Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптика (определение)

Для анализа дифракционных эффектов необходимо учесть области нелинейного кристалла, волны от которых интерферируют не в фазе. Очевидно, достаточно ограничиться теми областями, для которых разброс фазы не превышает л. Последнее существенно упрощает задачу и позволяет в ряде случаев распространить установленную в приближении геометрической оптики аналогию с линейными системами на дифракционную теорию. Таким образом, задачи о пространственном распределении преобразованного излучения сводятся к рассмотренным в линейной оптике. Определение размеров почти когерентно (фаза колеблется в пределах л) излучающей области и дает возможность вычислить коэффициент преобразования по мощности (эффективность преобразования).  [c.98]


Кристаллы НБН при комнатной температуре являются двуосными и оптически отрицательными, т. е. Пе — По< < 0. Оптические оси лежат в плоскости (ас), а величина угла 2F между оптическими осями составляет 13° [19, 39]. Вычисление угла 2V при использовании экспериментальных значений показателей преломления дает 14° 14. Показатели преломления при 30 °С и длинах волн, используемых в электрооптике и нелинейной оптике, определенные в работе [1], приводятся в табл. 5.2. Вследствие  [c.189]

Определенные интегралы, приближенное вычисление 506 Определитель 475 Оптика (определение) 322  [c.776]

Определенный интерес представляет вихревой холодильник, серийно выпускавшийся на Азовском оптико-механическом заводе [269] (рис. 5.33), предназначенный для термостатирования с  [c.268]

Ультразвуковые волны обладают способностью проникать в глубь материала, что используется при обнаружении весьма малых внутренних дефектов. Распространение ультразвуковых волн подчиняется законам геометрической оптики. Упругая волна в направлении распространения несет определенную энергию, и по мере удаления от излучателя интенсивность волн, т. е. количество энергии, переносимое волной за 1 с сквозь поверхность площадью 1 м , падает, а амплитуда колебаний частиц убывает.  [c.193]

Как известно из математики, любую функцию, удовлетворяющую определенным условиям , можно разложить в зависимости от характера изменения либо в интеграл (если функция непериодическая), либо в ряд Фурье (если функция периодическая). Выбор вида членов разложения имеет важное значение для оптики. Дело в том, что, как известно, в недиспергирующей среде все монохроматические волны независимо от частоты распространяются с одинаковой фазовой скоростью и поэтому, как мы уже отметили,  [c.41]

Дальнейший прогноз свойств связан с использованием итерационного метода, отражающего связь между параметрами предыдущего события и последующего. Отличие синергетического метода анализа механических свойств от методов сплошной среды связано с учетом деградации сплошной среды в связи с ее эволюцией от сплошной в дискретную (фрактальную). Развиваемый новый подход к анализу механического поведения твердых тел базируется на представлениях В.И. Вернадского о единстве природы. Однако на пути познания сложного потребовалось искусственное выделение из объектов и явлений природы определенных качеств и свойств и отнесение их к различным областям. К примеру, изучение свойства воды быть мокрой, т.е. способной смачивать другие объекты, он отнес к области физики поверхностных явлений. Свойство воды быть прозрачной было отнесено к оптике. Вопрос, из чего состоит вода и какова ее структура, стал изучаться различными разделами химии.  [c.234]


Рассмотрение формул Френеля показывает, что компоненты (Ei)n и ( i)j по-разному изменяются с увеличением угла ф1. Во-первых, сразу видно, что если щ + ц>2 я/2, то tg (ф1 f фа) -> > и, следовательно, ц =0. Вместе с тем коэффициент отражения не обращается в нуль при + Ф2 = ti/2, так как знаменатель выражения (2.11) з1п(ф1 + фз) 1. Таким образом, получается, что при некотором значении угла падения от границы раздела отразится только электромагнитная волна с вполне определенной поляризацией. Волна, в которой колебания вектора Е параллельны плоскости падения, вообще не отразится при (ф1 + фг) = п/2. Вектор Е в отраженной волне (при фх + ф2 = тт/2) будет колебаться перпендикулярно плоскости падения. В учебниках по оптике часто употребляют несколько иную терминологию. Так, например, в данном случае говорят, что отраженный свет поляризован в плоскости падения. Отсюда видно, что плоскость поляризации света соответствует плоскости, перпендикулярной направлению колебаний вектора Е.  [c.85]

