Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Генерация условия

Уширение линии облегчает практическое осуществление генерации света. Действите.пьно, если энергетические уровни являлись бы геометрическими линиями, то одновременное выполнение необходимых для генерации условий з — El = hv и 2L = тк имело бы место только при строго определенном значении L. Малейшее изменение этого расстояния, которое может быть связано с разными причинами, привело бы к прекращению генерации.  [c.386]

Для реализации генерации необходимо, чтобы пороговое значение плотности инверсной заселенности не превышало значения Яо для данной мощности накачки. Это означает, что условие генерации условие самовозбуждения) может быть представлено в виде  [c.297]


Мягкое и жесткое возбуждение генерации. Условие Im т — О (см. (3.7.31)) означает, что должно выполняться неравенство  [c.360]

Устойчивость (неустойчивость) стационарных состояний в случае мягкого возбуждения генерации. Если выполнено условие мягкого возбуждения генерации (условие (3.7.36)), то получаем Ф + 4 (б/р) (а + а — 1) и, следовательно, < 0.  [c.362]

Рассмотренная выше модель процесса хрупкого разрушения поликристаллического ОЦК металла предполагает непрерывную генерацию острых (раскрытие равно параметру решетки) микротрещин, начиная с выполнения условия (2.7), и их нестабильный рост при Oi > 5о, по крайней мере, до ближайшего препятствия, способного затормозить микротрещину. Возникновение в ходе пластического деформирования микронапряжений и создание деформационной субструктуры, играющих роль барьеров для микротрещин, вызывают увеличение напряжения Ор.  [c.71]

Г, + 0,25А и Г-2+ 0,75А, у которых центры смещены вдоль вертикального радиуса на соответствующие расстояния (рис. 2.18) [116]. Оптимальное соотношение ширины Ь и высоты А прямоугольного канала в выходном сечении 6 А = 2 1. При этом входные кромки тщательно обрабатывают, обеспечивая плавный вход, а носик сопла закругляют с радиусом 0,1 мм. Предположение о том, что форма острой кромки должна сократить интенсивность возмущений на границе между втекающим потоком и остальной массой газа, находящейся в камере энергоразделения [40, 116), противоречит теоретическим взглядам самого автора сопла А.П. Меркулова и других приверженцев гипотезы взаимодействия вихрей. Ее вибрация может служить причиной возникновения начальной турбулентности, приводящей впоследствии к ее генерации во всем объеме камеры энергоразделения. На рис. 2.19 показаны сравнительные характеристики вихревых труб, использующих различные сопловые вводы. Нетрудно заметить, что прямоугольное спиральное сопло А.П. Меркулова дает заметный выигрыш при прочих равных условиях по сравнению с другими типами закручивающих устройств.  [c.69]

Известно, что в вихревой трубе помимо высокочастотных колебаний могут возбуждаться автоколебания низкой частоты, определяемые прецессией вихревого ядра. Поддержание колебаний возможно подводом к вихревому ядру достаточной для этого кинетической энергии вращательного движения, которая в свою очередь подводится тем интенсивнее, чем больше касательные напряжения и, соответственно, радиальные пульсации. Пояснить этот механизм можно следующим образом. Крупные вихри А (рис. 3.26), уходя на периферию, образуют на прежнем месте области локального понижения давления, в которые устремляется мелкомасштабная турбулентность 5, отвечающая за перенос импульса к приосевому ядру. Таким образом, чем интенсивнее вторичное вихреобразование, тем более благоприятные условия создаются для генерации прецессии. В то же время прецессионные смещения приосевого ядра приводят к увеличению градиента осевой скорости и соответственно вихреобразованию.  [c.136]


