескольких компонентов. Будем называть компонентами химически различные части системы при условии, что количество каждого компонента не зависит от содержания других компонентов.  [c.154]

Корреляция фазовой -диаграммы с электрохимическими характеристиками сплава частично обсуждалась в разд. 1.3. Имеется однозначная -аналитическая связь (il.)12) между химическими потенциалами компонентов А и В в сплаве и, соответствующими обратимыми электродными потенциалами по каждому из компонентов, т. е. обратимыми потенциалами реакций (1.6) и (1.7), причем термодинамическое равновесие в системе сплав — раствор электролита имеет место в случае л = Ев=Еа,в-сплав-Это условие сохраняет силу независимо от того, какая интерметаллическая систем.а подразумевается — гомогенная или гетерогенная, так как обратимые потенциалы реакций (1.6) и (1.7) для каждой из равновесно сосуществующих фаз одни и те же. Таким образом, каждой фазовой диаграмме может быть поставлена в соответствие зависимость обратимого потенциала от состава системы.  [c.142]

Найденные условия термодинамического равновесия позволяют выделить равновесное состояние среди других, но они ничего не говорят о возможных внутренних условиях, определяющих равновесие между компонентами системы. Известно, например, что твердая и жидкая фазы вещества находятся в равновесии при температуре плавления, зависящей от давления. Исследуем условия равновесия фаз, имеющих в общем случае различный химический состав.  [c.159]

Между тем уравнение (3) может быть достаточно надежно использовано для приближенного определения отклонений термодинамических свойств рассматриваемой системы от их значений в идеально-газовом приближении, если принять во внимание отмеченное выше обстоятельство начиная с температуры 800° К мы имеем систему, содержащую только один компонент, свойства которого оценены приближенно, при этом влияние его с повышением температуры и понижением давления убывает. Это дает возможность, рассчитав с помощью уравнения (3) свойства системы NO2—N0—О2 (v, i, s) при высоких температурах и располагая таблицами свойств при низких температурах, произвести графическую интерполяцию термодинамических функций на изобарах, принимая во внимание непрерывность их изменения для химически равновесной системы.  [c.193]

Условия 1 и 2 являются необходимыми, но они оказываются недостаточными, если количество различных компонентов системы может меняться. Как мы сейчас увидим, в этом случае должно выполняться еще одно условие. Рассмотрим сначала однокомпонентную систему, т. е. тело, состоящее из одного вещества. Мы можем тогда сразу применить уже развитую теорию. Поскольку давление и температура являются интенсивными параметрами (см. гл. 3, 5), тогда как термодинамический потенциал Гиббса О — экстенсивная величина, можно, очевидно, записать О в виде  [c.99]

Наиболее полная и научно обоснованная классификация примесей природных и промышленных вод предложена Л. А. Кульским [1,19, 22]. В основу ее положено фазовое и дисперсное состояние компонентов, содержащихся в воде. Все примеси объединены в четыре группы. Примеси первых двух групп образуют термодинамически неустойчивые гетерогенные системы, а третей и четвертой групп — термодинамически равновесные и обратимые гомогенные системы.  [c.7]

Изотермы термодинамической активности компонентов в системах Мп—Ре, Мп—Со и Мп—N1 (рис. 1) обнаруживают отрицательные отклонения от закона Рауля для всех составов, за исключением изотермы активности марганца в системе Мп—N1 в области Р-твердого раствора, и имеют сложную зависимость от концентрации, что связано с изменением фазового состава сплавов. Наибольшие отрицательные отклонения от идеальных значений наблюдаются в системе Мп—N1, наименьшие — в системе Мп—Ре, система Мп—Со занимает промежуточное положение.  [c.412]

Таким образом, термодинамический эффект, вызванный изменениями количеств веществ в системе, можно вырааить тремя способами. Вонпервых, его можно представить как сумму эффектов от каждого из компонентов системы. Независимыми переменными в этом случае служат количества (или массы) компонентов, и вклад каждого из них о внутреннюю энергию системы записывается в виде ifdrtf. Этот способ описания пригоден для процессов в открытых системах. Вопрос о химическом равновесии внутри системы при нем остается невыясненным. Так функции и(S, V, п) или U(T, V, п) могут относиться как к химически равновесной системе, так и к системе, в которой нет химических превращений веществ. Обе эти возможности должны указываться заранее при формулировке задачи. Последнее замечание относится и к описанию процессов в закрытых системах, у которых все внешние переменные п фиксированы и поэтому обычно не включаются в набор аргументов термодинамических функций. Например, уравнение состояния (2.1) в виде Р = Р(Т, V) справедливо как для химически равновесной смеси веществ, так и для гомогенной системы без химических превращений. Общие выражения (2.2) —(2.7) для частных производных одинаковы в обоих случаях, о численные значения термических коэффициентов av, Pv и других свойств при наличии химических реакций и без них могут существенно различаться. Наглядный пример этого — уравнения (5.30), (5.31).  [c.69]


