Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрическая система 149 колебания колебания

Электрическая система 149 колебания ее 451 общее уравнение колебаний 451 период колебаний 452 свободные и вынужденные колебания 452 Электричество биполярный телефон 490, диф-  [c.503]

Механическое изображение фильтра показано на рисунке б. Сделаем оценку поведения системы в предельных случаях. Пусть частота внешней силы F низкая, так что 0)т 1/ о)с ). Тогда инерционным сопротивлением масс можно пренебречь, а цепочка пружин, незначительно деформированных, образует один жесткий стержень, хорошо передающий колебания из узла I в узел 3. В области высоких частот, когда wm 1/(0)с ), большое инерционное сопротивление масс как бы "придерживает" соответствующий полюс пружины, в результате чего пружина деформируется и колебания из узла 1 в узел 3 передаются существенно ослабленными. Таким образом, система ведет себя как фильтр нижних частот. Электрический аналог этой системы представлен на рисунке в. Он представляет собой двухзвенный Т-образный фильтр. Последовательный и параллельный импедансы акустического фильтра равны  [c.285]


Общее признание получил другой, более простой способ — механического разделения обоих каналов в одной канавке. При этом способе рекордер имеет две электрические системы колебание резца является результатом векторного сложения двух составляющих, каждая из которых определяется сигналами одного из каналов. Обе составляющие колебания резца направлены под прямым углом друг к другу и расположены в одной плоскости, проходящей через диаметр записываемого диска перпендикулярно к его поверхности. Ориентация образованного таким образом креста к плоскости диска несущественна, но в разработанных способах была выбрана ориентация либо 0/90 (обозначаемая также знаком +), либо 45/45 (знак X)  [c.22]

Возникновение электронной или дырочной электропроводности при введении в идеальный кристалл различных примесей обусловлено следующим. Рассмотрим кристалл 81, в котором один из атомов замещен атомом 8Ь. На внешней электронной оболочке 8Ь располагает пятью электронами (V группа периодической системы). При этом четыре электрона образуют парные электронные связи с четырьмя ближайшими атомами 81. Свободный пятый электрон продолжает двигаться вокруг атома 8Ь по орбите, подобной орбите электрона в атоме На однако сила его электрического притяжения к ядру уменьшится соответственно величине диэлектрической проницаемости 81. Поэтому для освобождения пятого электрона требуется незначительная энергия (приблизительно 0,008 адж). Такой слабо связанный электрон легко отрывается от атома 8Ь под действием тепловых колебаний решетки при низких температурах. Низкая энергия ионизации примесного атома означает, что при температурах около—100° С все атомы примесей в Се и 81 уже ионизированы, а освободившиеся электроны участвуют в процессе электропроводности. При этом основными носителями заряда являются электроны и возникает электронная (отрицательная) электропроводность, или электропроводность п -типа.  [c.388]

На рис. В.7 приведена простейшая электронно-магнитная схема камертонного регулятора с распределенной массой на одной электронной лампе. Представленная схема относится к автоколебательным системам. При колебании ветви / камертона вследствие изменения зазора А изменятся магнитный поток и в обмотках электромагнита 2 возникает переменная э. д. с., которая, поступая на сетку электронной лампы (триода) 5, вызывает колебания анодного тока лампы, частота которого равна частоте изменения э. д. с. и, следовательно, частоте колебаний ветви камертона. Анодный ток, протекая по обмоткам электромагнита 4, создает переменное магнитное поле, приводящее к переменной силе притяжения, которая раскачивает ветвь 5 камертона на резонансной частоте. Колебания ветви 5, в свою очередь, усиливают колебания ветви 1, что приводит к возрастанию э. д. с. в цепи сетки лампы. При установившемся режиме в системе возникнут совместные механические п электрические колебания с частотой, близкой к частоте свободных колебаний ветви камертона. Если прибор с камертоном находится на ускоренно движущемся объекте, то действующая на ветви камертона инерционная нагрузка q (рис. В.7) изменяет зазоры, что приводит к отклонению режима работы системы от расчетного, поэтому требуется оценить возможные погрешности в показаниях прибора, возникающие нз-за сил инерции (в том числе и случайных).  [c.6]


Простейшая механическая модель подобной системы с сухим трением может иметь вид, изображенный на рис. 2.2, где масса т скользит по сухой поверхности Т, совершая колебания за счет инерции самой массы и упругости пружины. Для электрической системы создать простой аналог сухого трения не представляется возможным, и мы в данном случае, характерном для применения метода линейного поэтапного рассмотрения, ограничимся указанным механическим примером.  [c.48]

