Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Показатель преломления активной среды

Неоднородное температурное поле в активном элементе и соответствующие поля механических напряжений и деформаций приводят к изменению показателя преломления активной среды от точки к точке в объеме элемента и к изменению его формы. А эти факторы ведут к изменению оптической длины пути  [c.29]

Выход излучения из резонатора и переход энергии в другие типы колебаний из-за несовершенства изображений, создаваемых зеркалами, окнами разрядных трубок, а также из-за неоднородностей показателя преломления активной среды (особенно в твердотельных и полупроводниковых лазерах).  [c.226]


L — полная длина резонатора I — длина активного элемента Ях — радиус кривизны -й отражающей поверхности и — расстояние от /-Г0 зеркала до ближайшей грани активного элемента f — фокальное расстояние активного элемента как мера его оптической неоднородности По — показатель преломления активной среды по оси.  [c.137]

При высоких интенсивностях излучения существенную роль начинает играть нелинейность показателя преломления активной среды  [c.50]

Наряду с эффектом насыщения усиления следует учитывать и другие факторы, влияющие на формирование поля излучения в активном резонаторе. Так, например, дисперсия показателя преломления активной среды может приводить к так называемому эффекту затягивания частот [10], проявляющемуся в нарушении эквидистантности спектра резонансных частот резонансные частоты более плотно группируются вблизи центра линии усиления. Нагревание активной среды при поглощении излучения накачки приводит к изменению ее показателя преломления. В результате возникает так называемый эффект тепловой линзы. активный элемент действует на излучение внутри резонатора подобно собирающей либо рассеивающей линзе (см., например, [11]).  [c.108]

Здесь л о— показатель преломления изотропной среды, не имеющей пространственной дисперсии. Говорят, что материалы, у которых g О, обладают естественной оптической активностью.  [c.46]

Примером такой среды может служить оптическое волокно с соответствующим радиальным градиентом показателя преломления. Квадратичная среда может возникнуть также в результате появляющегося при поглощении излучения накачки радиального градиента температуры в активном элементе (эффект тепловой линзы).  [c.178]

В жидких лазерных материалах может быть достигнута концентрация активных ионов того же порядка, что и в лазерных стеклах. Это позволяет получить большие энергии и мощности излучения с единицы объема активного вещества. В то же время сильная зависимость показателя преломления от температуры обусловливает значительные оптические неоднородности, возникающие при накачке активной среды, что приводит к ухудшению генерационных характеристик лазеров и увеличению расходимости лазерного пучка. Применение прокачки активной жидкости через лазерную кювету позволяет реализовать как периодический, так и непрерывный режим работы лазера.  [c.948]


ДИСПЕРСИЯ [волн — зависимость фазовой скорости гармонических волн от их частоты звука — зависимость фазовой скорости гармонических звуковых волн от их частоты линейная спектрального прибора — характеристика спектрального прибора, определяемая производной от расстояния между спектральными линиями по длине света оптического вращения — зависимость оптической активности вещества от длины волны проходящего через него линейно поляризованного света пространственная — зависимость тензора диэлектрической проницаемости среды от волнового вектора, приводящая, например, к вращению плоскости поляризации света — зависимость абсолютного показателя преломления вещества от частоты света]  [c.229]

Особый класс составляет ЛК с распределённой обратной связью (РОС). В РОС-лазерах роль резонатора играет структура с периодич. изменением показателя преломления и (или) усиления. Обычно она создаётся в активной среде под действием двух интерферирующих пучков накачки. РОС-лазер характеризуется узкой линией генерации ( 10 см ), к-рая может легко перестраиваться в пределах полосы усиления путём изменения угла между пучками накачки. ЛК наиболее эффективны для генерации ультракоротких импульсов излучения. Самые короткие импульсы ( 10 с) достигнуты в непрерывных ЛК с пассивной синхронизацией мод.  [c.564]

К — число молекул в единице объёма, Лд и — показатели преломления среды на частотах накачки и стоксовой компоненты). Типичное значение д для наиб, важных комбинационно-активных сред (сжатый водород, жидкий азот, кристалл кальцита и др.) составляет 10 —10 см/Вт.  [c.303]

