Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинетика состояний

Хотя термодинамика дает возможность определить, насколько изучаемая система отдалена от состояния равновесия [числитель правой части уравнения (1)1, однако она в большинстве случаев не дает ответа на весьма важный и с теоретической, и с практической стороны вопрос с какой скоростью будет протекать термодинамически возможный коррозионный процесс Рассмотрением этого вопроса, а также установлением влияния различных факторов на скорость коррозии и характер коррозионного разрушения металлов занимается кинетика (учение о скоростях) коррозионных процессов.  [c.11]


Настоящая монография является одной из попыток среди такого рода работ подойти к проблеме разрушения, базируясь на системном подходе, лежащем на стыке механики деформируемого твердого тела, механики разрушения и физики прочности и пластичности. В книге изложены разработанные авторами физико-механические модели хрупкого, вязкого и усталостного разрушений, позволяющие анализировать повреждение материала при сложном нагружении в условиях объемного напряженного состояния. Приведены подходы к описанию кинетики трещин при статическом, циклическом и динамическом нагружениях элементов конструкций. Кроме того, в работе рассмотрены методы и алгоритмы численного решения упруговязкопластических задач при квазистатическом (длительном и циклическом) и динамическом нагружениях.  [c.3]

Повреждение, обусловленное интенсивным порообразованием по границам зерен в материале, может приводить к значительному его разрыхлению. В этом случае проведение независимого (несвязного) анализа НДС и развития повреждений в материале дает значительные погрешности. Например, отсутствие учета разрыхления в определенных случаях приводит к существенному занижению скорости деформации ползучести и к снижению скорости накопления собственно кавитационных повреждений. В настоящее время связный анализ НДС и повреждаемости базируется в основном на феноменологических подходах, когда в реологические уравнения среды вводится параметр D, а в качестве разрушения принимается условие D = 1 [47, 50, 95, 194, 258, 259]. Дать физическую интерпретацию параметру D достаточно трудно, так как его чувствительность к факторам, определяющим развитие межзеренного повреждения, априорно предопределена той или иной феноменологической схемой. Так, во многих моделях предполагается, что D зависит только от второго инварианта тензора напряжений и деформаций и тем самым исключаются ситуации, когда повреждаемость и, как следствие, кинетика деформаций (при наличии связного анализа НДС и повреждения) являются функциями жесткости напряженного состояния.  [c.168]

Развитие коррозионного процесса можно фиксировать фотографированием. В последние годы для качественной оценки коррозионного процесса привлечен и способ микрокиносъемки. Применение последнего способа позволяет исследовать кинетику коррозионного процесса, диффузионные явления, возникновение пассивности металлов, переход металлов в активное состояние, развитие коррозионных трещин и других сложных яв.леиий. Способ микроскопического исследования позволяет использовать, возможности убыстренной и замедленной съемки.  [c.335]


Расчеты элементов конструкций на малоцикловую усталость базируются на экспериментальных данных изучения закономерностей сопротивления деформированию и разрушению при циклическом упруго-пластическом деформировании, а также исследованиях кинетики неоднородного напряженно-деформированного состояния и  [c.618]

Вопросы усталости, и в первую очередь малоцикловой усталости, совершенствование методов испытания на усталость, обоснование деформационных критериев малоцикловой усталости, установление физической модели накопления повреждений при повторно-переменных нагрузках, кинетики развития усталостных трещин в тех или иных условиях нагружения, статистический аспект усталости, а также разработка инженерных методов расчета элементов конструкций на прочность при повторно-переменных напряжениях с учетом различных факторов (вида напряженного состояния, конструктивно-технологических особенностей, температуры, начальной напряженности и т. п.).  [c.664]

