Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Преобразователи датчиков

Каждая машина или прибор состоит из трех основных частей. В машине — это двигатель, передаточный механизм, исполнительный орган в приборе — измерительный преобразователь (датчик), передаточный механизм и регистрирующее устройство.  [c.14]

Для технических измерений используют измерительные системы, как правило, состоящие из первичного преобразователя (датчика), промежуточного преобразователя (или линии связи)  [c.13]


В основу акустико-эмиссионного метода контроля положен тот факт, что в конструкции при росте дефекта или возникновении пластических деформаций происходит излучение механических волн, которые, достигая поверхности конструкции, преобразуются пьезоэлектрическим преобразователем (датчиком) в электрические сигналы (рис. 22). Электрические сигналы усиливаются в 10 -10 раз, фильтруются, анализируются, обрабатываются и отображаются в цифровом или аналоговом виде регистрирующей аппаратурой.  [c.52]

Встроенные первичные преобразователи датчики температуры (ДТ), датчики давления среды (ДР) и датчики расхода (ДК) — охватывают ширмовый пароперегреватель, конвективные пароперегреватели высокого и низкого давления котла, цилиндры высокого и среднего давления турбины, стопорные и регулирующие клапаны, перепускные трубы, паропроводы свежего пара и промежуточного перегрева. Всего в систему вводится около 200 параметров котла, паропроводов и турбины.  [c.183]

Выпускаемые отечественной промышленностью вакуумметры (табл. 9) состоят из измерительной установки (блока питания и измерения) и манометрического преобразователя (датчика), при помощи которого сигнал давления преобразовывается в электрический сигнал.  [c.56]

Первичными измерительными преобразователями (датчиками) являются термоэлектрические термометры или термометры сопротивления стандартных градуировок.  [c.361]

В устройствах современных машин и приборов широко применяют упругие элементы пружины различных типов, мембраны, сильфоны и др. Упругие элементы используют в качестве движителей, преобразователей, датчиков, амортизаторов. С их помощью обеспечивается силовое замыкание кинематических цепей механизмов, достигается ограничение максимальных усилий и т. п. Примерами таких устройств могут служить механизмы приборов с упругими чувствительными элементами, механизмы некоторых электроизмерительных приборов, часовые механизмы, устройства, регистрирующие форму и размеры обрабатываемых изделий, весовые устройства, механизмы транспортных, технологических, испытательных машин (см., например, [15, 58, 77, 79, 90, ПО, 112, 117]). Обширный класс механизмов, содержащих упругие элементы, условимся называть механизмами с упругими связями.  [c.7]

Рис. 3. Блок-схема измерительного средства с электроконтактным преобразователем (датчиком) Рис. 3. <a href="/info/65409">Блок-схема</a> <a href="/info/97163">измерительного средства</a> с <a href="/info/95391">электроконтактным преобразователем</a> (датчиком)

Рис. 5. Блок-схема измерительного средства с индуктивным преобразователем (датчиком) Рис. 5. <a href="/info/65409">Блок-схема</a> <a href="/info/97163">измерительного средства</a> с <a href="/info/95383">индуктивным преобразователем</a> (датчиком)
Измерительное средство с индуктивным преобразователем (датчиком) (рис. 5) выпускается в виде единого прибора узкого назначения, схема которого включает все необходимые, рассмотренные в выше-  [c.24]

Контакты электроконтактных преобразователей (датчиков) при значительных электрических нагрузках подвержены износу, что ведет к погрешности контроля. Поэтому для обеспечения такого режима работы, при котором электроконтактные преоб-  [c.38]

Измерительные преобразователи (датчики)  [c.302]

Помимо управления шаговыми двигателями робота система управления должна обеспечить адаптацию (самонастройку) процесса микросварки к дрейфу технологических параметров, влияющих на качество изделий. Подсистема технологической адаптации обеспечивает регулирование частоты ультразвукового генератора и скорости ее изменения, стабилизацию тока ультразвукового преобразователя и величины деформации проводника. Для обеспечения самонастройки в контурах регулирования используются необходимые датчики (датчики тока и напряжения ультразвукового преобразователя, датчики частоты и т. д.).  [c.181]

