Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кипения точка водорода

Вскоре после того как таблица ККТ-64 была рассчитана, рабочая группа ККТ предложила в 966 г. новую предварительную шкалу, где были учтены новые результаты измерений температуры кипения кислорода и тройной точки водорода, выполненные газовым термометром [34]. Эти рекомендованные значения реперных точек также приведены в табл. 2.3.  [c.52]

Точка кипения равновесного водорода при давлении 33330,6 Па (25/76 атм) )  [c.438]


Точка кипения равновесного водорода  [c.438]

Константы /4], Si, i и Di определяют из значений AW(Tns), измеренных в тройной точке равновесного водорода, при температуре 17,042 К и точке кипения равновесного водорода, а также из значения d AW)ldT s в точке кипения равновесного водорода, вычисленной по уравнению (8.3)  [c.173]

Точка кипения равновесного водорода при 17,042 —256,108  [c.74]

Рассматривается также возможность использования явления снижения электрического сопротивления проводника по мере уменьшения его температуры с помощью искусственного охлаждения. Это явление ие связано со сверхпроводимостью, описанной выше. Оно просто объясняется тем, что с понижением температуры металла электрически заряженные частицы реже сталкиваются с атомами кристаллической решетки, поскольку чем ниже температура, тем меньше амплитуда колебательных движений атомов. Изменение сопротивления может быть очень резким, как видно из рис. 9.8, где представлена кривая зависимости сопротивления чистого алюминия от температуры. Стрелками обозначены точки кипения гелия, водорода и азота. При температуре около 40 К и ниже сопротивление сильно зависит от наличия примесей и может быть на порядок больше, чем показано.  [c.236]

Для проведения испытаний ударной вязкости при низких температурах применяют копры двух типов. К первому, наиболее распространенному, относят копры обычного типа, у которых система нагружения вынесена за пределы холодильной камеры. Второй тип копра представляет собой специальную установку с размещением системы нагружения внутри холодильной камеры. Испытания при температуре до 20 К проводят на обычных копрах, а для испытаний при 4 К применяют специальные. При использовании обычных стандартных копров необходимо обеспечить минимальную продолжительность от момента извлечения образца из термокамеры до проведения опыта, а также поддержание постоянства температуры образца в течение этого времени. Для сохранения температуры образца его обматывают ватой, тонкой бумагой или поролоном. Для испытаний при температуре кипения жидкого водорода образец должен быть помещен в бумажный контейнер, в верхней части которого предусмотрена прорезь для заполнения его жидким хладагентом (рис. 2.38).  [c.60]


Равновесие между жидкой и парообразной фазами равновесного водорода (точка кипения равновесного водорода) " 20,28 —252.87  [c.26]

Точка кипения равновесного водорода 20,28 —252,87 0,004 485 17  [c.30]

Равновесие между твердой, жидкой и парообразной фазами нормального водорода (тройная точка нормального водорода) Равновесие между жидкой и парообразной фазами нормального водорода (точка кипения нормального водорода)  [c.35]

Точка кипения равновесного водорода 20,28 К 0,01 к  [c.52]

Для прецизионной термометрии наибольший интерес представляют низкотемпературные точки кипения или тройные точки таких газов, как гелий, водород, неон, кислород, аргон и метан. Основные принципы реализации любой из этих точек являются общими для всех. Они будут изложены в процессе описания аппаратуры и методики работы с ней при реализации тройной точки и точки кипения водорода. При этом будут отмечены специфические особенности работы с другими газами. Измерение давления паров Не и Не занимает особое место, поскольку обеспечивает воспроизведение принятых международных температурных шкал. Эти шкалы и их реализация обсуждались в гл. 2.  [c.152]

Тройная точка и точка кипения водорода  [c.152]