Мы уже показали, что при очень небольших значениях аЯ плотность энергии накачки однородна лишь в центральной части стержня г < R/n, и то время как вне этой области она неоднородна. Очевидно, что неоднородное распределение плотности энергии в активной среде является нежелательным. Получить однородное распределение можно [7], если активный стержень поместить в цилиндрическую оболочку из прозрачного материала с тем же показателем преломления, что и у стержня (рис. 3.13). В этом случае, если радиусы лампы и оболочки сделать одинаковыми и равными nR, то можно повторить рассуждения с помощью рис. 3.11, начиная с анализа хода лучей через точку Р, расположенную на поверхности оболочки. В этом случае преломленные лучи 2 и 3 будут касаться поверхности активной среды и внутри нее будет собираться весь падающий свет. Если aR = 0 и свет проникает в среду только в плоскости рис. 3.13, то плотность энергии в активной среде становится однородной и определяется выражением (3.13). Другой способ, который позволяет получить более однородную накачку, состоит в матировании боковой поверхности стержня. В этом случае свет накачки, попадая на поверхность стержня, будет рассеиваться, и, следовательно, он не будет концентрироваться, как на рис. 3.11. На рис. 3.14 построены кривые зависимости от r/R безразмерной величины  [c.125]

Займемся теперь выводом явных выражений для величины В, которая входит в уравнения (5.16) и (5.1 в). Строгое выражение для этой величины выводится снова в Приложении Б. Для большинства практических целей подходит приближенное выражение, которое можно получить, исходя из простых соображений. Для этого рассмотрим резонатор длиной L, в котором находится активная среда длиной I с показателем преломления п. Можно считать, что мода резонатора образована суперпозицией двух волн, распространяющихся в противоположных направлениях. Пусть / — интенсивность одной из этих волн. В соответствии с выражением (1.7) при прохождении волны через слой dz активной среды ее интенсивность изменяется на величину dI = a N2 — Ni)I dz, где а—сечение перехода на частоте рассматриваемой моды резонатора. Определим теперь следующие величины 1) Т и —коэффициенты пропускания двух зеркал резонатора по мощности 2) а и Ог — соответствующие относительные коэффициенты потерь на зеркалах 3) Ti — относительный коэффициент внутренних потерь за проход. Тогда изменение интенсивности Д/ за полный проход резонатора запи-  [c.240]


Уравнение (4.2.10) называется уравнением волновых нормалей Френеля. Его решения дают главные значения показателей преломления, а выражение (4.2.11) определяет направления поляризации независимых волн, которые могут распространяться в кристалле. Уравнение (4.2.10) является квадратичным относительное . Поэтому каждому направлению распространения (из набора s , s , s ) соответствуют два решения для (задача 4.2). Для полного решения задачи мы должны подставить каждое из значений в выражение (4.2.11), что позволяет определить поляризации соответствующих независимых волн. Можно показать, что для непоглощающей среды эти независимые волны линейно поляризованы, поскольку в (4.2.11) все величины являются вещественными. Пусть Е, и Ej — векторы электрического поля, а D, и Dj — векторы электрического смещения линейно поляризованных независимых волн, соответствующих n и Из уравнения Максвелла V D = О следует, что D, и Dj ортогональны s. Поскольку Dj-Dj = О, три вектора D,, и s образуют взаимно ортогональную тройку векторов и могут быть выбраны в качестве системы координат при описании многих физических явлений, в том числе и оптической активности. Согласно уравнениям Максвелла, векторы D, Е и Н связаны между собой соотношениями  [c.84]

На современном уровне развития методов математического описания лазеров и, в особенности, процессов в активной среде можно выделить ряд типовых задач, для которых формулируются основные рекомендации по их решению с использованием типовых схем вычислений. В случае более сложных задач, возникает множество новых особенностей, связанных с выбором расчетной схемы, необходимых величин, шага вычислений, нормирующих коэффициентов, проверкой сходимости, аппроксимации и устойчивости решений. К числу задач, допускающих использование стандартизованных методов, алгоритмов и программ, можно отнести 1) генерацию или усиление стационарного или импульсного излучения в возбужденной двухуровневой активной среде в приближении плоской волны 2) приближенный расчет энергетических характеристик генерации, основанный на использовании вероятностного метода с упрощающими приближениями 3) расчет эффективности получения гармоник и суммирования частот с принятием распространенных для этого случая упрощений, в частности таких, как приближение заданного поля 4) расчет характеристик излучения, распространяющегося в световодах, в частности, с учетом нелинейности показателя преломления их материала.  [c.37]

В более сложных случаях надо учитывать пространственно-временную структуру усиливаемых или генерируемых пучков, неоднородность возбуждения активной среды, нелинейности усиления, показателя преломления и поглощения (потерь), возникновение нелинейного рассеяния и др. Решение системы уравнений для каждого из таких случаев превращается в самостоятельное теоретическое исследование. В таких задачах требуется выбрать наиболее подходящий расчетный метод, разработать алгоритм и программу вычислений, которые обеспечивают требуемую точность решения.  [c.37]