Наряду с вынужденным излучением света атомами, находящимися на верхнем уровне е , происходит резонансное поглощение энергии атомами, находящимися на нижнем уровне е . При этом атом поглощает световой квант и переходит на уровень е , что препятствует генерации света. Для генерации когерентного света необходимо, чтобы число атомов на верхнем уровне Ей было больше числа атомов на нижнем уровне e , между которыми происходит переход. В естественных условиях на более высоком уровне при любой температуре всегда меньше частиц, чем на более низком. Для возбуждения когерентного излучения надо принять специальные меры, чтобы из двух выбранных уровней верхний был заселен больше, чем нижний. Такое состояние вещества в физике называется активным или состоянием  [c.119]

Пользуясь сложившимися в электромашиностроении понятиями о типовых узлах и элементах ЭМП, а также о типовых технологических процессах их изготовления и сборки, можно формализовать процесс генерации структурных вариантов технологической системы с помощью построения дерева вариантов по аналогии с расчетным и конструкторским проектированием. Однако число рассматриваемых вариантов можно существенно уменьшить, используя ограничения, следующие из специфики проектируемого класса изделий и конкретного предприятия, где предполагается организовать их производство. В этих условиях легче генерировать структурные варианты в диалоговом режиме работы технолога и ЭВМ, конечно, после предварительного составления перечня технологических процессов для сборочных единиц и их элементов.  [c.186]

Условие генерации. Предположим, что в данный момент времени через данную точку среды с отрицательной температурой вдоль оси кристалла рубина влево или вправо распространяется излучение с частотой V. Пусть интенсивность в данный момент будет /q. Это излучение, пройдя через среду, попадет на зеркало резонатора, затем, отразившись от него, распространится в противоположном направлении. Далее, отразившись от второго зеркала резонатора, пройдя в общей сложности через активную среду путь длиной 2L (L — длина активной среды между зеркалами резонатора), достигнет прежней точки. В отсутствие потерь энергии после такого цикла интенсивность излучения стала бы равной  [c.386]

Для возникновения генерации света, очевидно, наряду с уже известными условиями должно выполняться и условие / > /о, т. е.  [c.386]

УСЛОВИЕ ЭФФЕКТИВНОЙ ГЕНЕРАЦИИ ВТОРОЙ ГАРМОНИКИ.  [c.403]

Равенство показателей преломления для двух разных частот в изотропных средах возможно только при условии, что одна из этих частот лежит в области аномальной дисперсии, которая в свою очередь совпадает с областью поглощения. Следовательно, при равенстве показателей преломления одна из волн (в изотропных средах) будет сильно поглощаться, что затрудняет осуществление эффективной генерации второй гармоники. Однако если обратить внимание на оптические свойства анизотропных кристаллов (см.  [c.405]

Итак, условие (18.28а), так называемое условие синхронизма (аналогично условию генерации второй гармоники), есть условие генерации частот (Oj и (о .  [c.408]

Практическое осуществление генерации света. Как осуществить практическую генерацию (усиление) световых волн на частотах (Oj и (1)2 Для этого нужно направить на нелинейный прозрачный кристалл, поляризация которого имеет вид (18.22), мощную волну накачки (рис. 18.10). При этом усиливаются те из всех возможных внутри кристалла пар воли, суммарная частота которых удовлетворяет условию синхронизации (18,28а). Если же в кристалле распространяется лишь одна сигнальная волна частоты oi, то в среде автоматически возникает другая волна с частотой Ы2 — i и происходит одновременное их усиление. Для получения эффективного усиления нелинейный кристалл располагают между зерка-  [c.408]

Лазер 378—390 —, применения 388—390 —, принцип действия 383-386 —, условие генерации 386 Линза 179 и д.  [c.427]

Генераторы с обратной связью, если условие генерации выполняется только на одной частоте или если на их выходе стоит соответствующий фильтр, дают синусоидальные колебания. В схеме на рис. 3, 6 условие  [c.169]

Если сопротивления и Z,, а также емкость заменить на активные сопротивления, то условие генерации может быть выполнено и на постоянном токе. В этом случае схема превращается в схему триггера,  [c.170]