В теплоэнергетике получили распространение пружинные и сильфонные манометры с электрическим или пневматическим преобразователем-датчиком. В последнее время стали применять компенсационные манометры с унифицированным выходным сигналом, пропорциональным измеряемому давлению. Технические манометры с выходным датчиком выпускаются с верхним пределом измерения от 0,6 до 10 000 кгс/см . Класс точности приборов от 0,6 до 1,6.  [c.38]

Сведения о вторичных приборах, функциональных преобразователях, датчиках состава и влагомерах содержатся в [Л. 6, 15, 28].  [c.45]

Схема плотномера при использовании манометра с ферродинамическим преобразователем-датчиком показана на рис. 2-4. Здесь в качестве компенсационного из-  [c.49]

Датчиком температуры пара служит термометр сопротивления Ri, включенный в одно из плеч моста Afi. Питание моста осуществляется напряжением, пропорциональным давлению и изменяющимся по закону уравнения (2-9а). Такой закон изменения напряжения можно получить первоначальным смещением плунжера диф-трансформаторного преобразователя датчика давления 1 типа МЭД или включения напряжения смещения с помощью задающего преобразователя 2 последовательно с преобразователем датчика давления, как это выполнено в схеме на рис. 2-6,а. Конденсатор С служит для подгонки фаз напряжений. Напряжение на измерительной диагонали аб моста Mi равно  [c.54]

В теплоэнергетике нашли широкое применение первичные электрические преобразователи (датчики) давления, вакуума, перепада давления, расхода. Эти преобразователи входят в государственную систему приборов (ГСП) и имеют унифицированный выходной электрический сигнал 0-5 мА или 0-20 мА [30].  [c.38]

Манометрические преобразователи. Датчики вакуумметров, основанных на косвенном измерении давления разреженного газа, называются манометрическими преобразователями — они преобразуют давление или плотность газа в электрический сигнал, который затем усиливается измерительной схемой вакуумметра и отсчитывается по стрелочному прибору. Промышленностью выпускаются теплоэлектрические, термопарные, магнитные, электроразрядные, ионизационные, инверсионно-магнетронные и другие преобразователи. Их технические характеристики приведены в табл. 8-5.  [c.379]

В общем виде система управления стендовым испытанием с использованием ЭВМ (рис. 3.5.3) включает машину (например, станок) как объект исследования, комплект измерительных преобразователей (датчиков), (Д1, Да,, Дя), аналого-цифровые преобразователи (АЦП), которые связываются через промежуточные устройства с процессором ЭВМ. Для опроса первичных преобразователей (датчиков) в определенной последовательности и через заданные интервалы времени широко используются коммутаторы.  [c.359]


Голот рафические методы обработки измерительной информации находят широкое применение при построении измерительных преобразователей (датчиков) положения, линейных размеров, формы, а также деформации и скорости перемещения объектов. Перспективность применения этих методов объясняется тем, что информация о геометрических параметрах и физическом состоянии объекта непосредственно и полно выражается в световых полях, рассеянных. этим объектом. Измерительная информация заключена во всех характеристиках отраженной объектом световой волны амплитуде, фазе, длине волны, а также ее поляризации. Существенной особенностью задачи контроля геометрических параметров объектов при этом является необходимость регистрации и обработки многомерных входных сообщений, содержащихся в световых полях или изображениях объектов. Эти сообщения отличаются высокой информативностью, причем повышение требований к точности и быстродействию измерительной системы приводит к необходимости увеличения количества принимаемой и обрабатываемой информации. Поэтому применение обычных оптических методов обработки измерительной информации с одномерным кодированием. электрических сигналов, вырабатываемых фотоэлектрическим преобразователем датчика в процессе сканирования изображения контролируемого объекта, либо недостаточно. эффективно, либо вообще не решает поставленной задачи.  [c.87]