Следует заметить, что до сих пор рассуждения о связи волновой и геометрической оптики имели качественный характер. Покажем, что, используя введенные выше оценки, основанные на применении принципа Гюйгенса-Френеля, можно подойти к решению поставленной задачи с большей определенностью.  [c.268]

Если к велико, то при достаточно малых р также D (Л и р — О. Это значит, что при малых расстояниях реализуются условия геометрической оптики, а по мере увеличения р надо все в большей степени учитывать явления дифракции. Определение величины р = - pX/D позволяет сформулировать количественный критерий того, в какой степени эти эффекты должны проявиться  [c.269]

Принцип Гюйгенса—Френеля позволил получить ряд существенных результатов и определить критерии выбора правильного описания явления, т.е. условия перехода от волновой оптики к геометрической. Изложенный геометрический метод определения результирующей амплитуды прост и удобен при решении различных задач, тогда как аналитическое решение для сферических волн оказывается весьма громоздким. Математическая задача решается проще для случая плоских волн. Поэтому имеет смысл рассмотреть другой способ наблюдения дифракции, при описании которого можно использовать приближение плоских волн.  [c.281]

Примеры подобного рода, а также неудачные попытки обнаружить какое-либо движение Земли относительно светоносной среды приводят к предположению, что не только в механике, но и в электродинамике никакие свойства явлений не соответствуют понятию абсолютного покоя. Более того, они свидетельствуют о том, что для всех систем координат, в которых выполняются уравнения механики, должны быть справедливы те же самые законы электродинамики и оптики, как это уже было доказано для величин первого порядка малости ). Эту гипотезу (содержание которой мы будем ниже называть принципом относительности ) мы намерены превратить в постулат и введем также другой постулат, который только кажется не согласующимся с первым, а именно, что в пустоте свет всегда распространяется с определенной скоростью с, не зависящей от состояния движения излучающего тела. Этих двух постулатов достаточно для того, чтобы, положив в основу теорию Максвелла для неподвижных тел, построить свободную от противоречий электродинамику движущихся тел. Будет доказано, что введение светоносного эфира излишне, поскольку в предлагаемой теории не вводится наделенное особыми свойствами абсолютно неподвижное пространство , а также ни одной точке пустого пространства, где происходят электромагнитные явления, не приписывается вектор скорости.  [c.372]

Природа едина. Свойство человеческого сознания таково, что оно не в силах охватить всего природного многообразия, всех ее граней. Поэтому человек в своем изучении искусственно выделил из объектов и явлений природы определенные качества и свойства и отнес их к различным областям, К примеру, из чение свойства воды быть мокрой, т.е, способной смачивать другие объекты, он отнес к области физики поверхностных явлений. Свойство воды быть прозрачной было отнесено к оптике. Вопрос, из чего состоит вода и какова ее структура, стал изучаться различными разделами химии. Такой дифференциальный подход, несомненно, был наиболее верным на определенном этапе развития науки. С его помощью удалось получить огромное количество сведений и понять сущность многих явлений. Однако, его недостатком стала чрезвычайная дифференциация научных интересов. Ученые, работающие над одной и той же проблемой в соседних лабораториях, не всегда могу - прийти к соглашению даже по вопросу терминологии.  [c.9]


Таким образом, в диспергирующих средах, к числу которых принадлежат все среды (кроме вакуума), только бесконечная синусоидальная (монохроматическая) волна распространяется без искажения и с определенной скоростью. В этом кроется причина исключительного значения, которое имеет для оптики разложение Фурье в отличие от иных математически возможных разложений.  [c.33]

