Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Твердые серое (определение)

Твердое топливо Удельный вес. влажность, зольность, содержание серы, определение летучих и теплотворной способности 4 00  [c.186]

Топливо твердое минеральное. Определение формы серы. Взамен ГОСТ 30404-94 (ИСО 157-75)  [c.117]

На рис. 4.13—4.15 представлены результаты численного эксперимента по определению плотности падающего лучистого теплового потока на вертикальные конструкции в соответствии с изложенной моделью и сравнение этих результатов с экспериментальными данными й результатами расчета по традиционному методу. Экспериментальные данные, приведенные на рис. 4.13—4.15, охватывают область локальных пожаров при горении керосина с определяющим размером очага пожара 0=0,9 1,2 2,4 3 м и локальные пожары, моделируемые на фрагментах зданий, описание которых приведено в гл. 3, разд. 3.3.1, при горении керосина с характерным размером очага 1 и 2 м и при горении древесины с характерным размером 1,1 и 2,57 м. В работе П. И. Романенко и др. приведен метод расчета лучистого теплообмена между очагом пожара и тепловоспринимающей конструкцией, основанный на известных законах лучистого теплообмена между двумя твердыми серыми телами произвольной формы и ориентаций в пространстве, находящимися в оптически прозрачной газовой среде. Средние по поверхности коэффициенты облученности определяются с помощью принципа суперпозиций и соотношений взаимности для угловых коэффициентов. Как следует из рис. 4.13—4.15, разработанная модель лучистого теплообмена хорошо согласуется с экспериментальными данными во всем приведенном диапазоне экспериментальных исследований. Результаты, полученные по методу, приведенному в учебнике П. И. Романенко и др., дают практически подобные результаты для очагов пожара  [c.179]


Рассматриваемые ниже законы теплового излучения строго справедливы лишь для абсолютно черного тела и с определенной погрешностью используются для реальных твердых (серых) тел.  [c.538]

Большинство реальных твердых тел с определенной степенью точности можно считать серыми телами, а их излучение — серым излучением.  [c.464]

Излучение газообразных тел резко отличается от излучения твердых тел. Одноатомные и двухатомные газы обладают ничтожно малой излучательной и поглощательной способностью. Эти газы считаются прозрачными для тепловых лучей. Газы трехатомные (СО2 и НаО и др.) и многоатомные уже обладают значительной излучательной, а следовательно, и поглощательной способностью. При высокой температуре излучение трехатомных газов, образующихся при сгорании топлив, имеет большое значение для работы теплообменных устройств. Спектры излучения трехатомных газов, в отличие от излучения серых тел, имеют резко выраженный селективный (избирательный) характер. Этн газы поглощают и излучают лучистую энергию только в определенных интервалах длин волн, расположенных в различных частях спектра (рис. 29-6). Для лучей с другими длинами волн эти газы прозрачны. Когда луч встречает  [c.472]

Плотнейшие упаковки составляют основу строения большинства кристаллических твердых тел. С точки зрения плотнейшей упаковки особенно просто описываются структуры окислов сульфидов и галогенидов, в которых основу плотнейшей упаковки составляют крупные анионы кислорода, серы и галогенов, а катионы, входящие в химическую формулу кристалла, распределяются в пустотах плотнейшей упаковки по определенному симметричному узору. Отдельные кристаллы отличаются типом плотнейшей упаковки, сортностью и числом заселенных катионами пустот, 30  [c.30]

Технология проводки скважин, создание бурового инструмента основываются на знании законов тепло- и массообмена. Знание законов тепло- и массообмена необходимо при решении задач использования теплоты земных недр, при определении режимов проветривания горных выработок на больших глубинах, в зонах вечной мерзлоты, при термическом воздействии на пласты, проведении скважин или горных выработок с использованием замораживания, при подземной выплавке серы п газификации твердого топлива, при термическом, электротермическом и комбинированном способах разрушения горных пород при бурении скважин.  [c.188]


