Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип Гюйгенса Френеля

ПРИНЦИП ГЮЙГЕНСА-ФРЕНЕЛЯ  [c.118]

НИИ решить такую задачу. Вопрос этот решается с помош,ью так называемого принципа Гюйгенса — Френеля. Последний позволяет также объяснить в рамках волновой теории прямолинейное распространение света в однородной среде.  [c.119]

Согласно принципу Гюйгенса — Френеля, каждый участок светящейся поверхности (волнового фронта) рассматривается как центр вторичного источника. Возмущение, исходящее от некоторого участка Асту вблизи точки Му, описывается в точке наблюдения В выражением  [c.119]


В заключение изложения общих положений принципа Гюйгенса— Френеля обратим внимание на некоторые его недостатки  [c.125]

Если провести вычисление результирующей фазы по принципу Гюйгенса — Френеля, то она оказывается на п/2 больше наблюдаемой.  [c.125]

Математически развивая теорию дифракции, Кирхгоф в 1882 г. доказал, что принцип Гюйгенса — Френеля вытекает из волновых уравнений оптики, причем вышеупомянутые замечания учитываются автоматически. Кирхгоф в своей теории также не принял во внимание влияние вещества экрана на световое поле вблизи него.  [c.125]

Принцип Гюйгенса — Френеля. Качественное объяснение явления дифракции можно дать на основе принципа Гюйгенса. Однако принцип Гюйгенса не может объяснить всех особенностей распространения волн. Поставим на пути плоских волн в волновой ванне преграду с широким отверстием. Опыт показывает, что волны проходят через отверстие и распространяются по первоначальному направлению луча. В остальных направлениях волны от отверстия не распространяются. Это противоречит принципу Гюйгенса, согласно которому вторичные волны должны распространяться во все стороны от точек, которых достигла первичная волна.  [c.230]

ПРИНЦИП ГЮЙГЕНСА-ФРЕНЕЛЯ И НЕКОТОРЫЕ ЕГО ПРИЛОЖЕНИЯ  [c.256]

Следует заметить, что до сих пор рассуждения о связи волновой и геометрической оптики имели качественный характер. Покажем, что, используя введенные выше оценки, основанные на применении принципа Гюйгенса-Френеля, можно подойти к решению поставленной задачи с большей определенностью.  [c.268]

Принцип Гюйгенса—Френеля позволил получить ряд существенных результатов и определить критерии выбора правильного описания явления, т.е. условия перехода от волновой оптики к геометрической. Изложенный геометрический метод определения результирующей амплитуды прост и удобен при решении различных задач, тогда как аналитическое решение для сферических волн оказывается весьма громоздким. Математическая задача решается проще для случая плоских волн. Поэтому имеет смысл рассмотреть другой способ наблюдения дифракции, при описании которого можно использовать приближение плоских волн.  [c.281]

Используя принцип Гюйгенса—Френеля, можно рассчитать распределение интенсивности в дифрагировавшем излучении для заданного угла падения плоской волны на правильную струк-  [c.299]


Сформулируйте принцип Гюйгенса—Френеля. В чем заключаются допускаемые приближения  [c.458]

В начале XIX века стала складываться последовательно развитая система волновой оптики. Главную роль при этом сыграли труды Юнга и Френеля. Френель (1815 г.) уточнил принцип Гюйгенса, дополнив его принципом интерференции Юнга, с помощью которого этот последний дал в 1801 г. удовлетворительное толкование окраски тонких пластинок, наблюдаемых в отраженном свете. Принцип Гюйгенса — Френеля не только вполне удовлетворительно объяснил прямолинейное распространение света, но и позволил разрешить вопрос о распределении интенсивности света  [c.20]

Принцип Гюйгенса — Френеля  [c.150]

Модифицированный таким образом принцип Гюйгенса—Френеля становится основным принципом волновой оптики и позволяет исследовать вопросы, относящиеся к интенсивности результирующей волны в разных направлениях, т. е. решать задачи о дифракции света (см. ниже). В соответствии с этим был решен, вопрос о границах применимости закона прямолинейного распространения света, и принцип Гюйгенса—Френеля оказался применимым к выяснению закона распространения волн любой длины.  [c.151]

Рассмотрим действие световой волны, испущенной из точки А, в какой-либо точке наблюдения В. Согласно принципу Гюйгенса-Френеля заменим действие источника А действием воображаемых источников, расположенных на вспомогательной поверхности S.  [c.153]

Замечания относительно принципа Гюйгенса — Френеля  [c.168]

Впоследствии (1882 г.) Кирхгоф показал, что принцип Гюйгенса—Френеля может быть получен из дифференциальных уравнений оптики (из волновых уравнений) при этом все отмеченные нами поправки входят автоматически.  [c.170]

Строгое решение дифракционных задач как задач о распространении электромагнитных волн вблизи препятствий удалось получить лишь для сравнительно немногочисленных (4 — 5) случаев. Так, Зоммерфельд (1894 г.) решил задачу о дифракции на краю идеально проводящего прямого экрана. Расхождения между результатами теории Зоммерфельда и точными измерениями можно, по-видимому, отнести за счет невозможности точно осуществить на опыте условия теории (реальный экран нельзя сделать идеально проводящим и бесконечно тонким, а его края нельзя сделать идеально острыми, как предполагается при теоретическом рассмотрении). Сопоставление этого и некоторых других случаев, разобранных по методу, аналогичному методу Зоммерфельда, показывает, что приближенная трактовка на основе принципа Гюйгенса — Френеля и метода Юнга дает достаточно хорошее приближение для не очень больших углов дифракции. В соответствии с этим мы и в дальнейшем будем широко пользоваться методом Френеля, помня, конечно, об указанном ограничении.  [c.171]