В рассмотренных выше системах с сосредоточенными постоянными имеет место пространственное разделение элементов массы и упругости (механические системы) или емкости и индуктивности (электрические системы). В этих системах можно не учитывать времени передачи возмущения от точки к точке, оно мало по сравнению с периодом колебаний. В системах происходят колебательные процессы, зависящие от единственной переменной — времени t. Поэтому движения в системах со сосредоточенными параметрами описываются обыкновенными дифференциальными уравнениями.  [c.319]

При повороте платформы с вибрирующим камертоном вокруг оси 2 возникают кориолисовы силы, возбуждающие крутильные колебания, регистрируемые электрической системой, получающей сигнал от контактов 4.  [c.359]

Иногда исследование эффективности снижения колебаний двигателей удобно заменить исследованием электрической системы, которая описывается тождественным дифференциальным уравнением.  [c.222]

Из-за ряда недостатков рычажной системы записывающего устройства в современных приборах инерционного действия это устройство заменено электрическим. Механические колебания преобразуются в электрические колебания последние после необходимого усиления записываются при помощи осциллографа. Однако основной принцип — наличие инерционного элемента на упругом (и обычно несколько демпфированном) подвесе — остается и в этой схеме.  [c.235]

Решение уравнений (1-6) для условий падения на частицу плоской линейно поляризованной электромагнитной волны производится в сферической системе координат по методу Фурье путем введения потенциалов электрических и магнитных колебаний. Общее решение задачи дается в виде бесконечных рядов по амплитудам парциальных волн электрических j и магнитных колебаний.  [c.15]

В технике иногда различают самосинхронизацию и принудительную синхронизацию. В первом случае имеют в виду, что синхронизация и требуемые соотношения между фазами колебаний и вращений осуществляются естественным путем, т. е. под действием уже имеющихся в системе связей. Например, синхронизация генераторов электрических или механических колебаний (вибровозбудителей) часто про-  [c.217]

Сварочная машина состоит из акустического узла, механизма давления, привода с редуктором и электрической системы управления. Источником колебаний служит магнитострикционный  [c.25]

Если стержень выполнен из магнитострикционного материала, т. е. способен деформироваться под действием магнитного поля переменного электрического тока, то колебательная система продольных колебаний масс может быть сведена к электромеханической колебательной системе с двумя степенями свободы, причем одна из них механическая, а другая —электрическая. Механические колебания воздействуют на электрические колебания в контуре. С другой стороны, электрические колебания будут действовать на механические. Таким образом, колебания различных степеней свободы взаимодействуют, образуя связанную колебательную систему.  [c.29]

Датчик прибора устанавливается на опорные площадки вибратора так, чтобы его игла соприкасалась с плоской поверхностью верхнего конца колебательной системы вибратора- Через обмотку вибратора пропускается ток от электрического генератора синусоидальных колебаний, величина которого измеряется миллиамперметром, микроамперметром или каким-либо другим аналогичным прибором. Вибратор начинает колебать иглу датчика прибора, который дает показания по своей шкале. Величина показаний профилометра или профилографа зависит от амплитуды колебаний подвижной системы вибратора. Зная чувствительность вибратора, т. е. величину колебания в зависимости от силы тока, проходящего через него, и, что эта чувствительность с достаточным приближением постоянна в рабочем диапазоне колебаний, можно связать показания поверяемого прибора с показанием электроизмерительного прибора простым переводным множителем. Так как точность электроизмерительных приборов много выше, чем точность щуповых приборов, то имеется возможность отградуировать и проверить профилометры непосредственно по электроизмерительному прибору соответствующего класса. Частотные характеристики прибора, т. е. зависимость его показаний от скорости движения датчика по измеряемой поверхности, определяются на этой установке изменением частоты питающего тока амплитудные характеристики — изменением силы тока.  [c.144]


Затухающие колебания — колебания с уменьшающимися во времени значениями размаха колеблющейся величины или ее производной по времени, обусловленные потерей энергии колебательной системой. Простейшим механизмом убыли колебательной энергии является превращение ее в теплоту вследствие трения в механических сис1смах и потерь энергии в активных сопротивленттях в электрических системах. В последних затухание колебаний происходит также в результате излучения электромагнитных волн.  [c.141]