К измерению величин, так или иначе связанных с этой энергетической характеристикой. Прежде всего необходимо дать определения тем величинам, которые фигурируют в измерительной практике. Их выбор обусловлен особенностями приемных аппаратов, непосредственно реагирующих на ту или иную из этих величин, а также возможностью осуществления эталонов для воспроизведения этих величин. При формулировке теоретических законов или практических выводов в разнообразных областях (теория излучения, светотехника, оптотехника, физиологическая оптика и т. д.) оказывается нередко удобным пользование то одними, то другими из введенных величин.  [c.43]

Все оценки способности рентгеновских лучей поглощаться и их жесткости очень затрудняются тем, что из трубки выходят очень неоднородные рентгеновские лучи, т. е. смесь лучей различной жесткости. Пропуская их через поглощающее вещество, мы задерживаем более мягкие лучи, получая таким образом более однородный пучок. Этот метод фильтрования довольно груб и не обеспечивает получения строго однородных монохроматических лучей. В настоящее время мы располагаем приемами монохроматизации, подобными применяемым в оптике обычных длин волн, т. е. методами, при использовании которых испускается почти монохроматическое рентгеновское излучение, подвергающееся дальнейшей монохроматизации при помощи дифракции. Таким образом получаются лучи, не уступающие по монохроматичности световым лучам, и для них коэффициент поглощения имеет совершенно определенный физический смысл. Для таких монохроматических лучей он зависит от плотности р поглощающего вещества и грубо приближенно может считаться пропорциональным плотности. Более точно поглощение определяется числом атомов поглощающего вещества на единице толщины слоя. При переходе же от одних атомов к другим поглощение быстро растет с увеличением атомного веса, правильнее, атомного номера Z, будучи пропорционально кубу атомного номера.  [c.406]

Подобным же образом строится и электродинамика (оптика) движущихся сред. Исходя из определенных физических предпосылок, подсказанных опытом, устанавливают систему электродинамических законов, приложимых к явлениям в движущихся средах, указав одновременно формулы преобразования, позволяющие переходить от одной инерциальной системы к другой. Сравнивая с опытом выводы полученной таким образом теории, мы имеем возможность контролировать правильность наших положений.  [c.443]

Все объекты по отражающим свойствам условно можно разделить на рассеивающие и не рассеивающие свет. Матовая металлическая поверхность и зеркало дают наглядное представление об этих объектах. Если зеркало отражает световые лучи в направлении, точно определенном законами геометрической оптики, то шероховатая поверхность не дает изображения. Мельчайшие неоднородности ее поверхности посылают отраженный свет во всех направлениях в пространстве.  [c.40]

Весьма интересна последняя фраза в этом высказывании. Для того чтобы происходило рассеяние корпускул друг на друге, необходимо допустить, что их масса не постоянна. На языке квантовой оптики это соответствует тому, что изменяется частота света. Такое явление действительно наблюдается при взаимодействии лазерных пучков в прозрачных средах, например в кристаллах, при определенных условиях. Оно относится к нелинейно-оптическим явлениям. При этом действительно происходит взаимодействие фотонов друг с другом (тогда как в вакууме или воздухе фотоны практически не взаимодействуют). Ну как же тут не вспомнить упоминавшееся ранее замечание Ломоносова о том, что в прозрачных твердых телах световые корпускулы обязательно должны взаимодействовать друг с другом  [c.23]