Таблица 4.3. Точки кипения и тройные точки нормального и равновесного водорода Таблица 4.3. <a href="/info/3834">Точки кипения</a> и <a href="/info/18391">тройные точки</a> нормального и равновесного водорода
Необходимость выполнять измерение давления увеличивает сложность аппаратуры для реализации точки кипения по сравнению с аппаратурой для тройных точек. В процессе измерения давления качество регулирования температуры должно быть предельно высоким. С этой целью применяется относительно массивный медный блок, в котором размещены термометры и конденсационная камера. С другой стороны, реализация тройной точки основывается на ее собственной температурной стабильности в процессе плавления и, следовательно, относительно легком адиабатическом калориметре. Наклон кривой температурной зависимости давления насыщенных паров водорода возрастает от 13 Па мК при 17 К до 30 Па-мК- при 20,28 К- Поэтому для строгого определения точки 17 К измерению давления должно быть уделено больше внимания. Криостат должен быть сконструирован так, чтобы самая его холодная точка находилась в конденсационной камере и ни в коем случае не на манометрической трубке, связывающей камеру с манометром. Необходимо также введение поправки, обусловленной гидростатическим давлением газа в системе измерения давления. Она пропорциональна плотности газа и, следовательно, обратно пропорциональна температуре [см. уравнения (3,30) и (3.31) гл. 3,  [c.158]

Неопределенность состава, связанная с наличием различных изотопов и примесей, вызывает необходимость использовать точки кипения (исчезающе малая доля пара) для водорода и неона и точку росы (исчезающе малая доля жидкости) для кислорода (см. разд. III).  [c.414]

Термодинамические температуры всех реперных точек МПТШ-68 были получены только на основе газовой термометрии. Единственное исключение составляло значение точки кипения равновесного водорода е-Нг, выбранное с учетом измерений в НБЭ с акустическим термометром. Последние данные о численных значениях термодинамических температур выше 13,81 К также в основном опираются на измерения с газовым термометром, хотя и существуют довольно точные акустические данные вплоть до 20 К, а также сведения об отношениях температур, найденных оптическим и шумовым методами выше 630 °С, и результаты измерения полного излучения между 327 и 365 К- Различные уточнения были получены методом магнитной термометрии вплоть до 90 К, однако, как будет показано в гл. 3, магнитная термометрия не является первичной и не может существовать независимо.  [c.61]


В гл. 2 излагалось, каким образом на основе ряда реперных точек и определенных методов интерполяции между ними возникла Международная практическая температурная шкала (МПТШ). Реперными точками первой МПТШ являлись точки кипения кислорода, воды и серы, точки затвердевания воды, серебра и золота. В современной редакции шкалы добавлены точки кипения водорода и неона, тройные точки водорода, неона, аргона, кислорода и воды, точки затвердевания олова и цинка в свою очередь точка кипения серы исключена. В последние годы тройные точки и точки затвердевания считаются более предпочтительными по сравнению с точками кипения по простой причине они могут быть реализованы без необходимости измерять давление. Продолжающийся рост требований к увеличению точности реализации точек кипения приводит к необходимости более точных измерений давления, что сопряжено с очень большими трудностями. Например, для реализации точки кипения воды с воспроизводимостью по температуре 0,1 мК необходимо измерение давления с погрешностью 0,3 Па в свою очередь в точке кипения серы изменения давления 0,3 Па приводят к изменениям температуры на 0,2 мК- Необходимость в расширении МПТШ ниже 13,81 К, т. е. в область, где тройных точек не существует, привело к разработке реперных точек, основанных на фазовых переходах в твердом теле. Наиболее важным шагом в этом направлении явилось принятие в качестве реперных точек нижней части ПШТ-76 температур сверхпроводящих. переходов.  [c.138]

Де-Хааз и ван-ден-Берг в Лейдене начали примерно с 1933 г. проводить ряд тщательных и подробных измерений электрического сопротивления металлов в области ииже 20° К. В результате более ранних измерений, проведенных в Лейдене, и многочисленных измерений Мейснера и Фойгта [52] было определено сопротивление многих металлов в точках кипения кислорода (- 90° К) и азота ( 78° К), в точке кипения и в тройной точке водорода ( 20 и 14° К) и при гелиевых температурах (от 4 до 1,5° К). Промежуточные же области температур остались пепсследованными. Между тем, как будет подробнее указано в разделе 3 этой гланы, наиболее интересные данные для сравнения с теорией и для выяснения природы рассеяния электронов могут быть получены именно в интервале от 30 до 4° К.  [c.170]

Константы Л2, Вг, С2 и D2 определяют из значений AW T s), измеренных в точке кипения равновесного водорода, точке кипения неона и тройной точке кислорода, а также из значения d(AW)ldTsa в тройной точке кислорода, вычисленной из уравнения (8.4)  [c.173]