Кинетика диффузионного превращения. Диффузионное превращение происходит по механизму образование зародыша и рост новой фазы . Этот тип превращения подчиняется тем же общим закономерностям, что и процессы кристаллизации жидкости (см. гл. 12). Существуют некоторые особенности, связанные с твердым состоянием исходной и образующейся фаз и относительно низкой температурой превращений. Образование зародышей критических размеров сопровождается увеличением свободной энергии системы, равным /з поверхностной энергии зародышей (остальные две трети компенсируются уменьшением объемной свободной энергии). Возникновение зародышей обеспечивается в результате флуктуационного повышения энергии в отдельных группах атомов. При превращении в сплавах образуются фазы, отличающиеся по составу от исходной, поэтому для образования зародыша необходимо также наличие флуктуации концентрации. Последнее затрудняет образование зародышей новой фазы, особенно если ее состав сильно отличается от исходной. Другой фактор, затрудняющий образование зародыша новой фазы, связан с упругой деформацией фаз, которая обусловлена различием удельных объемов исходной и образующейся фаз. Энергия упругой деформации увеличивает свободную энергию и, подобно поверхностной энергии, вносит положительный вклад в баланс энергии. Критический размер зародышей и работа их образования уменьшаются с увеличением степени переохлаждения (или перегрева) по отношению к равновесной температуре Гр, а также при уменьшении поверхностной энергии зародыша.  [c.493]

Рис. 6.5. Кинетика напряженного состояния при жестком циклическом нагружении Рис. 6.5. Кинетика <a href="/info/183899">напряженного состояния</a> при жестком циклическом нагружении
Изменение состояния системы называют термодинамическим процессом. Так, в постулате о равновесии утверждается, что в любой неравновесной системе происходит самопроизвольный (не вызванный изменением внешних переменных) процесс перехода в равновесное состояние релаксация). Длительность такого процесса в постулате никак не ограничена. В этом проявляется особенность описания термодинамических процессов они рассматриваются не во времени, а в обобщенном пространстве независимых термодинамических переменных, т. е. характеризуются не скоростями изменения свойств системы, а самими величинами изменений. Необходимость такого описания процессов, не учитывающего в явном виде их кинетику, вызвана тем, что все термодинамические свойства, как уже отмечалось, строго определены только в равновесных, не зависящих от времени состояниях. Если же процесс происходит с конечной скоростью, то в системе возникают градиенты интенсивных макроскопических характеристик, для которых в этом случае понятие свойства системы неприменимо (см. 1, 2).  [c.33]


Так как в процессе создания и эксплуатации конструкционных материалов дефекты кристаллической структуры возникают неизбежно как результат диссипации вносимой в материал энергии (см. п. 4.2), то границы представляют собой не фиксированную, а постоянно изменяющуюся фазу, в которой происходят процессы постоянного накопления дефектов и перестройки дефектной структуры материала. Это осуществляется посредством структурных фазовых переходов второго рода. Барьер энергии активации фазовых переходов преодолевается при нагружении материала в процессе эксплуатации. Кинетика фазовых переходов из одного состояния в другое и определяет свойства границ и всего материала в целом.  [c.126]

Исходя из данных о действительном механизме процесса и условий, в которых протекает процесс, всегда можно схематизировать каждый из реальных процессов так, чтобы сделать возможным его термодинамический анализ. Следует отметить, что для вычисления работы и количества теплоты, составляющих главное содержание приложений термодинамики, не обязательно знать все особенности кинетики реального процесса. Вполне достаточно, чтобы наряду с внешними условиями, в которых протекает процесс, были известны конечные и, само собой разумеется, начальные состояния всех участвующих в процессе тел. С помощью функций состояния U, I, S, F, Ф, частные производные которых, как было показано ранее в 3.1, характеризуют физические свойства тел, можно анализировать любые как обратимые, так и необратимые процессы. Использование дифференциальных уравнений термодинамики, связывающих частные производные функций состояния с термическими параметрами и их производными, составляет суть термодинамического анализа.  [c.158]

Это уравнение вместе с уравнениями состояния среды (3.2.4) (3.2.5), уравнением кинетики для /12, соотношениями для определяющими упругопластические эффекты, и уравнениями сохранения массы, импульса и эиергии, которые можно представить в обычном виде  [c.265]

Расчеты элементов конструкций на малоцикловую усталость базируются на экспериментальных данных изучения закономерностей сопротивления деформированию и разрушению при циклическом упруго-пластическом деформировании, а также исследованиях кинетики неоднородного напряженно-деформированного состояния и накопления повреждений в зонах концентрации — местах вероятного разрушения. Ниже приведены основные понятия и некоторые результаты изучения кинетики деформирования и разрушения материалов при циклическом упруго-пластическом деформировании.  [c.683]