Оптическое кодирование может быть непрерывным (аналоговым) или дискретным (цифровым). В последнем случае в дополнение к уже перечисленным операциям оптическое кодирование должно включать квантование изображения или световых полей объекта, т. е. разделение на ряд отличных друг от друга в ггространстве по яркости или по иному признаку дискретных элементов, каждому из которых может быть приписан соответствующий кодовый знак. Таким образом, под цифровым многомерным кодированием надо понимать квантование входного изображения или световых полей объекта и последовательное пространственное перераспределение. элементов квантования по определенному закону (коду). Цифровое оптическое кодирование дает возможность получить результат измерения в сжатой цифровой помехоустойчивой форме и исключить процесс развертки изо(5ражения или световых полей с целью преобразования их в одномерный электрический сигнал. При этом роль фото.элект-рического преобразователя датчика сводится лишь к считыванию результатов измерения, полученных в оптике датчика в виде пятен светового кода. Рассмотрение свойств голографического процесса показывает, что голограмма может быть идеальным элементом для создания кодирую-  [c.88]

Элекприческое устройство универсального назначения дано на рис. 29.17,(9. Электрические или неэлектрические измеряемые величины Р при помощи преобразователя-датчика П-Д преобразуются в г остоянное напряжение и ток /, который по проводам 1 подводится к магнитоэлектрической системе, выполняющей функ-  [c.427]

Сигнал тензорезисторных преобразователей датчика силы, несущий информацию о статической составляющей нагрузки и максимальной нагрузке за цикл нагружения, обрабатывается измерителем 23 нагрузки, с которым связаны цифровые четырехразрядные указатели 21 и 22 этих параметров, С измерителя нагрузки также подаются сигналы на блок 28 настройки режима автоколебаний, автоматический регулятор 25 статической составляющей и автоматический регулятор 26 максимальной нагрузки. Автоматические регуляторы связаны с соответствующими программаторами 24 и 27 нагрузок. Блок настройки содержит ограничитель амплитуды сигнала с частотой, равной частоте колебаний машины регулируемый фазовращатель и аттенюатор. Сигнал автоматического регулятора 26 управляет усилителем 30 мощности, питающим обмотку возбуждения электромагнита 6. Обмотка под-магиичивания электромагнита питается от автономного блока. Машина комплектуется счетчиком циклов нагружения, с которого снимаются сигналы для управления программаторами.  [c.127]

К подвижной системе 2 электродинамического возбудителя 1 колебаний через фланец 3 присоединяется резонансная мембрана 4, несущая активный захват 5 для испытуемого образца 6. Второй конец образца зажимают в захват 7, расположенный на упругом элементе датчика 8 силы, имеющего тепзорезисторные преобразователи. Датчик силы и регистрирующая аппаратура 15 образуют динамометр для измерения переменных сил, действующих на испытуемый образец. Датчик силы 8 укреплен на инерционном элементе 10 с большой массой. Инерционный элемент для снижения потерь энергии подвешен на гибких тросах 9. К инерционному элементу прикреплен пьезоэлектрический датчик 11 виброускорения. Сигнал с датчика ускорения подается на блок 18 управления, входящий в комплект вибростенда ВЭДС-100. Этот блок содержит измеритель виброускорения, задающий генератор со сканированием частоты и систему автоматического поддержания заданного виброускорения. Выходной сигнал с блока 18 поступает на вход усилителя 21 мощности, питающего через резистор 14 подвижную катушку электродинамического возбудителя колебаний. Машина работает в режиме прямого эластичного нагружения на резонансной частоте, определяемой жесткостью испытуемого образца.  [c.131]

Узкопрофильные миллиамперметры, вольтметры в комплекте с преобразователями, датчиками ГСП)  [c.465]

Если при испытании материалов не требуется непрерывная регистрация температурного режима образца, для визуального отсчета может быть выбран стрелочный щитовой прибор (табл. 11). Узкопрофильные миллиамперметры и вольтметры со световым указателем предназначены в основном для работы с преобразователями (датчиками) ГСП, имеющими унифицированные выходные сигналы постоянного тока.  [c.466]

Исследованное автоматическое оборудование можно разбить на три группы, существенно отличающиеся методами их расчета, диагностическими моделями и менее существенно — наборами используемых при диагностировании преобразователей (датчиков) 1) автоматы с электромеханическим приводом, 2) электрогидравличес-ким приводом, 3) пневматическим приводом.  [c.128]


В настоящее время наиболее широко применяются дифманометры поплавковые, кольцевые, колокольные,, мембранные и сильфонные (ГОСТ 3720-66). Большинство выпускаемых дифманометров имеют встроенные преобразователи-датчики (электрические или пневматические), ЧТО обеспечивает ввод значения перепада давления в решающую схему вычислительного прибора при измерении расхода вещества или тепла. На дифманомет-ре, не имеющем датчика, последний может быть установлен специально, если такой датчик не требует большого усилия для приведения в действие рабочего органа и не снижает метрологических данных дифманометра. Датчик может быть также и у вторичного прибора.  [c.38]

