Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость нелинейно-упругого стержня

Устойчивость нелинейно-упругого стержня 352  [c.420]

Критическое усилие 5 кр определяется как рещение задачи об устойчивости геометрически нелинейного упругого стержня, имеющего определенную конструктивную схему и начальное искривление.  [c.542]

В гл. 4 была рассмотрена в элементарном изложении теория устойчивости упругих стержней. Особенность этих задач состояла в том, что уравнения равновесия составлялись для деформированного состояния стержня, т. е. по существу речь шла о геометрически нелинейных задачах. Вариационные уравнения, описанные в 8.7, эквивалентны геометрически линейным уравнениям теории упругости, для которых доказана теорема единственности. Поэтому никакие задачи устойчивости с помощью этих вариационных уравнений решать нельзя. Здесь мы постараемся распространить вариационные уравнения на геометрически нелинейные задачи. Существо дела состоит в том, что уравнения статики должны составляться не в исходной системе координат, например декартовой, а в той криволинейной системе координат, в которую превращается исходная вследствие деформации. Прямой путь получения таких уравнений довольно сложен, поэтому нам будет удобно вернуться к выводу 7.4, где напряжения определялись по существу как обобщенные силы, для которых компоненты тензора деформации служили обобщенными неремещениями. Пусть тело, ограниченное поверхностью  [c.390]


Перечень подобных примеров может быть продолжен. Характерной особенностью изложенного подхода является то, что решение вероятностных задач базируется на уже известных результатах, полученных для детерминированных динамических воздействий. Привлекая дополнительную статистическую информацию об исходных параметрах, мы получаем возможность выяснить особенности вероятностного поведения нелинейных систем и перейти к оценке их надежности, долговечности и других показателей качества. При этом в число исходных случайных коэффициентов могут включаться не только параметры внешних воздействий, но и характеристики системы, в частности случайные начальные неправильности, коэффициенты упругости и т. д. Приведем пример из области динамической устойчивости упругих стержней.  [c.15]

В последнее время в связи с потребностями развития космической техники и космических полетов, тенденцией увеличения размеров орбитальных систем и уменьшения их жесткости и рядом других факторов, в частности, с повышенными требованиями к точности ориентации составных космических аппаратов относительно инерциальной или орбитальной системы координат, стали весьма актуальными проблемы нелинейной динамики, устойчивости и стабилизации составных космических систем с учетом упругости и деформируемости их отдельных конструкций. Такими конструкциями являются, например, выдвижные штанги, упругие стержни передающих антенн, упругие пластины панелей солнечных батарей, антенны, упругие кольца радиоантенн, гибкие тросы, упругие топливные баки с жидким наполнителем и т. п. Обширная библиография приведена в работах  [c.402]

Отмеченное явление близко к явлению потери устойчивости упругих и упругопластических систем, в которых перемещения стержней неограниченно увеличиваются по мере приближения сжимающей нагрузки к критическому значению. В конструкциях, материал которых обладает свойством нелинейной ползучести, это происходит при любой сжимающей нагрузке, но по истечении большего или меньшего интервала времени.  [c.278]

Существует также теорема [3], которую часто называют принципом минимума полной потенциальной энергии или теоремой Лагранжа в состоянии равновесия консервативной системы ее полная потенциальная энергия принимает стационарное значение, причем в устойчивом состоянии равновесия это стационарное значение — минимум. Подчеркнем, что принцип минимума полной потенциальной энергии охватывает все консервативные системы — как линейные, так и нелинейные. Нелинейность консервативной системы может быть обусловлена двумя причинами геометрическими и физическими. Геометрические нелинейности обычно связаны с большими перемещениями гибких тонкостенных систем типа стержней, мембран или оболочек. Физическая нелинейность — это нелинейность зависимости между напряжениями и деформациями в упругом твердом теле.  [c.77]


На вопросах устойчивости равновесия подробнее остановимся в следующем параграфе, а сейчас только подчеркнем, что принцип минимума полной потенциальной энергии охватывает все консервативные системы, как линейные, так и нелинейные. Нелинейности в консервативных системах могут быть геометрические и физические. Геометрические нелинейности обычно связаны с большими перемещениями тонкостенных систем типа стержней, мембран или оболочек. Физические нелинейности проявляются в тех случаях, когда материал не подчиняется закону Гука, а обладает более сложными упругими свойствами.  [c.24]

Книга включает исследования по устойчивости стержней, пластинок, цилиндрических оболочек и пространственных тел для упругих, пластических, линейно-вязких, нелинейно-вязких (ползущих) и наследственных сред. Исходным материалом для ее написания послужили лекции по устойчивости деформируемых систем, читаемые автором на механико-математическом факультете Московского университета.  [c.5]

Для массивных тел (структурных элементов) можно считать а = 0 = 0. Следовательно, для таких тел применима теория упругости. При расчете стержней, пластин и оболочек на упругую устойчивость становится ясна роль поворотов, вводимых в нелинейной теории упругости.  [c.157]