Параметры, характеризующие свойства активной среды (коэффициент поглощения, показатель преломления) при высоком уровне интенсивностей излучения становятся нелинейными, т. е. зависящими от значения интенсивности. Это существенно усложняет процесс взаимодействия усиливаемого излучения с активной средой. Поскольку при разработке лазерных систем требования к выходным характеристикам формулируются достаточно жестко, то задача точного исследования возможного влияния нелинейных явлений на выходные характеристики излучения, учет этого влияния и обеспечение возможности управления процессами нелинейного взаимодействия, а также необходимой точности и воспроизводимости выходных характеристик — все это составляет круг вопросов, требующих детальной разработки.  [c.196]

Изучение нелинейных явлений в различных средах всех лазерных систем составляет предмет изучения нелинейной оптики. Нелинейные явления в мощных лазерах и лазерных системах неотделимы от процесса взаимодействия излучения с активной средой, усиления и генерации. Так же как и в нелинейной оптике, все нелинейные явления в элементах лазерных систем можно разделить на три большие группы 1) генерация гармоник, включая процессы преобразования частоты (в результате сложения или вычитания частот) 2) явления самовоздействия, определяемые зависимостью от интенсивности излучения, показателя преломления и коэффициента потерь 3) явления нелинейного рассеяния, сильно зависящие от механизма рассеяния.  [c.196]

Наиболее важной и сложной задачей является исследование возникновения самофокусировки усиливаемого излучения в активной среде. Как показал проведенный анализ, простейшая система уравнений, описывающая только самофокусировку в нелинейной усиливающей среде без учета дифракции и насыщения нелинейности показателя преломления, оказывается некорректной с математической точки зрения.  [c.212]

Основные особенности расчета искажений оптического пути Л/, в кристаллических средах заключаются в методике определения зависимости изменения показателя преломления вследствие температурных напряжений и деформаций. Для кристаллов вид тензора пьезооптических коэффициентов является более сложным, чем для изотропной среды, и зависит, как уже было сказано, от взаимной ориентации кристаллографических осей, связанных с активным элементом, и осей координат, в которых производится расчет. Некоторые ориентации, однако, допускают приближенный или даже точный расчет изменений оптического пути с введением термооптических характеристик, выражаемых через р = dn/dT и упругие и фотоупругие константы материала [31, 116, 141, 142].  [c.43]


Таким образом, генерируемые при пассивной синхронизации мод импульсы имеют длительность, на один-два порядка превы-ишющую предельную, определяемую шириной спектра усиления стекла. Такое расширение длительности начальных флуктуа-циопных выбросов происходит на линейном этапе развития генерации до просветления затвора и обусловлено дисперсией показателя преломления активной среды и других внутрирезонаторных элементов, а также дисперсией коэффициента усиления. Дисперсия показателя преломления с1п1с1(й приводит к временному расплыванию ультракоротких импульсов (УКИ), обладающих значительной шириной спектра [25]. что, в свою очередь, вызывает уменьшение амплитуды шумовых флуктуаций и увеличение длительности линейного этапа развития генерации до момента просветления пассивного затвора. Поэтому существует некоторая оптимальная длительность УКИ, для которой влияние дисперсии минимально.  [c.207]

Неравновесные носители можно локализовать в значительно меньшей области, чем световое поле. Так, в ДГС-лазерах толщину d узкозонного активного слоя удаётся довести до размеров длины волны де Бройля электрона с кинетич. энергией, близкой к высоте потенц. барьера на границах 8 нм). Ширина ак-тнБного слоя такого Г. порядка длины волны генерируемого излучения и контролируется независимо изменением показателя преломления п среды. Т. о., Г. можно рассматривать как планарный оптич. волновод со встроенным в него активным усиливающим слоем. Волновод образован за счёт изменения п в плоскости, перпендикулярной гетеропереходу, а локализация электронно-дырочной плазмы в слое заданной толщины обес-  [c.445]

Первая из них, казалось бы, не отличается от (2.3) однако здесь в оптическую длину резонатора входит слагаемым оптическая длина активного слоя /по, что несколько изменяет ситуащ1ю. Дело в том, что показатель преломления усиливающей среды в принщ1пе зависит от положения линии внутри полосы усиления, притом порой существенно в результате интервалы между соседними частотами могут заметно измениться и перестать быть равными друг другу. На пространственную структуру поля эффекты такого рода, как правило, не влияют и поэтому здесь рассматриваться не будут.  [c.69]