Мансон и Шулер [121, 122] исследовали таким образом слоистые композиционные материалы и механические смеси. В построенной ими модели не учитывались термодинамические эффекты, физические соотношения для всех п компонент системы принимались в форме Рп — Рп (рп) и предполагалось, что давление во всех компонентах в данной точке одинаково, т. е.  [c.301]

Очевидно, для количественного анализа этих систем необходимо знать термодинамические данные возможных тройных соединений, тройных твердых растворов и др., как было показано в гл. 3. В приведенных примерах химическая стабильность систем охарактеризована только в первом приближении. Ясно, что в системах компоненты которых взаимодействуют, следует оценивать кинетику реакций, поскольку практически полезные композиты могут быть химически нестабильны, но стабильны кинетически, как это уже обсуждалось в гл. 3.  [c.313]

На втором этапе были вычислены состав и термодинамические функции воздуха при различных температурах и давлениях. Задача состояла в решении системы нелинейных алгебраических уравнений для молярных долей компонент воздуха при каждой температуре и каждом давлении. При решении системы использовался метод Ньютона. Для вытшсления теплоемкостей решались две системы линейных уравнений для определения производных от чисел молей при постоянном давлении и производных от чисел молей при постоянном объеме. По данным решений трех систем и расчетам термодинамических функций компонент вычислялись термодинамические функции воздуха.  [c.277]

Компоненты системы — различные вещества, [аименьшее число которых достаточно для образования всех фаз данной термодинамической системы. Они могут находиться в твердом, жидком или газообразном состоянии. Эти состояния вещества называют соответственно твердой, жидкой или газообразной фазами. Компоненты состоят из одного и того же химического вещества (например, водяной пар и капельки воды).  [c.196]

Объектом термодинамического исследования является система, характеризуемая иаражетражи состояния. Всякое изменение в системе, связанное с изменением этих параметров, называется процессом. Например, любой металлургический агрегат —это сложная система, в которой параметрами состояния являются давление в рабочем пространстве печи, температура металла, шлака, газовой фазы, футеровки печи, концентрации компонентов газовой атмосферы, металла, шлака и т. д.  [c.100]

Диаграмма состояния фазового равновесия) сплава — графическое изображение соотношения между параметрами состояния (температурой, давлением, составом) термодинамически равновесной системы, т.е. фазового состояния любого сплава изучаемой системы компонентов в зависимости от его концентрации (в процентах по массе или, реже, в атомньЕХ процентах) и температуры. Обычно применяют проекции диаграммы состояния на одну из координатньгх плоскостей при постоянном значении остальных параметров, например на плоскость температура — состав при постоянном давлении.  [c.49]

Следовательно, результатом смешения А и В является образование твердог раствора термодинамически более стабильной системы, чем исходная гетерогенная система, представленная чистыми компонентами. Однако сам факт понижения общей энергии системы здесь не имеет решающего значения, так как при анодном растворении (коррозии) с электролитом взаимодействует не фаза как таковая, а совокупность атомов того или другого компонента. Поэтому при термодинамическом рассмотрении процесса селективной коррозии важнее иметь сведения, об индивидуальных (парциальных) состояниях компонентов в сплаве, а не об общей стабильности самой фазы.  [c.12]

Такой результат вообще характерен для систем с очень больщой разницей в электроотрицателшости компонентов, стандартные потенциалы которых здесь, по нашему предположению. различаются на 1,00 В. Сл Доват.ельно, термодинамическая обратимость в системе сплав — электролит, т. е. выравнивание Еа и Ев, достигается ценой огромного различия й концентрациях ионов А+ и В+. Поэтому, создав. в растворе обычную для практики концентрацию только одних ионов А+, можно- сразу же построить обратимую систему, так как равновесная концентрация В+ в этих условиях практически авна нулю. Очевидно, что наблюдаемый электродный потенциал фактически представляет собой потенциал равновесия по электроотрицательному компоненту А.  [c.23]

В заключение следует подчеркнуть, что термодинамическая устойчивость электрохимической системы сплав — электролит (при P,T= onst) определяется, по меньшей мере, двумя параметрами и двумя переменными (см. уравнение (1.17)), т. е. двумя стандартными потенциалами компонентов, отношением активностей ионов в электролите и отношением активностей компонентов в сплаве. Только при соответствии всех этих величин может уетанавливаться обратимый электродный потенциал, означающий равновесие фаз. При нарушении же этого соответствия развиваются электрохимические реакции, которые в конечном счете восстанавливают равновесие. Частным случаем таких превращений может быть СР одного из компонентов (чаще всего электроотрицательного), приводящее к изменению количественного состава или даж полному распаду сплава.  [c.28]

Остается другая возможность значительного повышения термодинамической стабильности и получения коррозионно-стойких Силавов типа твердых растворов независихМО от энергетических изменений в системе путем кроющего ( стери-ческого ) механизма при легировании коррозионно-нестойкого металла значительным количеством термодинамически стабильного компонента (например, благородным металлом). Этот путь, однако, также имеет ограниченное практическое значение, что определяется двумя обстоятельствами  [c.14]