В чем заключается условие волнового (фазового) синхронизма и как его используют в эксперименте для резкого повышения КПД генерации второй гармоники  [c.456]

Если усиление волны на длине Ь больше суммарных потерь, испытываемых волной при отражении от зеркал, то с каждым пробегом амплитуда волны будет увеличиваться все больше и больше. Усиление будет продолжаться до тех пор, пока плотность энергии н(ш) в этой волне не достигнет такого значения, при котором величина коэффициента усиления существенно уменьшится вследствие эффекта насыщения. Стационарное состояние соответствует, очевидно, условиям точной компенсации усиления в среде суммарными потерями энергии. Таким образом, эффект насыщения имеет принципиальное значение в вопросе о генерации излучения в лазерах.  [c.780]

Здесь под ао( ) понимается значение коэффициента усиления при малых интенсивностях, т. е. без учета эффекта насыщения (так называемый ненасыщенный коэффициент усиления). В том случае, когда соотношение (225.1) превращается в равенство, говорят о достижении пороговых условий генерации.  [c.781]

В соответствии со сказанным выше, стационарная мощность генерации определяется условием  [c.781]

Можно сказать, следовательно, что условие стационарной генерации эквивалентно равенству мощности излучаемой в объеме ЗЬ активной среды, и потока си5(1 — эфф). выходящего из резонатора.  [c.781]

Пороговое условие генерации в этих терминах означает, что усиление света на протяжении полуволны должно быть больше величины, обратной добротности резонатора  [c.782]

Как нетрудно понять, изменение ориентации призмы изменяет добротность оптического резонатора. Поэтому описанный метод формирования коротких мощных импульсов получил наименование модуляции добротности оптического резонатора. Лазеры, работающие в таком режиме, называются лазерами с модулированной добротностью. Соответственно условия работы лазера с неизменной во времени добротностью называют режимом свободной генерации.  [c.790]

Если усиление в среде компенсирует потери при отражениях, т. е. г ехр [a(oj)L] = 1, то при выполнении интерференционного условия интенсивность обращается в бесконечность. Последнее означает бесконечную спектральную плотность излучения для частот, задаваемых (228.3), т. е. генерацию монохроматических излучений с указанными частотами. Полная же интенсивность определяется эффектом насыщения и находится из условия a( o)L = = —In г, что было уже выяснено в 225.  [c.798]

Генерация может возникать, разумеется, лишь для тех частот из бесконечного набора (228.3), которые принадлежат спектральному интервалу, где выполняется условие достижения порога генерации (228.1). Сказанное иллюстрируется рис. 40.12, где сплошная кривая изображает зависимость ненасыщенного коэффициента усиления ао(ш) от частоты, а пунктирная линия отсекает на оси ординат отрезок, равный пороговому значению коэффициента усиления порог = fIL. Генерация, следовательно, возможна лишь для тех частот со , которые расположены внутри интервала  [c.798]

В некоторых работах [41, 232] представлены подробные данные о влиянии продольного и поперечного звукового облучения дозвуковых турбулентных струй на их аэродинамические характеристики. Обращают на себя внимание два эффекта взаимно противоположного характера, возникающие при аэроакустичес-ком облучении струи и соответствующих либо условию усиления генерации, либо условию ослабления турбулентности в пределах ее начального участка.  [c.127]

Для улучшения условий работы полупроводникового лазера и обеспечения непрерывного режима генерации кристалл необходимо охлаждать до низких температур. Мощность лазера на арсениде галлия при температуре жидкого азота в импульснопериодическом режиме составляет 100 Вт, в непрерывном режиме — 10 Вт. Лучшие образцы полупроводниковых лазеров могут работать при нормальных температурах.  [c.124]