Точное решение задачи о свободных колебаниях в нелинейных диссипативных системах в подавляющем большинстве случаев наталкивается на весьма большие и очень часто неразрешимые трудности. Поэтому (как и в случае консервативных систем) приходится искать методы приближенного расчета, которые с заданной степенью точности позволили бы найти количественные соотношения, определяющие движения в исследуемой системе при заданных начальных условиях. Из ряда возможных приближенных методов рассмотрим в первую очередь метод поэтапного рассмотрения. Мы уже указывали, что этот метод заключается в том, что в соответствии со свойствами системы все движение в ней заранее разбивается на ряд этапов, каждый из которых соответствует такой области изменения переменных, где исследуемая система с достаточной точностью описывается или линейным дифференциальным уравнением, или нелинейным, но заведомо интегрируемым уравнением. Записав решения для всех выбранных этапов, мы для заданных начальных условий находим уравнение движения для первого этапа, начинающегося с заданных начальных значений. Значения переменных 1, х, у = х) конца первого этапа считаем начальными условиями для следующего этапа. Повторяя эту операцию продолжения решения от этапа к этапу со сшиванием поэтапных решений на основе условия непрерывности переменных х и у = х, мы можем получить значения исследуемых величин в любой момент времени. Если разбиение всего движения системы на этапы основано на замене общей нелинейной характеристики ломаной линией с большим или меньшим числом прямолинейных участков, то подобный путь обычно называется кусочно-линейным методом. В этом случае на каждом этапе система описывается линейным дифференциальным уравнением. Условие сшивания решений на смежных этапах — непрерывность х я у = х — необходимо и достаточно для системы с одной степенью свободы при наличии в ней двух резервуаров энергии и двух форм запасенной энергии (потенциальной и кинетической, электрической и магнитной). Существование двух видов резервуаров энергии является также необходимым условием для возможности осуществления в системе свободных колебательных движений, хотя для диссипативных систем оно недостаточно. При большом затухании система и с двумя резервуарами энергии может оказаться неколебательной — апериодической.  [c.60]

Лервые уравнения определяют колебания механической системы с 8 степенями свободы вторые — колебания з контурной электрической системы и выражают второй закон Кирхгофа алгебраическая сумма э. д. с. в любом контуре цепи равна алгебраической сумме падений напряжения на элементах этого контура.  [c.204]

Для непрерывного измерения вязкости могут применяться варианты ротационных вискозиметров с электрической системой отсчета, а также ультразвуковые (вибрационные) вискозиметры, которые позволяют определять вязкость при весьма малом объеме испытуемой жидкости (около 5 см ). Структурная схема прибора показана на рис. 10-4, б. Импульсы тока длительностью около 50мкс, проходя через возбуждающую обмотку зонда, погруженного в испытуемую жидкость (рис. 10-4, а), вызывают продольные маг-нитострикционные ультразвуковые колебания полоски (частота колебаний около 28 кГц). Повышение чувствительности зонда достигается дополнительной подачей в его обмотку постоянного тока подмагничивания. Вследствие поглощения энергии колебаний вязкой средой амплитуда колебаний полоски и наводимая в обмотке э. д. с. убывают с течением времени по экспоненциальному закону. При уменьшении напряжения в обмотке до определенного значения срабатывает пусковое устройство, после чего в обмотку зонда дается следующий импульс тока и т. д. Измеряемая счетчиком частота повторения импульсов при прочих равных условиях, очевидно, будет тем выше, чем больше вязкость испытуемой  [c.191]

Пьезоэлектрический способ возбуждения колебаний основан на изменении размеров или формы пьезоматериалов под воздействием электрического поля. Его используют для создания установок с частотами нагружения в несколько тысяч герц. Пьезоматериалы — кварц сегнетова соль, Дигидрофосфат аммония, керамика из тнта-ната бария. Поскольку абсолютные смещения граней пьезопреобразователей невелики для возбуждения механических колебаний g усталостных установках их используют так на высоких частотах в резонансных системах в виде отдельных пьезовибраторов, а на более низких (1—20 кГц) применяют пакеты пьезопластин, обрамляе-ные конструктивно в виде вибростолов.  [c.156]

Возбуждение продольных колебаний стержней осуществляют электромагнитными, электродинамическими, пьезоэлектрическими или электростатическими возбудителями колебаний. Возбудитель колебаний устанавливают около одного конца стержня, на другом его конце располагают обратный преобразователь, преобразующий механические колебания стержня в электрические — датчик частоты колебаний и амплитуды вибросмещения. На резонансе при совпадении частоты возбуждающей силы с частотой собственных колебаний стержня благодаря высокой добротности колебательной системы амплитуда вибросмещения резко возрастает. Это обстоятельство используют для определения резонансных частот.  [c.136]