Все реакции и соотношения, относящиеся к химическому равновесию, рассматривались здесь применительно к гомогенным газовым системам. Условия термодинамического равновесия гетерогенной системы с одним компонентом рассматривались в 12. Большое практическое значение имеют многокомпонентные гетерогенные системы, для которых условия термодинамического равновесия устанавливаются с помощью правила фаз Гиббса. Это правило позволяет определить число произвольно изменяемых параметров (число степеней свободы), исходя из числа компонентов и числа фаз в системе. Число компонентов равно числу химически индивидуальных веществ минус число химических реакций между ними. Определение фазы было дано в 12 при невысоких давлениях возможна лишь одна газовая фаза в системе, но количество твердых и жидких фаз не ограничивается существует, например, несколько кристаллических модификаций твердых тел (льда, серы, железа), в системе могут быть несмешивающиеся жидкости, каждая из которых является фазой.  [c.258]

Известно, что распределение определенного элемента, находящегося в твердом растворе или в форме соединения, может быть определено при выявлении общей структуры. Способы травления для выявления распределения углерода, фосфора или серы рассмотрены на соответствующих примерах.  [c.30]

В реальных условиях эксплуатации машин материалы большинства деталей не подвергаются непрерывному увлажнению. Периодические изменения влажности воздуха вызывают изменения свойств материала. В органических материалах при этом наблюдаются остаточные изменения вследствие того, что скорость поглощения влаги материалом больше скорости потери влаги при прочих равных условиях. В конечном итоге после серии периодических увлажнений и высыханий можно ожидать необратимых изменений в свойствах материалов. Всякое изменение температуры сопровождается изменением геометрических размеров детали, что следует учитывать при проектировании и производстве машин. Отклонения в размерах твердых тел часто сопровождаются структурными изменениями, которые зависят от технологического процесса, принятого при изготовлении материала. В материале могут продолжаться физико-химические процессы или оставаться внутренние напряжения. Нагрев и охлаждение материала в определенных пределах температуры могут значительно снизить внутренние напряжения.  [c.135]

Во многих случаях с газоснабжения снимается котельная в целом, т. е. приходится переключать с газа на резервное топливо и те котлы, которые оборудованы контактными экономайзерами. Естественно, что при этом экономайзеры, если они не включены в систему горячего водоснабжения по схеме с промежуточным теплообменником, следует отключить и воду нагревать в других теплообменниках. Отключение контактного экономайзера по газовой стороне должно быть плотным, чтобы предотвратить поступление продуктов сгорания резервного топлива в контактную камеру. Дело в том, что в мазуте и твердом топливе, как правило, содержится сера, образующая при горении окислы (SO2 и SO3). При контакте с водой либо с холодными поверхностями, имеющими температуру ниже точки росы продуктов сгорания, образуется серная кислота, приводящая к интенсивной сернокислотной низкотемпературной коррозии металла. По этой же причине должно быть плотным и отключение по воде, поскольку при поступлении воды и просачивании даже небольшого количества дымовых газов интенсивность коррозии будет значительной. Следует подчеркнуть, что в насадочном слое удерживается определенное количество воды, которая также может образовывать серную кислоту, поэтому при переходе котла с газового топлива на резервное целесообразно, по-видимому, перед отключением экономайзера (еще при работе на природном газе) высушить насадку, т. е. выпарить газами удержанную насадкой воду. Желательно, чтобы заслонки на подводящем и отводящем газоходах были плотными.  [c.217]

Часто эти определения осложняются появлением мути из-за начинающегося осаждения твердых компонентов. В этом случае после проведения серии таких определений исследуемые растворы для получения дополнительных данных оставляют на некоторое время в покое. Условия помутнения раствора должны быть проверены при различной продолжительности испытания, или исследуемые образцы следует оставлять на ночь. В одних случаях муть вновь растворяется, а в других — помутнение становится более сильным это указывает на разную растворяющую способность  [c.285]


Разновидностью механизма зарождения, роста и коалесценции пор являются случаи распространения треш ин по границам зерен (рис. 2.12). Для низкотемпературных условий испытания распространение вязких треш ин по границам зерен относительно редко. Как правило, это наблюдается в материалах со структурой, характеризующейся относительно низкой плотностью частиц второй фазы, но имеюш их по границам повышенную плотность распределения этих частиц. Типичный случай - стали с пониженным после перегрева содержанием серы. В области высоких температур, соответствующих аустенитной фазе, основная масса серы в малосернистой стали переходит в твердый раствор. При охлаждении с определенной скоростью выделяются частицы сульфидов по границам зерен. Предпочтительное зарождение микропор у частиц сульфидов обусловливает опережающее развитие вязких пор (ямок) по границам зерен.  [c.33]