Практика теплотехнических измерений характеризуется разнообразием используемых средств измерений, которые отличаются от других элементов технических систем наличием метрологически характеристик (MX). В число средств измерений входят простейшие измерительные приборы, такие как стеклянные термометры, показывающие пружинные манометры и др. Однако в современных измерительных системах, используемых для управления технологическими объектами, испытательными и экспериментальными установками, применяются первичные измерительные преобразователи (датчики), которые преобразуют измеряемую величину в аналоговые или дискретные электрические сигналы. Последние в простейшем случае поступают на вторичные показывающие и регистрирующие приборы. В основном же сигналы первичных преобразователей нормализуются и поступают на вход микропроцессорных устройств, осуществляющих коммутацию сигналов, преобразование их в цифровой код, первичную обработку, формирование управляющих сигналов, расчет косвенных величин, хранение информации, ее представление и регистрацию.  [c.325]

Измерение давления в волновых течениях осуществляется с помощью манометрических преобразователей — датчиков чувствительный элемент которых реагирует на изменение основных термодинамических величин (давления, плотности и температуры) за фронтом ударной волны. Известны следующие преобразователи непрерывного действия пьезоэлектрические и пьезорезисторные датчики, датчики на основе эффектов ударной поляризации, ударного намагничивания, размагничивания и термоЭДС. Обзор экспериментальных и теоретических результатов по методам измерения давления в ударных волнах дан в [29, 30].  [c.274]

Преобразователями датчиков называют устройства, обеспечивающие преобразование сигнала от чувствительного элемента датчика в пропорциональное величине сигнала напряжение (ЭДС) переменного тока или унифицированный токовый (пневматический) сигнал (для датчиков ГСП). Сигналом от чувствительного элемента может служить линейное перемещение плунжера (в дифференциальнотрансформаторных преобразователях) или угол поворота рамки (в ферродинамй-  [c.429]

Преобразователи датчиков ГСП. Эти преобразователи могут быть электросиловыми (рис. 2) и пневмосиловыми. Функционально они аналогичны.  [c.430]

Автоматические электронные приборы с диффереициальио-траисформатор-ным преобразователем в измерительной схеме (рис. 4). Такие приборы получили широкое применение для контроля, записи и регулирования расхода жидкости и газа, разности давлений, избыточного давления, уровня жидкости и других величин. Первичные обмотки / преобразователей датчиков ДТП и ДТП2 прибора соединены последовательно. Вторичные обмотки II преобразователей, состоящие из двух секций, соединены навстречу друг другу.  [c.433]


Смотреть страницы где упоминается термин Преобразователи датчиков : [c.68]    [c.408]    [c.482]    [c.23]    [c.24]    [c.161]    [c.153]    [c.782]    [c.175]    [c.99]    [c.364]    [c.182]    [c.977]    [c.429]    [c.430]    [c.434]   
Термическая обработка в машиностроении (1980) -- [ c.429 ]



ПОИСК



Выходной шум датчиков и преобразователей сигналов

Датчик

Датчик локационный компоновка оптических преобразователей

Датчик локационный типы преобразователей

Датчики и преобразователи температуры охлаждающей жидкости

Датчики силы с преобразователями емкостными

Измерительные преобразователи (датчики)

Измерительные преобразователи (датчики) и измерительные системы автоматического контроля размеров

Куликов, Г. П. Степанов. Измерительный преобразователь (датчик) отношения давлений газов

Магнитоупругий датчик для измерения параметров колебаний торца преобразователя

Преобразователь сигнала датчика

Прохожаев О.Т., Костюк А.Ю., Фалин А.А Оптоэлектронный измерительный преобразователь микроперемещений как датчик деформации трубопровода на потенциально опасных участках

Регуляторы программные 471 — Основные характеристики 478 — Схемы соединений с преобразователями и датчиком

Сравнительная характеристика измерительных преобразователей (датчиков) и систем автоматического контроля



© 2025 Mash-xxl.info Реклама на сайте