Полное решение задачи вибродиагностики может быть обеспечено лишь при наличии совершенных средств возбуждения, измерения и обработки информации. Выявлены типичные элементы, которые должны составлять основу модулей вибродиагностиче-ских комплексов. Стенд с автоматической контрольно-испытательной аппаратурой, на котором реализуется диагностика ПРС по изотропности жесткостных и диссипативных характеристик, включает в себя испытуемый объект с применением прецизионных приспособлений. Последний присоединяется к двум электродинамическим возбудителям, предварительно идентифицированным по механическим и электрическим параметрам. Колебания объекта возбуждаются от сканирующего генератора посредством блока управления. Механические колебания регистрируются виброприемниками обратной связи, которая замыкается посредством предварительных усилителей. В состав блока управления входит система синхронных следящих фильтров, реализующая быстрое аналоговое преобразование Фурье.  [c.139]

Асимптотические и другие методы исследований нелинейных колебаний (например, метод Ван-Дер-Поля) предполагают, что выход системы является квазигармоническим или, по терминологии случайных процессов, узкополосным процессом с медленно изменяющейся во времени амплитудой и фазой. Это объясняется тем, что почти все реальные механические, электрические системы и большинство систем автоматического регулирования обладают высокими фильтрующими свойствами. Предположение о квазигармоничности процесса на выходе для систем с малым затуханием хорошо подтверждается экспериментально и является вполне обоснованным.  [c.177]

В этой главе описана группа однотипных реакций, первая из которых была обнаружена Б, П. Белоусовым. Белоусов (1959) описал колебания цвета раствора в ходе реакции окисления лимонной кислоты броматом катализатором служили ионы церия. Он подобрал условия, при которых колебания наблюдались достаточно четко в течение нескольких десятков периодов и выявил некоторые существенные детали механизма реакции. Однако механизм, ответственный за колебания, остался невыясненным. Позже работа Белоусова была продолжена автором этой книги и его сотрудниками Был открыт класс однотипных реакций, в ходе которых обнаружены автоколебания, н некоторые из них были исследованы достаточно подробно. Было показано, что в гомогенной химической системе могут осуществляться пpaктичe [ и все колебательные режимы, которые наблюдаются в механических и электрических системах.  [c.87]

ОРБИТА электронная — траектория движения электрона вокруг ядра в атоме или молекуле ОРБИТАЛЬ —волновая функция одного электрона, входящего в состав электронной оболочки атома или молекулы и находящегося в электрическом иоле, создаваемом одним или несколькими атомными ядрами, и в усредненном электрическом поле, создаваемом остальными электронами ОСЦИЛЛЯТОР как физическая система, совершающая колебания ангармонический дает колебания, отличающиеся от гармонических гармонический осуществляет гармонические колебания квантовый имеет дискретный спектр энергии классический является механической системой, совершающей колебания около положения устойчивого равновесия) ОТРАЖЕНИЕ [волн происходит от поверхности раздела двух сред, и дальнейшее распространение их идет в той же среде, в которой она первоначально распросгра-нялась диффузное характеризуется наличием нерегулярно расположенных неровностей на поверхности раздела двух сред и возникновением огражен1 ых волн, идущих во всех возможных направлениях зеркальное происходит от поверхности раздела двух сред в том случае, когда эта поверхность имеет неровности, размеры которых малы по сравнению с длиной падающей волны, а направление отраженной волны определяется законом отражения наружное полное сопровождается частичным поглощением световой волны в отражающей среде вследствие проникновения волны в Э1у среду на глубину порядка длины волны полное внутреннее происходит от поверхности раздела двух прозрачных сред, при котором преломленная волна полностью отсутствует]  [c.257]

Наличие в современных механических системах длинных трубопроводов, по которырл течет жидкость или газ, с одной стороны, и длинных линий в электрических системах — с другой требует при исследовании малых колебаний таких систем учета волновых явлений в отдельных звеньях.  [c.128]

НИИ простого амгоштудного селектора импульсов АС-2, состоящего из двух триггеров Шмитта 1, 2 рис. 11.8.8), один из которых настроен на срабатывание от импульсов одной полярности с требуемой максимальной амплитудой, а другой - на срабатывание,от импульсов противоположной полярности с требуемой минимальной амплитудой, вместе со счетчиком импульсов 3, например Ф-588. Число N циклов преобразовано в электрический сигнал свободных колебаний исследуемой системы в заданном интервале изменения амплитуды  [c.323]