В большинстве случаев поверхность твердого адсорбента энергетически неоднородна (гл. I) — она представляет собой серию элементарных площадок, обладающих различной теплотой адсорбции. Тогда уравнение (П,6) применимо только к одной из элементарных площадок, теплота адсорбции на которой лежит в пределах от д до + йд. Конечно, площадки с разной величиной д беспорядочно расположены на поверхности адсорбента. Но при выводе уравнения Ленгмюра было предположено, что частицы адсорбата не действуют друг на друга. Поэтому порядок расположения элементарных площадок с различными величинами д не имеет значения. Можно допустить, что они расположены в некотором определенном порядке, например в направлении убывания д. Если рассматривать эти площадки, обходя поверхность в указанной последовательности, то д будет изменяться с величиной 5. Последняя представляет собой отношение числа элементарных площадок, характеризуемых значением д, равным или большим, чем данная величина 5, к общему числу площадок. Другими словами, 5 можно рассматривать как долю пройденной поверхности. Учитывая это, найдем выражение для 0, использовав уравнение (11,6)  [c.63]

Сера S является горючим элементом топлива. Содержание серы в твердом топливе незначительно, за исключением сланцев. При сжигании сера выделяет небольшое количество теплоты (теплота сгорания серы 9,3 МДж/кг). Сера содержится в топливе в трех видах органическая Sop, колчеданная 5 и сульфатная S . Органическая сера Sop и колчеданная Sk составляют так называемую летучую серу. В горении участвуют только органическая и колчеданная сера. Поэтому при выполнении теплотехнических расчетов учитывают содержание в топливе только летучей серы л = 8ор+5к. Сульфатная сера входит в минеральную часть топлива и в горении не участвует. При сжигании летучей серы образуются сернистый ангидрид SO2 и в небольшом количестве серный ангидрид SO3, которые загрязняют атмосферу. Кроме того, наличие серного ангидрида SO3 при определенных условиях приводит к коррозии металлических поверхностей нагрева агрегата. В связи с этим сера является вредной примесью в топливе. Атомная масса серы 32.  [c.16]

Нормативы неполного оперативного времени назначают для определенных условий. Всякие отклонения от этих определенных условий учитываются введением поправочных коэффициентов к, которые могут быть как больше, так и меньше единицы. Так, при опиливании детали из углеродистой стали (ав = = 500 МПа) коэффициент k принимают равным единице, при опиливании заготовок из серого чугуна 1 = 0,7-т-0,8, при опиливании заготовок из хромоникелевой и других твердых сталей  [c.368]

Поскольку все эти вещества определенного стехиометрического состава имеют родственные структуры, их, вероятно, нельзя называть промежуточными фазами а условно можно рассматривать как серии упорядоченных расположений атомов в ограниченных твердых растворах К, Rb и s в графите.  [c.242]

Для точного сведения теплового баланса н определения потерь теплоты при сжигании твердого топлива необходимо при испытании взвешивать топливо и очаговые остатки, произвести лабораторный анализ отобранных проб с определением не только теплоты сгорания, влажности и зольности, но и элементарного состава содержания углерода, водорода, азота и серы (содержание кислорода получают вычитанием, считая, что сумма влаги, золы, углерода, водорода, азота, кислорода и серы в аналитической пробе должна быть равна 100 %). При испытании в эксплуатационных условиях серийных котельных агрегатов с целью составления режимных карт для эксплуатационного персонала едва ли целесообразно взвешивание топлива и очаговых остатков, а следовательно, и точное сведение теплового баланса.  [c.244]

В гл. 2 излагалось, каким образом на основе ряда реперных точек и определенных методов интерполяции между ними возникла Международная практическая температурная шкала (МПТШ). Реперными точками первой МПТШ являлись точки кипения кислорода, воды и серы, точки затвердевания воды, серебра и золота. В современной редакции шкалы добавлены точки кипения водорода и неона, тройные точки водорода, неона, аргона, кислорода и воды, точки затвердевания олова и цинка в свою очередь точка кипения серы исключена. В последние годы тройные точки и точки затвердевания считаются более предпочтительными по сравнению с точками кипения по простой причине они могут быть реализованы без необходимости измерять давление. Продолжающийся рост требований к увеличению точности реализации точек кипения приводит к необходимости более точных измерений давления, что сопряжено с очень большими трудностями. Например, для реализации точки кипения воды с воспроизводимостью по температуре 0,1 мК необходимо измерение давления с погрешностью 0,3 Па в свою очередь в точке кипения серы изменения давления 0,3 Па приводят к изменениям температуры на 0,2 мК- Необходимость в расширении МПТШ ниже 13,81 К, т. е. в область, где тройных точек не существует, привело к разработке реперных точек, основанных на фазовых переходах в твердом теле. Наиболее важным шагом в этом направлении явилось принятие в качестве реперных точек нижней части ПШТ-76 температур сверхпроводящих. переходов.  [c.138]