Подход, основанный на аналогии с френелевским отражением, поучителен вот в каком отношении. Напомним, что отражение от границы раздела двух сред возникает вследствие различия как показателей преломления, так и коэффициентов поглощения (усиления). В частности, отражение от металлов объясняется, главным образом, второй причиной. Из сказанного легко сделать вывод, что самоотражение в активное среде лазера может обусловливаться модуляцией и показателя преломления, и коэффициента усиления. Как показывают более детальные исследования вопроса, самоотражение играет существенную роль в оптических квантовых генераторах.  [c.828]

Г. л. позволяют получать предельно узкие и стабильные линии генерации. Малая плотность активной среды определяет малость температурных изменений показателя преломления. Это позволяет сратгательпо легко получать с Г. л. предельно малую (дифракционную) расходимость излучения. Многообразие физ, процессов, приводящих к образованию инверсии населённостей, создаёт больпгое разнообразие типов, характеристик и режи.мов работы Г. л. Возможность быстрой прокачки газот.)й активной среды через опт 1ч. резонатор позволила в Г. л. достичь рекордно больппгх ср. мощностей из-  [c.381]

Появление лазеров вызвало интенсивное развитие методов внутр. М, с., основанных на управлении когерентным излучением за счёт изменения параметров лазера. При этом мы. устройства, применяемые как внеш. модуляторы, номещаются внутри оптического резонатора лазера. Используя разл. способы внутр. модуляции, получают любой вид М. с. амплитудный, частотный, фазовый и поляризационный. Частотой излучения лазера управляют, изменяя добротность оптич. резонатора лазера, напр. менян оптич. длину резонатора. С этой целью одно из зеркал резонатора закрепляют либо на магнитострикционном стержне (см. Магнитострикционный преобразователь), либо на пьезоэлементе и изменяют длину резонатора синхронно с модулирующим напряжением. Тот же эффект достигается путём изменения показателя преломления среды, заполняющей резонатор, для чего используется электрооптич. кристалл. Частотную модуляцию излучения лазера можно получить также при наложении на активную среду магн. или электрич. полей (см. Зеемана эффект, Штарка эффект), под действием К-рых происходит расщепление и смещение рабочих уровней атомов, ответственных за генерацию когерентного излучения. Изменяя величину коэф. усиления, получают амплитудную модуляцию излучения лазера. Для этого воздействуют на разность населённостей активной среды, либо изменяя мощность её возбуждения, либо используя всцомогат. возбуждение, приводящее к-перераспределению населённостей. Амплитудная модуляция излучения может быть получена и при помощи модуляции тока разряда газовых или полупроводниковых лазеров, работающих в непрерывном режиме. Одним из методов управления когерентным излучением является модуляция величины обратной связи лазера, т. е. коэф. отражения зеркал резонатора. С этой целью используют резонатор, одно из зеркал к-рого вращается с большой скоростью, и потому условия генерации выполняются лить в короткие промежутки времени. Вместо зеркал часто используют вращающуюся призму полного внутр. отражения. Изменение величины обратной связи можно получить, заменяя одно из зеркал на систему зеркал, образующих интерферометр Фабри — Перо. Коэф. отражения такого резонатора зависит от расстояния между зеркалами, изменяя к-рое можно модулировать интенсивность излучения и получать т. н. гигантские импульсы, мощность излучения в к-рых существенно превосходит мощность непрерывной генерации. Наконец, излучение лазеров также модулируют, изменяя добротность оптич. резонатора путем введения потерь, величина к-рых управляется внеш. сигналом. Для этого используют модуляторы на основе элек-  [c.184]

Имеется много других, хотя и более инерционных, механизмов, приводянщх к существенно более сильной нелинейности показателя преломления. К ним относятся резонансные нелинейности в полупроводниках (экситонные резонансы в двумерных структурах), фото рефр активный эффект в неорганич. кристаллах, ориентация анизотропных молекул в световом поле и оптич. нагрев среды. Диапазон значений нелинейного параметра превышает десять порядков (рис. 3), Несмотря на существ, различие физ. механизмов нелинейности, многочисл. данные неплохо укладываются на прямые % Тнл возрастание величины сопровождается увеличением инерционности отклика.  [c.296]

РАСПРЕДЕЛЕННАЯ ОБРАТНАЯ СВЯЗЬ (РОС) -обратная связь в нек-рых типах лазеров, в к-рых оптич. резонатор образуется благодаря пространственной не-риодической неоднородности активной среды (вместо зеркал). Обычно РОС создаётся с помощью периодич, модуляции показателя преломления (или коаф. усиления) либо периодического пространственного изменения сечения оптич. волновода (в тонкоплёночных лазерах). Период пространственной неоднородности d в РОС-лазерах сравннм с длиной волны генерируемого излучения Xj, и удовлетворяет Брэгга — Вульфа условию".  [c.254]