Было сделано немало попыток для преодоления указанных трудностей. Ю. Н. Работнов и С. А. Шестериков (1957) впервые применили к задаче об устойчивости стержней и пластин из нелинейного вязко-упругого материала динамический критерий устойчивости. При этом рассматривались возмущения, прикладываемые в некоторый момент времени г > 0. Было найдено некоторое критическое значение такое, что возмущения, приложенные при i приводят к немедленному росту перемещений.  [c.349]

Крепления концов стержня и его опертых промежуточных сечений практически в той или иной степени способны деформироваться. Таким образом, все линейные и угловые связи, наложенные на стержень, вообще говоря, являются не абсолютно жесткими, а податливыми. При достаточно большой величине податливости связей это обстоятельство существенным образом меняет величину критического значения нагрузки. Частным случаем расчета на устойчивость стержня с податливыми связями является рассмотрение-устойчивости стержня с упругими промежуточными опорами [28 ], [29 ], [91 ]. Несколько более общая постановка задачи о расчете стержня с упругими связями дана в работе [73]. Устойчивость стержня с податливыми, но нелинейно деформируемыми связями изучена в значительно меньшей степени.  [c.783]

Итак, определение критических нагрузок статическим методом состоит из двух этапов решения задачи нелинейной статики (1.2) (находим состояние перед варьированием) и выявление по нетривиальной разрешимости однородной задачи (1.4). Для реализации такого подхода необходима полная нелинейная статическая теория и соответствующие ей уравнения в вариациях. Выше необходимый аппарат представлен для двух моделей упругих тел трехмерной безмоментной (гл. 3) и одномерной стержневой (гл. 8). Наиболее важны задачи устойчивости стержней — и они наименее трудоемки.  [c.255]

При решении проблемы числа форм равновесия системы в основном стараются выяснить пределы изменения параметров нагрузки, при которых данная упругая система имеет единственную форму равновесия. Можно было бы предполагать, что эти пределы определяются первой точкой ветвления решений тех нелинейных уравнений, которые описывают деформацию упругой системы, а сама первая точка ветвления определяется как наименьшее собственное значение соответствующей линеаризованной краевой задачи. На пути отождествления этих трех понятий точки, определяющей область существования единственной формы равновесия упругой системы точки ветвления решений уравнений деформированного состояния упругой системы и наименьшего собственного числа линеаризованной задачи — и решались задачи устойчивости еще со времени Эйлера [27]. В некоторых случаях такая концепция получила теоретическое обоснование. Эти вопросы рассматривались в известной работе Ф. С. Ясинского [28] и окончательно решены для шарнирно-опертого стержня в работе [1]. Вместе с этим совершенно очевидно, что отождествление всех трех указанных понятий далеко не всегда правомерно, и этот вопрос должен быть рассмотрен в первую очередь.  [c.257]


Теория устойчивости упругих систем была заложена трудами Л. Эйлера в XVHI в. В течение долгого времени она не находила себе практического применения. Только с широким использованием во второй половине XIX в. в инженерных конструкциях металла вопросы устойчивости гибких стержней и других тонкостенных элементов приобрели практическое значение. Основы устойчивости упругих стержней излагаются в курсе сопротивления материалов. Поэтому в настоящей главе рассматривается только теория устойчивости упругих пластин и оболочек как в линейной, так и нелинейной постановке. Интересующихся более глубоко вопросами устойчивости стержней мы отсылаем к книгам [5, 6, 7]. Критический подход к самому понятию упругой устойчивости в середине XX в. явился наиболее важным моментом в развитии теории устойчивости и позволил к настоящему времени сформировать единую концепцию устойчивости упругопластических систем, описанную в 15.1 настоящей главы.  [c.317]

Из условия стационарности полной потенциальной энергии (65 — 0) можно найти равновесные состояния изогнутого стержня и, исследуя знак второй вариации установить, какие из равновесных состояний устойчивы. Пока на значения перемещений и углов поворота не наложено никаких ограничений, приведенные зависимости, описывающие изгиб стержней с нерастяжимой осью, являются точными (в рамках теории гибких упругих стержней). Для ряда частных случаев нелинейное дифференциальное уравнение, к которому сводится задача изгиба стержня при конечных перемещениях, допускает аналитическое решение. В общем случае это нелинейное уравнение можно с любой степенью точности решить численно. Сейчас мы с помощью метода Рэлея—Ритца найдем приближенное аналитическое решение, позволяющее наглядно описать закритическое поведение любого произвольно нагруженного стержня при конечных, но не слишком больших прогибах.  [c.208]

Давыдова Э.Г. Устойчивость двухветвенного стержня из нелинейно упругого материала. - Строительная механика и расчет сооружений, 1970,  [c.308]