При содержании в каучуке серы 25% выше после вулканизации получается неэластичный твердый материал с удлинением 1 5%, который называется эбонитом. Этот материал в настоящее время применяется мало, т. к. из приборостроения, где он употреблялся ранее в большом количестве как электроизоляционный, кон- структивный и декоративный, в связи с малой его нагревостойкостью (70 °С), вытеснен современньшш слоистыми более нагревостойкими, менее дефицитными и более качественными феноло-формальдегидными пластиками (гетинакс, текстолит, стеклотекстолит) и пресспорошковыми аминопластами. В каучук, кроме серы, обычно вводят ряд других материалов, придающих. резине определенные свойства  [c.76]

Если кислород, применяемый в избытке при рафинировании, не удаляют при окончательном раскислении, то образуются глобулярные включения оксидов. Они выделяются преимущественно на границах первичных кристаллов. Так как сталь всегда содержит определенное количество серы, оксидные включения (FeO) окружены каймой эвтектики (FeO + FeS). Эти оксидосульфиды образуют часто с железом тройную эвтектику с низкой температурой плавления, которая вызывает красноломкость. Добавка ферромарганца приводит к образованию твердого раствора FeO — МпО, который по внешнему виду и распределению подобен включениям FeO. Точка плавления эвтектических включений повышается и благодаря этому устраняется опасность красноломкости.  [c.178]

В каталитических конвертерах, используемых сегодня, применяется довольно дорогостоящий металл — платина [3]. Однако это является не единственной причиной, которая затрудняет применение катализаторов. Катализатор становится эффективным, лишь будучи нагретым выше некоторой минимальной температуры. Соответственно во время прогрева двигателя через выхлопную систему загрязняющие вещества выбрасываются в атмосферу в повышенных дозах. С другой стороны, если температура становится слишком высокой, площадь контактной поверхности гранул опорного материала начинает уменьшаться за счет структурных изменений. Поры могут также забиваться твердыми частицами, присутствующими в выхлопных газах — в особенности соединениями сппниа. Именно поэтому так важно удаление свиица из бензина. Ранее появлялись определенные опасения, что в каталитическом конвертере будут интенсифицироваться процессы фиксации кислотных соединений серы, однако позже эти опасения не подтвердились.  [c.66]

Радмахер В. и Говерат А. Упрощенные методы определения углерода, водорода и серы в твердых и жидких топливах. ГосИНТИ, 1961.  [c.208]

Для определения коэффициента р использовались кольда диаметром 50 мм и высотой 8 мм из цементованной закаленной стали 40, имеющей среднюю микротвердость Яц=6200 МПа. Кольца укреплялись на специальной оправке (каждой серии опытов соответствовало отдельное кольцо). ЭМО производилась без продольной подачи инструмента — пластины из твердого сплава Т15К6 с шириной контакта 0,8 мм. Для различных скоростей обработки режим подбирался таким образом, что каждый участок обрабатываемой поверхности подвергался шестикратному высокотемпературному воздействию. Значения В и б определялись по шлифам поперечных изломов колец. За минимальную температуру фазового превращения стали принималась температура 900°С. Коэффициент ц определялся при следующих режимах ЭМО у=6,9... 17,3 м/мин /=370...540 А Р=380... 1120 Н.  [c.11]