Путь, пройденный оптикой в исследовании природы света,— от световых корпускул Ньютона до световых квантов (фотонов) Эйнштейна — напоминает виток спирали. Оптика снова пришла к корпускулярной концепции, но, разумеется, уже на новом уровне. Фотоны принципиально отличаются от ньютоновских световых корпускул прежде всего тем, что отнюдь не исключают волновых представлений. Уже в свойствах отдельного фотона отражается диалектическое единство корпускулярной и волновой концепций. Что же касается фотонных коллективов, то при определенных условиях они особенно ярко проявляют волновые свойства, обнаруживаемые в явлениях интерференции и дифракции света. Забегая вперед, заметим, что интерференционная картина, как оказалось, может наблюдаться и тогда, когда фотоны проходят через интерферометр поодиночке. Понимание этого принципиального факта возможно лишь на основе представлений квантовой физики. На этих вопросах мы специально остановимся в ч. И. Пока же рассмотрим свойства фотона (некоторые из них уже отмечались ранее), а затем поговорим о свойствах фотонного коллектива или, иными словами, о поведении фотона в коллективе.  [c.78]

Приведены основные физические характеристики веществ, наиболее часто используемых в практике научных исследований и в технике. Представлены следующие разделы механика, термодинамика, кинетические явления, электричество и магнетизм, оптика и лазеры, ядерная физика, астрономия и геофизика. Все величины приведены в СИ. Таблицы и графики сопровождаются краткими пояснениями и определениями соответствующих величин.  [c.2]

Телеграфные уравнения для неоднородных линий (12.1.19) решены до конца только при определенных законах изменения параметров 1 х) и У (х), например для экспоненциальной линии и для линии, в которой X (х) и У (х) выражаются степенными функциями X. Если изменение параметров мало по сравнению с их средней величиной, задача может быть решена методом теории возмущений. Приближенное решение задачи о распространении волн в неоднородной линии можно также получить при медленном изменении параметров (методом геометрической оптики).  [c.375]


Описание имитационного эксперимента. Рассмотрим методику проведения имитационного эксперимента применительно к решению задачи вычисления коэффициентов Ф, -. Этот эксперимент начинается так же, как и в случае определения фу,, со случайного выбора точки на поверхности Sj и направления распространения порции излучения. Далее проводится анализ судьбы этой порции в процессе ее движения по системе. Результаты анализа фиксируются путем наращивания содержимых счетчиков попаданий поверхностей, которые в начале эксперимента обнулены. Сначала находится первая поверхность, на которую попадает порция, и содержимое счетчика этой поверхности увеличивается на единицу. На найденной первой поверхности порция может с вероятностью е поглотиться, с вероятностью г диффузно отразиться и с вероятностью зеркально отразиться. Для моделирования дальнейшего продвижения на ЭВМ разыгрывается случайный эксперимент, имеющий три исхода с вероятностями е, г , г . Если выпадает событие, имеющее вероятность появления е, то порция излучения считается поглотившейся на первой поверхности, ее история на этом заканчивается, а на поверхности Sj генерируется новая порция. При выпадении двух других событий в случае зеркального отражения направление распространения порции меняется по соответствующему закону геометрической оптики, а в случае диффузного отражения производится генерация значений полярного и азимутального углов для  [c.198]

Применение волоконной оптики позволяет создавать оригинальные конструкции, одну из которых рассмотрим на примере определения дефектов в лопастях винтов летательных  [c.94]

Для определения концентрации частиц измеряется ослабление света методами волоконной оптики [404, 766]. Для измерения скорости дискретной фазы разработан электростатический датчик потока массы, позволяющий измерять поток массы взвешенных частиц. Такие измерения выполнены [745] с помощью замкнутого контура с двухфазным рабочим телом в виде взвеси частиц из стекла и окиси магния размером от 35 до 50 мк при скорости потока 40 м1сек. Диаметр трубы 127 мм, масса воздуха 0,76 кг. Распределение частиц по размерам показано на фиг. 4.18.  [c.181]