ЭЛЕКТРОбПТИКА—раздел оптики, в к-ром изучаются изменения оптич. свойств среды под действием электрич. поля и вызванные этими изменениями особенности взаимодействия оптич, излучения со средой, помещённой в электрич. поле. Оптич. характеристики любой среды, такие, как величина показателей преломления для разл, поляризаций света и оптическая активность, зависят от распределения связанных зарядов в среде. Если среда находится пол действием внещ. электрич, поля, то положение  [c.588]


Займемся теперь решением уравнений (Б.З) в случае, когда лазер генерирует на одной моде. Пространственное распределение поля этой моди описывается амплитудой поля U = t/(r), которую мы будем считать нормированной на ее максимальное значение. Рассмотрим резонатор длиной /.. в котором находится активная среда, имеющая длину I и показатель преломления п. Плотности энергии мод р снаружи н внутри активной средм можно записать соответственно в виде  [c.533]

С другой стороны, лазерный резонатор является, в общем случае, сложной оптической системой. В ее состав входят по меньшей мере два зеркала, имеюиллх чаще всего сферические поверхности. Между зеркалами находится активная среда, показатель преломления которой может сильно отличаться от единицы. Там же устанавливаются, в случае необходимости, поляризаторы, затворы, пространственные фильтры и т.п. Таким образом, уже на этапе рассмотрения идеальных резонаторов (зеркала правильно отъюстированы, среда однородна) возникает специфическая задача анализа эволюции волновых фронтов хотя в безаберрационных, но зато многоэлементных системах.  [c.7]

Произведем такую оценку, следуя [13]. Пусть активная среда сечения 2а X 2а размещена внутри телескопического резонатора (рис. 3.11) ее показатель преломления для простоты примем равным единице. Проследим, скажем, за судьбой затравочного излучателя, которое в начальный момент времени испускается вблизи выпуклого зеркала в сторону вогнутого. В качестве отсчетной выберем расположенную у выпуклого зеркала сферическую эквифазную поверхность расходящейся волны, центр кривизны которой находится в общем фокусе зеркал.  [c.171]

Отметим, что искажения оптического пути в активных элементах при оптической накачке могут происходить не только в результате нагрева. При существенном изменении соотношения между концентрациями возбужденных и невозбужденных ионов активатора показатель преломления может изменяться вследствие различной конфигурации электронных оболочек ионов в этих состояниях. Эффект особенно сильно проявляется в трехуровневых средах (например, в рубине), где для достижения усиления необходимо перевести в возбужденное состояние не менее половины всех ионов активатора. В таких средах неоднородность инверсии, связанная либо с неоднородностью накачки, либо с локальным сбросом инверсной населенности за счет развивающейся генерации, может вызвать динамическую неоднородность показателя преломления. Она бывает настолько сильной, что приводит к так называемой самомодуляции добротности. В четырехуровневых средах инверсная населенность, как правило, составляет величину не более 10—15 % от концентрации активатора и указанным изменением показателя преломления по сравнению с температурным можно пренебречь [исключение могут составлять так называемые атермальные стекла (см. п. 1.4), в которых температурное изменение показателя преломления скомпенсировано фотоупругостью].  [c.32]

Отметим, что в твердотельных лазерах почти всегда направление распространения света через термомеханически напряженную активную среду совпадает с одним из главных напряжений или, что то же самое, с одной из осей эллипсоида показателей преломления, а указанные направления поляризации ( быстрая и медленная оси анизотропной среды) совпадают с направлениями двух других главных напряжений. Преимущественно этот случай и рассматривается в данной книге (исключение составляет наклонная пластина).  [c.35]

Из этого выражения видно, что искажения оптического пути в лазерных активных элементах определяются следующими характеристиками материала показателем преломления по и его температурной производной р = dn/dt, коэффициентом линейного расширения а, фотоунругими константами j и Сг, модулем Юнга Е, коэффициентом Пуассона v. В активных элементах из кристаллических сред в силу тензорного характера ряда этих параметров число участвующих в описании искажений оптического пути величин еще более увеличивается.  [c.38]


Смотреть страницы где упоминается термин Показатель преломления активной среды : [c.254]    [c.186]    [c.122]    [c.446]    [c.24]    [c.76]    [c.344]    [c.497]    [c.255]    [c.407]    [c.281]    [c.187]    [c.91]    [c.92]    [c.43]    [c.229]   
Введение в физику лазеров (1978) -- [ c.31 , c.52 , c.61 , c.222 , c.327 ]



ПОИСК



Показатель преломления

Показатель преломления активной

Преломление

Среда активная



© 2025 Mash-xxl.info Реклама на сайте