Эта скорость является результатом конкурирующего действия движущих и тормозящих сил, который определяется взаимодействием большого числа факторов. В разных условиях и на разных стадиях процесса решающую роль играет какой-то из этих факторов. Поэтому в каждом конкретном случае необходимо из сопоставления данных анализа локальных ориентировок и усредненных текстур в деформированном состоянии на разных стадиях рекристаллизации, из данных о кинетике усиления одних и ослабления других ориентировок, о состоянии примесей и их распределении, решать вопрос о том, какой из процессов (зарождения или роста) является ведущим в данном случае и в силу каких причин.  [c.407]

Исходя из данных о действительном механизме процесса и условий, в которых протекает этот процесс, всегда можно схематизировать каждый из реальных процессов так, чтобы сделать возможным его термодинамический анализ. Следует отметить, что для вычисления работы н количества теплоты, составляющих главное содержа[1ие приложений термодинамики, необязательно знать все особенности кинетики реального процесса. Достаточно, чтобы наряду с внешними условиями, в которых протекает процесс, были заданы конечные и, само собой разумеется, начальные состояния всех участвующих в процессе тел.  [c.279]

Легирующие элементы не влияют на кинетику мартенсит-ного превращения, которая, по-видимому, похол<а во всех сталях. Их влияние сказывается здесь исключительно на положении температурного интервала мартенситного превращения, а это в свою очередь отражается и на количестве остаточного аустенита, которое фиксируется в закаленной стали. Некоторые элементы повышают мартенситную точку и уменьшают количество остаточного аустенита (алюминий, кобальт), другие не влияют на нее (кремний), но большинство снижает мартенситную точку и увеличивает количество остаточного аустенита (рис. 285). Из диаграммы видно, что 5% Мп снижает мартенситную точку до 0°С, следовательно, ири таком (или большем) содержании этого легирующего элемента охлаждением можно зафиксировать аустенитное состояние.  [c.357]

На рис. 3.7, 3.8, 3.9 представлены расчетные и экспериментальные данные по кинетике деформирования и повреждения сплава ХН55МВЦ при одноосном и объемном напряженных состояниях. Из рис. 3.7 видно, что объемное сжатие значительно  [c.176]

В настоящем разделе кратко рассмотрено современное состояние исследований по некоторым основным вопросам, которые необходимо решать при расчете долговечности конструкций на стадии развития усталостной трещины. Отмечены наиболее важные акспекты кинетики усталостных трещин, которые учтены при разработке оригинальных методов расчета, изложенных в последующих разделах.  [c.193]

Из рассмотрения кинетики электродных процессов известно, что наличие катодных составляющих в большинстве случаев приводит к усиленной коррозии сплавов или, в случае коррозии металлов с кислородной деполярпзацнсй при диффузионном контроле, оказывает малое вл1ияпие. Однако исследования II. Д. Т(змашова и Г. П. Черновой показали, что возможно облегчение наступления пассивного состояния хромоникелевой нержавеющей стали при легировании ее небольшими присадками  [c.66]


Для описания превращений п сп.лавах в условиях реа.пып.тх скоростей охлаждения и определения характера образуюи ихся структур нужно, кроме равновесной диаграммы состояния, знать механизм и кинетику процессов кристаллизации и препрап енип.  [c.88]

Условия аустенитизации и соответственно состояние аустеиита оказывают большое влияние на кинетику фазовых превран ений  [c.201]

На рис. 5.7.5 проиллюстрировано влияние кинетики фазового перехода на смыкание пузырька Aq = 0,01 мм при р<, = 1 бар. Ре = 1,2 бар. При р = О имеем случай чисто газового пузырька без фазовых переходов, когда он совершает затухающие из-за тепловой и вязкой диссипации колебания, стремясь к равновесному состоянию, определяемому внешним давлением рд. Чем больше р, тем меньше заметна затухающая осциллирующая рябь на фоне угасающего пузырька. При р — оо имеем предельную кривую, соответствующую квазиравповесной схеме.  [c.291]