Остановимся более подробно на генерации второй гармоники. На первый взгляд могло казаться, что с условием возникновения второй гармоники мы уже достаточно знакомь[ и нет особой необходимости более подробно останавливаться на механизме генерации. Действительно, так может казаться HM Hfra на первый взгляд. Возникновение в каких-либо точках среды второй прмоникн еще не означает, что оно приведет к эффективному образованию соответствующей волны. Дело в том, что в отличие от линейной оптики, где из-за неизменности частоты вторичной волны фазовые скорости падающей и вторичной волн одинаковы и, следовательно, вторичные волны когерентны как с первичной, так и между собой. В нашем случае фазовая скорость первичной волны [Уф (ш) = = dn (q))] отличается от фазовой скорости [уф (2 з) = hi (2й))] вторичной. Причиной этому служит дисперсия Ы ( >) ф П 2(ii) света. В результате такого различия вторичные волны, возникшйе  [c.403]

Направление синхронизма. На рис. 18.8 показаны сечения поверхностей показателя преломления обыкновенных п 1 = (ш), n i — п (2со)) и необыкновенных (и и п ) волн в кристалле KDP — дигидрофосфата калия для частоты рубинового лазера (индекс 1) и его второй гармоники (индекс 2). Как видно из рис. 18.8, под некоторым углом Оо к оптической оси (0Z) кристалла происходит пересечение эллипсоида п . и сферы п1, что означает п, = пЧ в данном направлении. Поэтому направление, определяемое значением угла я%, является направлением синхронизма. Следовательно, если поляризацию падающей волны подобрать так, чтобы основная волна в кристалле являлась обыкновенной, а кристалл подобрать так, чтобы в нем данная обыкновенная волна возбуждала необыкновенную волну второй гармоники, то в направлении о должно произойти резкое возрастание мощности второй гармоники. В формуле (18.20) не учтена потеря энергии падающей волны на нагревание кристалла и на рассеяние, в результате чего при п (2со) == п (со) длина когере1ггности превращается в бесконечность. Однако в реальных средах всегда возможны подобные потери и поэтому длина когерентности даже при п (2со) — п (со) становится конечной. И в этом случае условие синхронизма является условием наилучшей генерации второй гармоники.  [c.406]


Условие генерации. Выясним условие усиления световой волны одной из частот, например со в нелинейной среде. Как следует из (18.24) и (18.26), разность фаз между вол1ЮЙ нелинейной поляризации Р /, (со.) и световой волной частоты oj будет постоянной при любых значениях х, если  [c.408]

Если при положительной обратной связи выполняется условие ЛуР = J, то Ловщ= оо и усилитель самовозбуждается, т. е. становится генератором. Эго условие называется условием генерации.  [c.169]

В настоящее время предлагаются разные способы сборки молекулы фуллерена из фрагментов. Целью этих исследований является достижение понимания механизма образования сферических молекул из известной структуры графита и других органических соединений, используемых в качестве сырья при генерации фуллеренов. Знание механизма образования фуллеренов позволит исследователям, в свою очередь, целенаправленно создавать и варьировать способы и условия синтеза различных типов фуллеренов и их производных.  [c.213]

Количественное соотношение, определяющее возможность генерации направленного потока излучения, можно найти из следующих соображений. Поток излучения со спектральной плотностью /о, возникший в какой-либо точке А активной среды (см. рис. 40.4) и направленный вдоль оси резонатора, усиливается на пути к правому зеркалу, отражается от него и после отражения от левого зеркала опять пройдет через точку А, распространяясь в своем исходном направлении. Таким образом, за один цикл распространения в резонаторе излучение пройдет путь 2Ь. В отсутствие всяких потерь энергии это должно привести к увеличению потока до величины /оСхр [2а(оз)Т], где а(оз) — коэффициент усиления. Однако в результате потерь, которые учтены эффективным коэффициентом отражения зеркал Гдфф, фактическая плотность потока энергии после одного цикла его распространения в резонаторе определится выражением /оГэффехр[2а(со)Е). Поэтому решение вопроса о возможности возбуждения генерации в резонаторе сводится к условию  [c.780]