В дальнейшем исследование в рамках линейной (при малых прогибах) теории условий, при которых конструкция или элеменг конструкции с идеальными формой и упругостью могут находиться в состоянии нейтрального равновесия при нагрузках, заставляющих их выпучиваться, будем называть классической задачей устойчивости. До сравнительно недавнего времени теоретические исследования задач устойчивости были ограничены такими идеализированными решениями. Инженеры, которым при-ходилгось использовать такие элементы в проектируемых ими машинах и конструкциях, давно уже обнаружили, что зти решения иногда имеют малую, связь с действительным поведением конструкций. Такие исследования в рамках классической устойчивости дают удовлетворительные результаты для очень тонких сжатых стержней, но из-за ограничений на упругое поведение реальных материалов наибольшее применение находят результаты,, полученные эмпирическим путем. Когда классические теории устойчивости стали применяться для более сложных элементов было найдёно, что нелинейное поведение — только один из случаев серьезного расхождения 1й(ежду теориями и экспериментами. Например, классическая теория устойчивости предсказывает во много раз большую, чем действительная, способность к сопротивлению очень тонких цилиндрических оболочек при осевоМ сжатии с другой стороны, классическая теория предсказывает только часть действительной предельной прочности тонких шарнирно опертых или защемленных по краям пластин при сжатии-или сдвиге (хотя эта теория предсказывает, когда начнется выпучивание). Эти расхождения становятся тем большими, чеш  [c.81]

Развиваемая методика требует не только совершенствования техники решения задач ползучести за счет более точного учета физической и геометрической нелинейности, но № разработки общего метода задания вида начальных возмущений. В простых задачах типа стержня при сжатии, арки под. давлением, оболочки с внешним давлением вид возмущения легко, хотя и не строго устанавливается. Для цилиндрических оболочек в ряде рассмотренных задач выбирались сочетания форм, соответствующих формам упругой потери устойчивости Исследование зависимости результатов от выбора волновых чясел и введение в расчет высших гармоник показало, что первом приближении такой подход приемлем. Этот вопрос очевидно, нуждается в дальнейших исследованиях.  [c.293]

Некоторые приложения теории вязкоупругости. Многочисленные приложения теории вязкоупругости относятся к стержням, пластинам и оболочкам, при этом, кроме общих соотношений вязкоупругости, исследовались и существенно более простые модели типа модели Фойхта или Максвелла. Так, в задачах устойчивости при ползучести основной качественный эффект связан с геометрической нелинейностью, вследствие которой возникает возможность упругого хлопка при рассмотрении отдельных примеров применение линейных соотношений вязкоупругости вместо нелинейного закона ползучести существенно упрощает технику, не меняя.  [c.153]

Задачи устойчивости типичны для тонких и тонкостенных тел. Решения этих задач для стержней, пластин и оболочек строятся обычно на основе приближенных уравнений, в которых используются некоторые кинематические и динамические гипотезы. Имеется несколько путей для получения этих уравнений. Первый, наиболее ранний способ состоит в непосредственном рассмотрении форм движения (равновесия), смежных с невозмущенным. При этом ищется некоторая приведенная нагрузка, которая вводится в уравнение невозмущенного движения. Все рассуждения носят наглядный характер однако в достаточно сложных задачах эта наглядность оказывается обманчивой. Другой путь состоит в использовании нелинейных уравнений соответствующих прикладных теорий. Линеаризуя последние в окрестности невозмущенного движения, получим искомые уравнения. В теории оболочек этот путь использовался X. М. Муштари (1939), Н. А. Алумяэ (1949), X. М. Муштари и К. 3. Галимовым (1957), Н. А. Кильчевским (1963), В. М. Даревским (1963) и другими авторами. Однако в нелинейной теории имеется еще меньше единства взглядов на то, как должны записываться основные уравнения. Следо вательно, идя по этому пути, мы лишь смещаем все трудности в другую, еще менее согласованную область. Третий путь состоит в использовании общих уравнений теории упругой устойчивости (В. В. Новожилов, 1940, 1948). Метод, основанный на соответствующем вариационном принципе, был применен  [c.332]


Представлены все модели упругих тел нелинейные и линейные, моментные и безмоментные трехмерные, двумерные (пластины и оболочки), одномерные (стержни). Кратко изложены новые теории трещин, композитов и периодических структур. Рассмотрены основы теории колебаний, волн и устойчивости. В связи с магнитоупругостью дается сводка законов электродинамики.  [c.2]


Смотреть страницы где упоминается термин Устойчивость нелинейно-упругого стержня : [c.271]    [c.352]    [c.279]    [c.366]    [c.500]    [c.6]    [c.381]    [c.246]    [c.258]    [c.342]    [c.325]   
Основы теории пластичности Издание 2 (1968) -- [ c.352 ]



ПОИСК



Стержни упругие

Стержни упругие Устойчивость

Стержни упругие на упругих

Стержни — Стержни упругие

Упругость нелинейная

Устойчивость нелинейно-упругого

Устойчивость нелинейно-упругого упругого

Устойчивость стержней

Устойчивость упругих тел



© 2025 Mash-xxl.info Реклама на сайте