Реализация тройной точки равновесного водорода. Водород имеет две молекулярные модификации, обозначаемые приставками орто и пара Равновесная орто- и параконцентрация зависит от температуры и при комнатной температуре соответствует примерно 75 % ортоводорода и 25 % параводорода (нормальный водород). После сжижения это соотношение медленно изменяется с течением времени соответствующие изменения происходят и в физических свойствах водорода. В точке кипения равновесная концентрация соответствует 0,21 % орто- и 99,79 % параводорода. Температура кипения равновесного водорода ниже температуры кипения нормального водорода примерно на 0,12 К. Наименование равновесный водород означает, что водород имеет свою равновесную орто- и параконцентрацию при данной температуре. Чтобы избежать погрешностей при реализации реперных точек водорода, вызываемых неопределенным орто- и парасоставом, рекомендуется использовать равновесный водород, конвертированный с помощью катализатора, например, активированной гидроокиси железа, с целью сохранения постоянной равновесной концентрации о-дорода.  [c.34]

НБС-39 была разработана Хогом и Брикведде в 1939 г. и принята Национальным бюро стандартов (NBS) в США. Точка кипения кислорода была принята равной 90,19 К, тройной точке водорода соответствовало значение 13,96 К, а тем-ре кипения норм, водорода — 20,39 К. В 1955 г. шкала НБС-39 была пересмотрена. При этом тем-ра кипения кислорода оказалась равной 90,18 К. Шкала при этом стала называться НБС-55.  [c.347]

Недавно проведенный анализ результатов, полученных во время указанных опытов, показал, что при всех температурах отношение (Дт—ЯттЖ Ог—- п) ДЛЯ различныхтермометров сохраняет почти неизменное значение. Величина / ог означает сопротивление в точке кипения кислорода, —сопротивление при какой-либо более низкой температуре эталонирования, а Дт—сопротивление при любой промежуточной температуре. Например, если взять значение 7-1 в тройной точке кислорода (54,36° К), то оказалось, что почти для всех термометров приведенное выше отношение сохраняет одно и то же значение с точностью до нескольких тысячных долей градуса при любой температуре в интервале 54,36—90,19 К. Если сопротивление Ят отнести к точке кипения равновесного водорода (20,273 К),тодля всех термометров, у которых отношение юо/- о превышает 1,3920, получается аналогичный предыдущему результат. Значительно  [c.73]

Ввиду большой потребности в измерениях низких температур как в научных исследованиях, так и в технике, длительное время в ряде стран велись работы по установлению температурных шкал ниже 90 К. Исследования в этой области низких температур, выполненные в СССР и других странах, рассмотрены в монографии М. П. Орловой [13]. На базе этих работ в ряде стран были установлены национальные шкалы в области 13,8 —90 К. В СССР практическая температурная шкала в области от тройней точки водорода до точки кипения кислорода введенас 1/ УИ 1967 г. (ГОСТ 12442-66). Для реализации практических температурных шткал, воспроизводящих единицу температуры в интервалах от 1,5 до 4,2 К и от 4,2 до 13,81 К, вс ВНИИФТРИ были созданы [13], а Госстандартом С(ХР утверждены Государственные специальные эталоны единиц температуры для диапазонов от 1,5 до 4,2 К и от 4,2 до 13,81 К (ГОСТ 8.078-73 и ГОСТ 8.084-73). В настоящее время в применяемых в СССР практических температурных шкалах область низких температур расширена до 0,01 К (см. 2-2).  [c.61]


Жядкнй и парообразный равновесный водород (точка кипения равновесного водорода) 20,28 —252,87  [c.58]

Наибольшие трудности встречает сегодня выбор метода воспроизведения будущей МПТШ в интервале 13,8—24 К. Традиционная схема с платиновым термометром, градуированным в реперных точках, неизбежно потребует применения точек по температурам кипения водорода со всеми их недостатками, поскольку здесь просто не существует тройных точек в числе, достаточном для точного вычисления поправочной функции. Отметим, что пока не удалось получить удовлетворительных результатов для тройной точки дейтерия вблизи 18 К. Это связано, по-видимому, с недостаточной изученностью процессов орто-пара конверсии. К этому добавляются характерные для измерений с платиновым термометром в этом интервале температур проблемы их стабильности. Преимущество традиционного метода состоит в возможности перекрыть большой интервал температур единственным и очень широко применяемым прибором, каким является платиновый термометр сопротивления.  [c.7]