Явление нелинейной резонансной вибрационной устойчивости и перемешивания многофазных сред в слабых и сильных гравитационных полях. В качестве модели рассмотрим многофазную среду жидкость—пузырьки—твердые частицы, помещенную в цилиндрический бак, при вертикальных вибрационных воздействиях. Исследование, проведенное с помощью нэтоженной выше методики, а также серия целенаправленных экспериментов [5, 10, 13] позволили выявить устойчивый режим дви- кения, при котором часть пузырьков локализуется в определенной области течения, образуя газовое скопление, а другие мелкодисперсные элементы совершают чрезвычайно интенсивное периодическое движение, способствующее быстрому перемешиванию среды. Механизм этого явления раскрыт в работах [5, 10, 13], в которых показано, что оно обусловлено возникновением в среде перемещающихся вследствие изменения динамических характеристик системы областей устойчивого и неустойчивого равновесия мелкодисперсных элементов среды. Это явление в земных условиях неразрывно связано с резонансными колебаниями вибрационно-стабилизированных внутри среды локальных газовых скоплений, а в условиях ослабленной гравитации оно может осуществляться с резонансными колебаниями и разрушением свободной поверхности объема, занятого многофазной средой  [c.113]

ЧУГУН отбеленный — чугунные отливки зонального строения, поверхностный слой к-рых на определенную (заданную технич. условиями) глубину представляет собой белый чугун или чугун половинчатый, а сердцевина — чугун серый поверхностный слой и сердцевина соединены переходным слоем (цементит + графит). Различают отливки из Ч. о. твердые, в поверхностном слое к-рых практически весь углерод находится в связанном состоянии в форме карбидов, образуя белый чугун полутвердые, в поверхностном слое к-рых углерод частично находится в форме графита, а частично в форме карбидов, образуя половинчатый чугун.  [c.450]

Спринг предполагал, что состояние тела в отношении твердости скорее определяется окружающим давлением, чем внутренними свойствами твердого тела. В заключение статьи он описывает свое исследование подвижности серы, находящейся под давлением, и обращает внимание на общую важность этого исследования для гео-погии и минералогии. На основании своих замечательных результатов Спринг заключает, что образование из порошка под давлением твердого тела, так же как и разрыв при растяжении, является фундаментальным свойством твердых тел и что эти явления в определенном смысле противоположны друг другу.  [c.75]

Неоднородности структуры металла в определенных условиях являются причиной его коррозии. Так, например, наличие неметаллических включений графита в серых чугунах вызывает структурно-избирательную коррозию. последних в кислых электролитах. При этом разрушается металлическая основа чугуна — феррит — и сохраняется углеродный скелет. Неравномерность концентраций твердого раствора в алюмоцинковом сплаве усиливает его коррозию, по сравнению с другими алюминиевыми сплавами. Наличие разнородных атомов (Zn и Си) в твердом растворе, вызывает компонентно-  [c.12]

При определении расхода окислителя (кислорода, воздуха) учитывают, что для твердого и жидкого топлив, состав рабочей массы которых задается в процентах, горючими составляющими являются углерод, водород и сера Ср- -+НР+5Рр +ОР+КР+АР+ = 100.  [c.20]

Такие данные получены [99, 165] при исследовании твердых растворов (о -Ре ) — Р — С, выплавленных (и разлитых) в вакууме на основе карбонильного, рафинированного в водороде, железа КР чистотой не менее 99,95 % Разная концентрация фосфора в растворе (0,008 0,005 и 0,075 % Р) задавалась при выплавке, а углерода - достигалась науглероживанием в атмосфере гептана или метана. После рекристаллиза-ционного отжига 825°С. 1 ч, образцы диаметром 0,5—0,8 мм с 0,008 %Р охлаждали за 4—6 мин с печью до более низких температур, отжигали при каждой температуре 2 ч для установления равновесного распределения примесей между объемом и границами зерен и фиксировали по лученное распределение примесей закалкой образцов в воде. Термическую обработку проводили с соблюдением специальных мер предосторожности по сохранению неизменнь1м Химического состава тонких образцов (особенно по С) в атмосфере очищенного и осушенного водорода. Науглероживание образцов сплава [=е + 0,008 % Р проводили в установке для термической обработки в течение 90 с в смеси сухого водорода с гептаном при бОО С. Затем для выравнивания возможных неоднородностей распределения углерода по сечению образцов проводили отжиг при 700°С, 1 ч. В серии опытов, проведенных со сплавами Ре + 0,005 % Р и Ре + 0,075 % Р, в которых содержание углерода систематически варьировали, отжиг образцов проводили в атмосфере Нг + + СН4. В этом случае вместо пропускания над сосудов с гептаном, водород перед входом в печь с образцами пропускали через дополнительную печь, заполненную активированным углем. Парциальное давление СН4 в смеси Нг + СН4, определяющее содержание С в Ре, варьировали изменением температуры печи с углем, что позволило "плавно" изме пять содержание углерода в широких пределах. Содержание углерода [С] в а-твердом растворе железа определяли по высоте углеродного пика внутреннего трения (пик Снука), пользуясь известным соотношением для поликристаллического а-железа 1,3 [С]. Для определения температурной зависимости предельной растворимости углерода в а-железе с 0,0СШ % Р отжигом в смеси водород — гептан науглеро-ДИЛИ этот сплав до насыщения в равновесии с карбидной фазой при температуре 720 С соответствующей максимальной растворимости углерода, о достижении которой судили по нась1щению зависимости длительности науглероживания вьюота пика Снука после закалки от 720°С. Обезуглероживания сплавов достигали длительными отжигами в сухом водороде. Контрольные опыты показали, что для достижения  [c.124]