В последние годы получила развитие динамическая механика разрушения [32], использующая аналитические, численные и экспериментальные методы. Для экспериментального исследования напряже1пюго состояния вблизи вершины трещины и кинетики трещины применяют различные методы, включая методы фотоупругости и теневых зон (каустик). Созданные модели динамического разрушения используют те же положения, что и для квазистатиче-ского разрушения, а именно - представления о коэффициенте интенсивности напряжений и условие постоянства удельной энергии разрушения. Эти модели динамического разрушения базируются на предположении о непрерывном характере роста трещин. Экспериментальные данные, однако, показывают дис-  [c.297]

Для установления природы свечения и кинетики сопровождающих его процессов необходимо п )овести исследование всех свойств флуоресцирующего вещества и самого свечения. К этим свойствам относятся слелТующие спектр поглощения, спектр испускания, выход флуоресценции, поляризация флуоресценции, длительность возбужденного состояния. Краткое рассмотрение этих свойств начнем с основных закономерностей, которые проявляются в спектрах поглощения и флуоресценции сложных. молекул.  [c.250]

Кинетика фазового перехода. При сверхироводяш,ем переходе часто наблюдаются задержки в достижении равновесия. Они особенно длительны в тех случаях, когда образец находится в промежуточном состоянии индукция обра." ца может меняться в течение иолучаса после изменения величины внешнего поля (см. п. 8). Эти наблюдения трудно анализировать ввиду сложности картины распределения фаз. Недавно Фабер [38, 39] измерил скорость распространения границы фазы в длинном цилиндрическом стержне, помещенном в продольное магнитное поле, В этом случае промежуточное состояние отсутствует, благодаря чему удалось исследовать особенности переходного процесса.  [c.659]

Кинетика фазовых переходов большие частоты. Так же как в большинстве фазовых переходов, переход между нормальной и сверхпроводящей фазами происходит с образованием зародышей и их ростом [99]. Ввиду значительных поверхностных энергий только довольно большой зародыш может быть стабильным и расти. Различные аспекты проблемы образования зародышей п их роста изучались в ряде лабораторий, этим же вопросам было посвящено несколько теоретических работ. Имеется прекрасный обзор по этим вопросам Фабера и Пиинарда ([100], гл. IX, стр. 159), в котором приведена полная библиография. Наблюдаются как переохлаждение, так и перегрев. На практике более удобно изменять магнитное поле, чем температуру, так что переохлаждение относится к металлу, остающемуся в нормальном состоянии, когда магнитное поле уменьшено до величины ниже Якр., а перегрев —к металлу, остающемуся в сверхпроводящем состоянии при поле, превышающем значение Я р.. Обычно переохлаждение более заметно, чем перегрев. Это вызвано тем, что, как правило, существуют локализованные области, где иоле достигает гораздо больших значений, чем те, при которых может начаться нормальное образование зародышей. Подтверждением правильности такого вывода служат опыты Гарфункела и Сери-на [101] со стержнем в продольном иоле. Вблизи центра стержня помещалась дополнительная катушка, с помощью которой ноле можно было локально увеличивать от значений, меньших Якр., до значений, больших Я р. При такой геометрии, когда удается избежать больших местных полей около концов стержня, наблюдался заметный перегрев.  [c.750]

Это важное свойство выражает микроскопическую обратимость уравнений движения и носит название принципа детального равновесия. Принцип детального равновесия (7.154) отражает равенство скоростей прямого у у ) и обратного (у - у) переходов между состояниями термодинамической системы в состоянии равновесия. В химической кинетике принцип детального равновесия означает равенство скоростей прямой и обратной химических реакций в состоянии равновесия. Принцип детального равновесия играет центральную роль в обосновании некогорых свойств симметрии кинетических коэффициентов неравновесной термодинамики.  [c.182]