Автоматизация определения амплитудной зависимости декремента колебаний достигается дополнением автоматизированного процесса счета циклов, преобразованных в электрический сигнал свободных колебаний между несколькими дискретными уровнями амплитуды, вычислением соответствующих значений де1фемента колебаний на базе ЭВМ и автономного устройства, подключенного к выходу усилителя датчика колебаний исследуемой системы. В случае оптического способа регистрации колебаний электрический сигнал от фотоприемника, преобразуемый в значение амплитуды колебаний, регистрируется на перфораторе типа ПЛ-150М. Применение последнего позволяет дальнейшую обработку выходных данных проводить на ЭВМ с получением окончательных значений декремента колебаний в зависимости от средних амплитуд в заданных интервалах.  [c.323]

Как только подача последнего прекращена, выходной вал должен остановиться. В действительности прекращение вращения выходного вала не совпадает с моментом исчезновения командного сигнала. Инерция электрических элементов системы, обладающих индуктивностью или емкостью, заключаящаяся в том, что напряжение на их выходе исчезает не мгновенно по прекращении командного сигнала, а с некоторым запаздыванием, инерция движущихся масс нагрузки и двигателя приводит к тому, что выходной вал может повернуться за согласованное положение. В результате этого появится ошибка слежения обратного знака, и выходной вал станет поворачиваться в обратном направлении и снова повернется за согласованное положение. Возникает переходный процесс, характеризующийся наличием колебаний, затухающих вследствие сил трения в системе. Инерционные колебания возникают при пуске и при любом изменении скорости. Следящая система, приходящая в результате затухающих колебаний в согласованное положение, называется устойчивой. Время, в течение которого рассогласованная система приходит в согласованное положение, — время успокоения системы. Длительность успокоения зависит от параметров системы.  [c.126]

Электрическая схема. Электрическая схема основана целиком на использовании полупроводников и это позволило резко уменьшить габариты соответствующих пультов управления. Система управления питается от двух двенадцативольтовых свинцовых аккумуляторов. Зарядка аккумуляторов ведется непрерывно. Достоинством такого способа питания является его высокая стабильность и отсутствие помех, имеющих место при питании от сети. Мощность, необходимая для работы системы управления, 400 вт. Кроме того, использование аккумуляторов исключает влияние на работу системы возможных колебаний напряжения сети. Нарушение работы системы сигнализируется световыми лампочками на пульте.  [c.325]


Первый том Теории звука в первом издании вышел в 1877 г. Уже тогда он содержал две главы (IV и V) под названием колебательные системы в общем случае. Подразумевается линейные колебательные системы. Общность здесь состоит и в том, что, как видно из приводимых примеров, имеются в виду не только механические (звуковые), но и электрические и оптические колебания. Но во втором издании Теории звука (в 1894 г.) Рэйли не только несколько расширил указанные главы, но и добавил некоторые параграфы, в которых рассматриваются, притом также в общем виде, некоторые проблемы нелинейных колебаний. Достаточно сослаться в качестве примера на анализ того, как меняется решение уравнения й 4- кй- - п и= О из-за добавления в левой части слагаемого ft u к и к предлагаются малыми)  [c.279]


Смотреть страницы где упоминается термин Электрическая система 149 колебания колебания : [c.446]    [c.158]    [c.629]    [c.237]    [c.153]    [c.280]    [c.398]    [c.392]    [c.386]    [c.525]    [c.559]    [c.418]    [c.260]    [c.103]   
Теория звука Т.1 (1955) -- [ c.452 ]



ПОИСК



Колебания электрические

Колебания электрических систем

Колебания электрических систем

Метод электрической аналогии при решении задач колебаний механических систем

Периодические колебания систем с малой электрической диссипацией. Интегральный критерий устойчивости

Применение электрических колебаний систем разветвленных собственные — Расчет

Собственные колебания электрической, механической н акустической колебательных систем с затуханием

Уравнения малых колебаний электрических си, стем-Л (случай, когда обобщенные координаты определены( относительно разностей потенциалов на выводах К- элементов электрической системы)

Электрическая система

Электрическая система 149 колебания колебаний 452 свободные и вынужденные

Электрическая система 149 колебания общее уравнение колебаний 451 период

Электрические колебания синхронных приводов системы электроснабжения и их характеристики

Электрическое моделирование колебаний механических систем. Масштабные коэффициенты. Индикаторы подобия



© 2025 Mash-xxl.info Реклама на сайте