В 1889 г. 1-я ГКМВ утвердила принятую МКМВ в 1887 г. шкалу водородного газового термометра постоянного объема, основанную на реперных точках плавления льда (О °С) и кипения воды (100 °С) и получившую название нормальной водородной шкалы в качестве международной практической шкалы. В описании шкалы указывалось начальное давление заполнения (1 м рт. ст. при о °С) и никаких поправок на отклонение свойств водорода от идеального газа не вводилось. По этой. причине шкала была названа практической . Она, очевидно, и не была термодинамической, поскольку наблюдалась зависимость результатов измерений от свойств рабочего газа. В гл. 3 будет подробно рассмотрено, каким образом отклонения от свойств идеального газа учитываются в газовой термометрии. Здесь же следует подчеркнуть, что для газового термометра постоянного объема, калиброванного в двух точках и примененного для интерполяции между ними, как это сделал Шаппюи, погрешности, вызванные неидеальностью газа, скажутся лишь в меру изменения самой неидеальности между реперными точками. Для водорода эти изменения от О до 100 °С неве-  [c.39]

Уже в период утверждения МПТШ-48 начали выдвигаться новые предложения, которые привели позже к появлению МПТШ-68. В 1948 г. НБЭ внесло предложение в ККТ [17] продолжить Международную практическую шкалу вниз до точки кипения водорода ( 20 К), использовав эту точку в качестве новой реперной и применив для интерполяции так называемую 7-функцию  [c.50]

Результаты международного сличения [45],показанные на рис. 2.3, послужили основой низкотемпературной части МПТШ-68. Усредненная таблица W T) как функции от Т была рассчитана после пересчета каждой из четырех шкал к значению точки кипения кислорода 90,170 К и точки кипения водорода 20,267 К. Усредненные значения 117(7 ) были обработаны полиномом вида  [c.51]

Неравновесные смеси орто- и параводорода имеют температуры тройных точек и точек кипения в промежутках между значениями, указанными в табл. 4.3. В связи с этим состав водорода, использующегося для реализации температуры репернож точки, должен быть определен. Поскольку орто—пара конверсия направлена к состоянию с более низкой энергией, переход, от высокотемпературного к низкотемпературному равновесному состоянию сопровождается выделением тепла, составляющим около 1300 Дж-моль при 20 К. Выделяющееся при конверсии тепло приводит к тому, что водород, залитый в сосуд Дьюара сразу после ожижения, испаряется при хранении более чем наполовину. Именно поэтому желательно включить катализатор конверсии между ожижителем и сосудом для хранения водо-  [c.153]

Влияние примесей на точку плавления и на давление паро было изучено и оказалось небольшим. Частично это связано с тем, что немногие из часто встречающихся примесей попадаюг в камеру с образцом. Например газы, имеющие точки кипения выще азотных температур, конденсируются в области, далекой от области жидкого водорода. Наиболее вероятные примеси —  [c.155]

Влияние примесей на точку кипения неона также невелико. Гелий легко удаляется из образца при его замораживании и откачке, хотя примеси водорода при этом остаются. Присутствие 2-10 % водорода понижает точку кипения на 0,1 мК-Извлечь водород из неона непросто, однако Энксин [5] показал, что в его криостате, где имеется большой объем с парами, отделенный от конденсационной камеры узкой трубкой, водород быстро откачивается, оставляя чистой поверхность жидкость— пар неона. Присутствия азота и других нелетучих газов в неоне относительно легко избежать, поддерживая при конденсировании неона в камеру входную трубку достаточно холодной для вымораживания на ней примесей.  [c.161]

Для ожижения гелия жидкий водород является единственным подходящим хладоагентом. Нормальная температура кипения водорода 20,4° К, тройная точка 14° К. Однако вследствие недостаточного теплового контакта между твердым водородом и окружающими стенками теплопередача при псиользовании твердого водорода очень низка, и поэтому, кроме особых случаев, описанных ниже, водородное охлаждение до температур ниже тройной точки не применяется.  [c.129]


Смотреть страницы где упоминается термин Кипения точка водорода : [c.416]    [c.296]    [c.27]    [c.27]    [c.198]    [c.292]    [c.75]    [c.743]    [c.8]    [c.50]    [c.153]    [c.75]   
Температура (1985) -- [ c.157 ]



ПОИСК



Водород

Водород, конверсия точка кипения

Кипение

Кипения точка



© 2025 Mash-xxl.info Реклама на сайте