Проблема получения когерентных пучков в оптике. Лазерное излучение обладает высокой когерентностью. Убедиться в этом можно, если проделать так называемый опыт Oнгa с лазерным излучением. Для этого пропустим пзлученпе лазера через два отверстия на выходном торце лазера и направим его на экран, расположенный на определенном расстоянии от источника. Как показывает опыт, на экране наблюдается четкая устойчивая во времени интерференционияя картина (рис. 4,8), что свидетельствует  [c.80]

Кроме диспергирующего элемента спектральный прибор должен содержать какую-то фокусирующую оптику, позволяющую создавать четкое изображение входной щели в свете исследуемой длины волны (спектральную линию). Полученный спектр фотографируется на фотопластинку или пленку. Этот прибор называют спектрографом. Излучение определенного интервгша волн можно вывести через выходную щель. Так работает монохроматор.  [c.67]

Существует ряд обстоятельств, позволяющих упростить эти соотношения в оптике кристаллов. Так, например, из выражения для электрической энергии единицы объема, которая, по определению, равна Wэл = ЕД/(8т1), можно при учете закона сохранения энергии получить симметричность составляющих тензора диэлектрической проницаемости (т. е. Ki/, = ejti). Нетрудно доказать, что для любого кристалла можно найти три главных направления, для которых если выбрать их за оси координат X, Y, Z) справедливы соотношения"  [c.124]

Именно эти работы следовало бы назвать предшествующими новому подходу к теории качественных переходов - синергетике. Они бьши не умо-зрительньг, а посвящались разработке конкретного аппарата, позволяющего работать с нелинейными системами и ус ганавливать наличие или отсутствие у них структур определенного сорта. И, что особенно важно, у основателя этого направления Л.И.Мандельштама было ясное понимание создаваемой им теории. Каковы те признаки, по которым выделяется учение о колебаниях Мы выделяем колебания не по ггризнаку физических явлений, которые мы одинаково воспринимаем, а по форме закономерностей... Каждая из областей физики - оптика, механика, акустика - говорят на своем национальном языке.  [c.342]

Я перенес главу, посвященную основным фотометрическим понятиям, во введение, желая использовать правильную терминологию уже при описании явлений интерференции и оставив в отделе лучевой оптики лишь вопросы, связанные с ролью оптических инструментов при преобразовании светового потока. Заново написаны многие страницы, посвященные интерференции, в изложении которой и во втором переработанном издании осталось много неудовлетворительного. Я постарался сгруппировать вопросы кристаллооптики в отделе VIII, хотя и не счел возможным полностью отказаться от изложения некоторых вопросов поляризации при двойном лучепреломлении в отделе VI, ибо основные фактические сведения по поляризации мне были необходимы при изложении вопросов прохождения света через границу двух сред, с которых мне казалось естественным начать ту часть курса, где проблема взаимодействия света и вещества начинает выдвигаться на первый план. Я переработал изложение астрономических методов определения скорости света и добавил некоторые новые сведения о последних лабораторных определениях этой величины. Гораздо больше внимания уделено аберрации света. Рассмотрены рефлекторы и менисковые системы Д. Д. Максутова. Значительным изменениям подверглось изложение вопроса о разрешающей способности микроскопа я постарался отчетливее представить проблему о самосветя-щихся и освещенных объектах. Точно так же значительно подробнее разъяснен вопрос о фазовой микроскопии, приобретший значительную актуальность за последние годы.  [c.11]

Из изложенного ясно, что устранение многочисленных аберраций возможно лишь путем устройства специально рассчитанных сложных оптических систем. Однако одновременное исправление всех недостатков может оказаться крайне сложной и даже нераз-рещимой задачей. Поэтому нередко идут на компромисс, рассчитывая оптику, предназначенную для определенной цели. При этом устраняют те недостатки, которые особенно опасны для поставленной задачи, и мирятся с неполным устранением других.  [c.318]