Объем двуокиси углерода (Veo, ) и сернистого ангидрида (VgOj) при сжигании 1 кг твердого и жидкого топлива в теоретических условиях может быть определен из табл. 3-2. Сопоставляя реакции горения углерода и серы, видим, что левые части их С+О2 и S + O2 выражаются одинаково и имеют вид R- -02= ==R02. Это позволяет упростить расчеты путем замещения серы эквивалентным количеством углерода  [c.40]

В табл. 4 приведены основные дефекты структуры стали. Ряд методов определения качества структуры стандартизован. Метод определения величины зерна стали (ГОСТ 5639-51). Методы определения неметаллических включений в стали (ГОСТ 1778-62). Эталоны микроструктуры стали (ГОСТ 8233-56 и ГОСТ 5640-59). Метод определения глубины обезуглероживания стальных полуфабрикатов и деталей микроанализом (ГОСТ 1763-42). Метод определения окалиностой-кости стали (ГОСТ 6130-52). Метод испытания стали на чувствительность к механическому старению (ГОСТ 7268-54). Методы испытания на межкристаллитную коррозию аустенитных и аустенитно-ферритных нержавеющих сталей (ГОСТ 6032-58). Методы определения микроструктуры твердых металлокерамических сплавов (ГОСТ 9391-60) и макроструктуры стали (ГОСТ 10243-62). Методы определения структуры серого и высокопрочного чугуна (ГОСТ 3443-57).  [c.8]

Рудный процесс (основной). Этим способом выплавляется большая часть В1сей производимой стали. В начале процесса в нагретую печь забрасывают обожженный доломит для наварки пода и откосов. Затем при помощи загрузочных (завалочных) машин загружают в определенной последовательности твердые шихтовые материалы, а также известь для ошлакования фосфора и серы. После разогрева твердых материалов заливают жидкий чугун. Заливка жидкого чугуна, как и завалка твердой шихты, механизирована. В ходе процесса поверхность расплавленного металла начинает окисляться кислородом печных газов и постепенно покрывается слоем шлака. Образующаяся закись железа РеО растворяется в ванне металла и вступает в реакцию с примесями шихты  [c.23]

Вулканизирующими добавками при производстве резины являются сера, металлический натрий и другие элементы. Каучуки, взаимодействуя с вулканизирующим веществом при определенной температуре, претерпевают внутренние химические превращения, в результате которых образуется новый продукт — резина. Изменяя количество серы в смеси, можно получить резину с различной степенью эластичности. Так, при добавке 2—8% 5 получают мягкую резину, при 12—20% 5 — полутвердую резину и при 25— 50% 5 — твердую резину (эбонит).  [c.688]

Для системы характерно наличие непрерывной серии твердых растворов. Шенк, Фроберг и Нуннингофф [1], изучавшие систему, пользовались вакуумной печью с графитовым нагревателем, описанной Шенком и Пфаффом [2]. Определение температуры солидуса производилось с помош,ью высокотемпературного микроскопа. Применяемая печь позволяла доводить нагревание только  [c.145]


Смотреть страницы где упоминается термин Твердые серое (определение) : [c.495]    [c.277]    [c.24]    [c.181]    [c.385]    [c.11]    [c.159]    [c.146]    [c.177]    [c.282]    [c.361]    [c.459]    [c.491]    [c.51]   
Метрология, специальные общетехнические вопросы Кн 1 (1962) -- [ c.250 ]



ПОИСК



1— Определение Серии

Определение твёрдые -



© 2025 Mash-xxl.info Реклама на сайте