Условия (225.2) или (225.3) называются условиями стационарной генерации. Ему можно придать несколько иной вид, если с помощью соотношения (223.3) перейти от коэффициента усиления к мощности испускания в 1 см-5 Предполагая, кроме того, что Гэфф ма. о отличается от 1 (и, значит, / = 1п(1/Гэфф) 1 — Гэфф), и умножая левую и правую части (225.3) на площадь S поперечного сечения пучка лазера и на (w), получим  [c.781]

Отражение света, происходящее из-за нелинейности среды и пространственного периодического изменения амплитуды поля, позволяет расширить наши представления о воз1 южных способах реализации положительной обратной связи в квантовых генераторах. До сих пор мы полагали, что положительная обратная связь между полем излучения и активной средой, необходимая для превращения усиливающей системы в автоколебательную (см. 225), осуществляется с помощью зеркал, отражающих волны обратно в резонатор. Рассмотренное выше нелинейное отражение света служит физической основой для иного способа реализации положительной обратной связи, применяющегося в некоторых лазерах. Пусть кювета К представляет собой активную среду (см. рис. 41.3). В направлении оси л имеет место периодическая неоднородность среды за счет нелинейных эффектов. Интерферирующими пучками / и //, создающими оптическуро неоднородность, могут быть пучки возбуждающего излучения. Следовательно, в данном случае отражение будет происходить в результате модуляции коэффициента усиления активной среды. Спонтанное излучение среды, испущенное в направлении оси х, будет отражаться от неоднородности и возвращаться в активную среду, что и соответствует обратной связи. Для некоторых частот обратная связь будет положительной, и при выполнении пороговых условий возбудится генерация излучения в направлении оси х.  [c.828]


Смотреть страницы где упоминается термин Генерация условия : [c.509]    [c.71]    [c.64]    [c.109]    [c.101]    [c.171]    [c.172]    [c.40]    [c.18]    [c.782]    [c.786]    [c.843]   
Оптика (1976) -- [ c.781 ]



ПОИСК



Волна линейной поляризованности. Волны нелинейной поляризованности. Условие пространственного синхронизма. Длина когерентности Осуществление пространственного синхронизма. Векторное условие пространственного синхронизма. Генерация суммарных и разностных частот. Спонтанный распад фотона. Параметрическое усиление света Параметрические генераторы света Самовоздействие света в нелинейной среде

Генерация

Генерация волн на комбинационных частотах заданными электромагнитными полями граничные условия на поверхности нелинейной среды

Генерация второй гармоники при различных условиях

Генерация оптических гармоник, трех- и четырехволновое смешеВолновое уравнение с нелинейным источником. Условия фазового синхронизма

Генерация разностных частот как метод получения когерентного ИК излучения условия фазового согласования

Инверсия активной среды как необходимое условие генерации лазера . Квантовый выход и КПД лазера

Лазер условие генерации

Лазерная генерация стационарная, условие

Неустойчивость исходного стационарного состояния и условие самовозбуждения генерации в лазере с просветляющимся фильтром

Параметрический генератор условие генерации

Параметрический генератор условия возникновения генерации

Пороговая плотность инверсной заселенности и условие генерации . Безразмерная форма записи уравнений Статца — Де Марса

Пороговое условие генерации

Принципиальная схема лазера. Порог генерации. Условия стационарной генерации. Добротность. Непрерывные и импульсные лазеры Повышение мощности излучения. Метод модулированной добротности Лазерное излучение

Условие генерации амплитудное

Условие генерации фазовое

Условие лазерной генерации

Условие стационарной генерации

Условие эффективной генерации второй гармоники. Фазовый СИНХРОНИЗМ

Условия обеспечения режима генерации гигантских импульсов в лазере с просветляющимся фильтром

ФОРМИРОВАНИЕ ПОЛЯ ИЗЛУЧЕНИЯ В РЕЗОНАТОРЕ ЛАЗЕРА 1 Условие обеспечения генерации



© 2025 Mash-xxl.info Реклама на сайте