Задача определения скорости света принадлежит к числу важнейших проблем оптики и физики вообще. Решение этой задачи имело огромное принципиальное и практическое значение. Установление того, что скорость распространения света конечна, и измерение этой скорости сделали более конкретными и ясными трудности, стоящие перед различными оптическими теориями. Первые методы определения скорости света, опиравшиеся на астрономические наблюдения, способствовали со своей стороны ясному пониманию чисто астрономических вопросов о затмениях отдаленных светил и о годичном параллаксе звезд. Точные лабораторные методы определения скорости света, выработанные впоследствии, используются при геодезической съемке. Теоретическое обоснование и экспериментальное исследование принципа Допплера в оптике сделали возможным решение задачи о лучевых скоростях светил или движущихся светящихся масс (протуберанцы, каналовые лучи) и привели к весьма широким астрономическим обобщениям. Сравнительное измерение скорости света в вакууме и различных средах послужило в свое время в качестве ехрег1теп1ит сгис1з для выбора между волновой и корпускулярной теориями света, а впоследствии привело к понятию групповой скорости, имеющему большое значение и в современной квантовой физике. Сравнение скорости распространения света с константой с максвелловской теории, обозначающей, с одной стороны, отношение между электромагнитными и электростатическими единицами заряда, а с другой — скорость распространения электромагнитного поля, сыграло важнейшую роль при обосновании электромагнитной теории света. Наконец, вопрос о влиянии движения системы на скорость распространения света и вся обширная совокупность связанных с ним экспериментальных и теоретических проблем привели к формулировке эйнштейновского принципа относительности — одного из самых значительных обобщений  [c.417]


Второе затемнение будет иметь место при тройной угловой скорости, т. е. когда возвращающийся свет будет задержан следующим зубцом, и т. д. Главная трудность определения лежит в точном установлении момента затемнения. Точность повыщается при увеличении расстояния О и при скоростях прерываний, позволяющих наблюдать затемнения высших порядков. Так, Перротен вел свои наблюдения приБ = 46 км и наблюдал затемнение32-го порядка. При этих условиях требуются светосильные установки, чистый воздух (наблюдения в горах), хорошая оптика, сильный источник света.  [c.424]

В зависимости от соотношения амплитуд, частот и начальных фаз этих колебаний получаются те или другие кривые. Отсюда вытекают практические применения этих кривых в акустике, оптике, электротехнике и механике для изучения колебательных движений. Проектируя след зайчика или вообще колеблющуюся прямолинейно точку на фотопластинку, соверщающую в свою очередь определенное гармоническое колебание в перпендикулярном направлении, анализируют полученную фигуру Лиссажу и по ней определяют амплитуды, частоты и фазы составляющих взаимно перпендикулярных гармонических колебаний. Таково, например, применение фигур Лиссажу в катодном осциллографе и других приборах.  [c.154]

Передача изображения в интегральной голографии осуществляется посредством введения в схемы элементов волоконной оптики и многомодовых волноводов. Напомним, что если диаметр волокон сравним с длиной волны света, то такое волокно следует рассматривать как ди.электри-ческий волновод, в котором существуют лищь вполне определенные постранственно-временные распределения. электромагнитного поля световой волны — моды. Многомодовые волноводные системы передачи изображения, способные уже в настоящее время конкурировать с во.до-конными системами, представляют собой плавно или дискретно неоднородные среды. Они получили название самофокусирующих волноводов (или селфоков). Коэффициент преломления п (г) в таких волноводах скачкообразно или плавно меняется в радиальном направлении по закону п(г)=п )( — Ь ,/2), где о — коэффициент преломления на оси, г — радиус световода, Л — постоянная. Многомодовые системы обеспечивают разрешающую способность порядка 300 линий/мм.  [c.79]