На рис. 2.6.4 проиллюстрировано влияние кинетики фазового перехода на смыкание пузырька, определяемой коэффициентом Кц, пропорциональным При = О имеем случай чисто газового пузырька без фазовых переходов, когда он совершает затухающие из-за тепловой и вязкой диссипации колебания, стремясь к равновесному состоянию, определяемому внешним давлением Ре. Чем больше т, тем меньше заметна затухающая осциллирующая рябь на фоне угасающего иузырька. При Kg, °° имеем предельную кривую, соответствующую равновесной схеме. Штриховой линией на рис. 2.6.4 отмечены те участки кривых, где решение дает физически нереализуемые скорости фазовых переходов (см. (1.3.90)), большие чем  [c.194]

Следует отметить, что в последние годы появилось очень большое число монографий по механике разрушения. Упомянем семитомный переводной труд энциклопедического характера Разрушение , монографии Морозова и Партона, Черепанова, ряд переводных сборников. Многие авторы понимают под механикой разрушения именно и только механику распространения трещины. Но в теории трещин предполагается, что материал остается упругим и не меняет своих свойств всюду, кроме окрестности конца трещины, которая или стягивается в точку в линейной механике, или рассматривается как пластическая область или область больших упругих деформаций. Такая точка зрения далеко не исчерпывает многообразия реальных процессов разрушения. При переменных нагрузках, например, уже после относительно небольшого числа циклов в материале появляются субмикроскопические трещины, которые растут и сливаются в макроскопические трещины, приводящие к видимому разрушению. Не вдаваясь в детали микроскопической картины, этот процесс можно представить как накопление поврежденности, характеризуемой некоторым параметром состояния. Кинетика изменения этого параметра должна быть включена в определяющие уравнения среды. Такая точка зрения лежит в основе того, что можно назвать механикш рассеянного разрушения. Соответствующая теория развивается применительно к усталости металлов и длительной прочности при высоких температурах.  [c.653]

ЭТОЙ теории необходимо знать уравнения состояния ПД и кинетику химических реакций при высоких давлениях и температурах. Важным выводом этой теории является существование химического пика во фронте детонационной волны, что подтверждено экспериментально для газовых и конденсированных ВВ. Экспериментально обнаружены во всех газовых смесях, во многих жидких, а также в твердых ВВ детонационные волны с неустойчивым — пульсирующим — фронтом. Их структура качественно отличается от зоны реакции в одномерной теории Зельдовича—Неймана—Деринга. Движение среды в этом случае в действительности носит турбулентный характер.  [c.101]


Для внедрения в технику новых технологических процессов и разработки новых аппаратов необходимо уметь прогнозировать поведение материалов и веществ в условиях повышенных температур, давлений и скоростей. В связи с этим за последние годы на стыке наук, таких, как, например, кинетическая теория газов, химическая кинетика, газовая динамика, сложилась новая наука—механика реагирующих газов (другое употребляющееся название — аэротермохимия), занимающаяся изучением Течений газов в условиях повышенных температур, при которых оказывается необходимым учет физико-химических процессов, приводящих к изменению состава газа и внутреннего состояни его атомов и молекул.  [c.3]

Математически задача сводится к решению системы обьп -новенных ди( )ференциальных уравнений, состоящей из уравнений неразрывности, движения, энергии, химической кинетики и уравнения состояния  [c.359]


Смотреть страницы где упоминается термин Кинетика состояний : [c.221]    [c.28]    [c.41]    [c.80]    [c.89]    [c.126]    [c.352]    [c.77]    [c.91]    [c.65]    [c.492]    [c.145]    [c.256]    [c.271]    [c.280]   
Основы физики поверхности твердого тела (1999) -- [ c.192 , c.193 , c.194 , c.195 , c.196 , c.197 ]



ПОИСК



Влияние напряженного состояния на кинетику водородной коррозии стали

Кинетика

Кинетика напряженно-деформированного состояния

Кинетика напряженного и деформационного состояния в вершине трещины в связи с условиями высокотемпературного нагружения

Кинетика развития усталостных трещин и предельное состояние тел с трещинами

Реакции кинетика бора с титановыми на напряженное состояние

Уравнения состояния, кинетика деформаций и разрушение в элементах конструкций



© 2025 Mash-xxl.info Реклама на сайте