При решении проблемы создания жаростойких покрытий еще в значительной мере преобладает эмпиризм, обусловленный недостатком термодинамических и кинетических данных для высоких и сверхвысоких температур. Нет достаточного количества диаграмм состояния металл (сплав)—покрытие — кислород, данных но термодинамическим активностям компонентов в сложных системах, давлению паров, диффузионным подвижностям компонентов в тройных, а также более сложных системах и т. д. Кроме того Сложность изучаемой системы подложка—покрытие — коррозионная среда, включающей большое число изменяющихся параметров, создает значителыные трудности для изучения механизма протекающих процессов. Этим отчасти можно объяснить тот факт, что-несмотря на важность задачи и значительные научно-техниче-ские силы, занятые ее решением, до сих нор не созданы покрытия, удовлетворяющие разнообразные запросы современной техники. К настоящему времени, например, разработаны покрытия на вольфраме, работающие лишь 20 час. при 1800° С, что же касается температур > 2000° С, то> срок службы покрытий здесь ошаничийается несколькими десятками минут  [c.216]

Термодинамический потенциал бинарной системы является-функцией температуры, давления и концентрации. Во многих системах в области высоких температур стабильным состоянием может быть однофазный твердый раствор, а в области низких температур равновесию отвечает двухфазное состояние. Посредством закалки, которая состоит в резком охлаждении сплава от температур устойчивости однофазного состояния, твердый раствор на основе компонента или промелсуточной фазы переносится в область температур, где этот раствор оказывается пересыщенным. Например, в системе с эвтектоидным превращением стабильная в области высоких температур-Р-фаза путем закалки (вертикальные линии /, 2, 3 на рис. 10.4) мол<ет быть зафиксирована в метастабильном состояний Рмет в области низких температур с последующим распадом по схемам  [c.205]


Молекула серной кислоты является химическим соединением одной молекулы серного ангидрида с одной молекулой воды, ее молекулярная масса 98,078. Температура кипения с повышением концентрации водных растворов серной кислоты увеличивается от 100 до 336,5 °С при изменении концентрации Н2304 от нуля до 98,3% [1]- Термодинамическое равновесие двухкомпонентной системы НгО — Н2ЗО4 для общего давления 0,0085 МПа показано на рнс. 1.11. По оси абсцисс отложена концентрация кислоты, по оси ординат — температура. При постоянстве суммы парциальных давлений обоих компонентов каждому значению температуры соответствует лишь одно значение концентрации серной кислоты.  [c.36]

Иным способом можно проанализировать термодинамические свойства сплавов системы кадмий — свинец. Сравнение кривой зависимости парциальной теплоты образования сплавов от концентрации при двух различных температурах явно указывает на изменение атомной структуры с понижением температуры. Структурные исследования сплавов кадмий— свинец не проводились. Однако температурную зависимость структуры сплавов хорошо проследить на системе индий — алюминий или олово — алюминий. На кривых радиального распределения в сплавах системы индий — алюминий при низкой температуре наблюдаются два первых максимума, соответствующие координации только однородных атомов индий — индий и алюминий — алюминий. Отсутствие координации атомов индия и алюминия указывает на наличие упорядоченного расположения атомов типа квазиэвтектики, т. е. такого же упорядочения, которое следует ожидать и в системе кадмий — свинец. С повышением температуры на кривых радиального распределения вырастает средний максимум, отвечающий координации индий — алюминий. Это явление характеризует образование хаотического распределения атомов и исчезновение упорядочения типа расслаивания в относительном расположении атомов. В системе кадмий — висмут размеры атомов компонентов различаются так же, как и в системе индий — алюминий у этих систем близки и диаграммы состояния. Поэтому возможно такое же изменение структуры с изменением температуры, параллельно чему изменяется вид зависимости парциальных теплот образования от концентрации.  [c.122]

Процессы, происходящие в металлах и сплавах прп изменении температуры и состава, удобно рассматривать с помощью так называемого правила фаз, которое может быть строго выведено на основании законов термодинамики. Для того чтобы пользоваться этим правилом, в котором используются понятия термодинамическая система или просто система, компонент, фаза, степень свободы, необходимо уяснпть З. а-чения этих понятий.  [c.62]

Из термодинамических расчетов следует, что такие компоненты системы aFj—Ba lj—NaF, как aFa н NaF, могут вступать в реакцию с оксидами титана, что имеет большое значение для защиты металла шва при сварке от загрязнения кислородом. Термодинамические расчеты также указывают на возможность восстановления натрия титаном из NaF. О реализации этой возможности свидетель-  [c.495]


Смотреть страницы где упоминается термин Термодинамическая система компонент системы : [c.298]    [c.17]    [c.85]    [c.149]    [c.137]    [c.292]    [c.335]    [c.155]    [c.140]    [c.109]   
Основы материаловедения и технологии полупроводников (2002) -- [ c.140 ]



ПОИСК



Компоненты системы

Термодинамическая система



© 2025 Mash-xxl.info Реклама на сайте