Оптическое кодирование может быть непрерывным (аналоговым) или дискретным (цифровым). В последнем случае в дополнение к уже перечисленным операциям оптическое кодирование должно включать квантование изображения или световых полей объекта, т. е. разделение на ряд отличных друг от друга в ггространстве по яркости или по иному признаку дискретных элементов, каждому из которых может быть приписан соответствующий кодовый знак. Таким образом, под цифровым многомерным кодированием надо понимать квантование входного изображения или световых полей объекта и последовательное пространственное перераспределение. элементов квантования по определенному закону (коду). Цифровое оптическое кодирование дает возможность получить результат измерения в сжатой цифровой помехоустойчивой форме и исключить процесс развертки изо(5ражения или световых полей с целью преобразования их в одномерный электрический сигнал. При этом роль фото.элект-рического преобразователя датчика сводится лишь к считыванию результатов измерения, полученных в оптике датчика в виде пятен светового кода. Рассмотрение свойств голографического процесса показывает, что голограмма может быть идеальным элементом для создания кодирую-  [c.88]

Оптико-электронный тракт в совок /пности с сервоприводом и обратной связью к источнику излучения обргзуют класс ОЭП для определения координат и производных от координат источников излучения в процессе автоматического или полуавтоматического сопровождения источника излучения. Оптико-электронный тракт, на выходе которого установлен регистратор, образует класс ОЭП, предмазначенных для измерения и регистрации параметров излучения, а также неоптических величин. Этот  [c.5]

При проектировании ОЭП эти Э1апы имеют более конкретную трактовку построение математической ivioflejm оптико-электронного тракта и изменяемой части ОЭП, определение тестового входного возмущения и желаемого выходного сигнала, опрелеление значений конструктивных параметров модели, обеспечивающих г олучение желаемого выходного сигнала минимальным количеством аппаратных средств.  [c.24]

Таким образом, как и для мнстомерной части оптико-электронного тракта, задачу анализа удобнее ставить с позиций теории чувствительности. При этом частные производные дл определения функций чувствительности при анализе ОЭП можно вычислять аналитически.  [c.28]

Для определения распределения температуры по поверхности объекта вдоль заданной линии развертки применяют радиационные пирометры с оптико-механической системой линейного сканирования — термопрофили.  [c.133]

Инфракрасные приборы, основанные на поглощении инфракрасных лучей, получили широкое применение в различных отраслях промышленности для определения концентрации окиси углерода (СО), двуокиси углерода (СО2), аммиака (NH.,) и других газов [16], Это объясняется тем, что в инфракрасной области спектра газы имеют весьма интенсивные и отличительные друг от друга, по положению в спектре, полосы поглощения. Инфракрасные лучи поглощают все газы, молекулы которых состоят не менее чем из двух различных атомов. Этим определяется широкий круг пробных веществ, которые можно использовать в процессе контроля герметичности изделий (закись азота, пары фреона, аммиак и др.). В зависимости от принципа действия луче-приемника инфракрасные "устройства делятся на несколько групп. На рис. 7 схематично показан оптико-акустиче-ский лучеприемиик 1, в котором находится газ, способный поглощать инфракрасные лучи. Окно 2 этого луче-приемника выполнено из материала, пропускающего инфракрасное излучение. Через это окно поступает поток инфракрасного излучения от источника 3, прерываемый с определенной частотой обтюратором 4, приводимым в действие синхронным двигателем 5. Вследствие этого газ будет периодически нагреваться за счёт поглощения энергии и в замкнутом объеме луче-приемника возникнут периодические колебания температуры, вызывающие колебания давления газа, которые преобразуются конденсаторным микрофоном 6 в электрический выходной сигнал.  [c.197]


Смотреть страницы где упоминается термин Оптика (определение) : [c.396]    [c.328]    [c.20]    [c.196]    [c.6]    [c.11]    [c.13]    [c.19]    [c.327]    [c.327]   
Метрология, специальные общетехнические вопросы Кн 1 (1962) -- [ c.322 ]



ПОИСК



Определение напряжений методом методом оптико-поляризационны

Определение оптико-механических свойств материалов



© 2025 Mash-xxl.info Реклама на сайте