Согласно принципу Гюйгенса — Френеля дифрагировавшее поле за голограммой однозначно определяется фазами и амплитудами фиктивных источников на некоторой произвольной поверхности. Такой поверхностью может служить выходная плоскость голограммы, для которой мы вычислили поле (р)) и, таким образом, узнали характеристики фиктивных источников Гюйгенса — Френеля. На-  [c.246]

Аналогично тому, как принцип Гюйгенса—Френеля находит обоснование Б электромагнитной теории света, принцип цикличности также является следствием более общих соображений. Однако в принятом здесь элементарном способе изложения принцип цикличности вполне достаточен для интерпретации совокупности свойств лазеров, работающих в стационарном режиме.  [c.795]

Указание. Вычислить амплитуду поля на оси зонной пластинки (падает плоская волна) с помощью принципа Гюйгенса — Френеля  [c.881]

В ТОЙ точке, в которой расположен данный источник. Этот принцип, так называемый принцип Гюйгенса — Френеля, широко применяется для рассмотрения вопросов распространения волн.  [c.714]

Применяя принцип Гюйгенса — Френеля, нужно учитывать интерференцию волн, создаваемых всеми элементарными источниками. Эта сложная задача весьма упрощается в тех случаях, когда падающая волна ничем не ограничена, т. е. когда не приходится рассматривать  [c.714]


Рассмотрим, например, картину распространения плоской волны, на пути которой находится плоский экран с отверстием небольшого размера (рис. 463). По принципу Гюйгенса — Френеля мы должны волну, пришедшую к отверстию, заменить элементарными точечными источниками, колеблющимися в одинаковой фазе. Если отверстие мало по сравнению с длиной волны, то все эти источники находятся на расстоянии, малом по сравнению с длиной волны. Они, как и в случае двух близких точечных источников, не дадут интерференционной картины, и дадут примерно тако же результат, как один точечный источник, помещенный в отверстии. За отверстием образуется круговая волна (рис. 463). При увеличении размеров отверстия картина будет приближаться к той, которую дают вдали много источников, расположенных близко друг от друга на одной прямой. Отверстие, размеры которого велики по сравнению с длиной волны, пропускает плоскую волну, почти не изменяя ее характера. (Только по краям вырезанного участка плоской волны будет наблюдаться искривление фронта волны.)  [c.716]

Формула Брэгга - Вульфа. Кристалл представляет совокупность атомов или молекул, закономерно и упорядоченно расположенных в узлах пространственной кристаллической решетки. Поведение волн анализируется с помощью принципа Гюйгенса - Френеля, который позволил успешно построить теорию интерференции и дифракции электромагнитных волн в световом диапазоне. В соответствии с этим принципом каждая точка волнового фронта рассматривается как источник вторичных волн, которые интерферируют между собой с учетом возникающих при этом фазовых соотношений. Отражение волны от плоской поверхности сводится к тому, что каждая точка поверхности становится источником вторичных волн. Они интерферируют между собой и дают отраженную волну под углом отражения, равным углу падения.  [c.48]

Принцип Гюйгенса — Френеля элементарные участки фронта волны можно рассматривать как источники колебаний, действующих в одной фазе положение фронта волны в последующий момент времени совпадает с огибающей независимых друг от друга фронтов волн, создаваемых этими элементарными источниками. Этим принципом обычно пользуются при построении дифракционных картин.  [c.224]

Принцип Гюйгенса—Френеля 247  [c.517]

Довольно сложные вычисления, основанные на применении принципа Гюйгенса—Френеля с дополнением Кирхгофа, использующие свойства бесселевых функций, приводят к следующей формуле  [c.564]

Поскольку выяснилось, что матричный формализм позволяет, в числе прочего, записать в весьма простой форме выражение для точечного эйконала, эти два способа оказались органически взаимосвязанными. Р1х синтез приводит к полезнейшим интегральным соотношениям типа (1.12). Систематическое применение подобных соотношений позволило автору в его предьщущей монографии [16] сформулировать целый ряд положений теории оптических резонаторов в более общем виде, чем в соответствующих оригинальных статьях. Эти соотношения, являющиеся, в сущности, обобщением принципа Гюйгенса — Френеля на случай оптических систем весьма широкого класса, широко используются и в настоящей книге.  [c.8]

Сделаем еще одно замечание общего характера. Когда в дальнейшем будет заходить речь о результате прохождения волной того или иного оптического элемента, то будет подразумеваться перемещение отсчетной плоскости в пространстве, но не во времени. Вопреки распространенному заблуждению, принцип Гюйгенса—Френеля и вытекающие из него формулы связывают между собой значения амплитуд и фаз стационарного светового поля хотя и на разных участках пространства, но в один и тот же момент времени. К этому вопросу мы еще вернемся в 2.1 там же будет обсуждена возможность использования всех формул настоящего параграфа для описания не только стационарных, но и экспоненциально затухающих или нарастающих во времени полей.  [c.15]

Принцип Гюйгенса—Френеля. Согласно Френелю, вторичные полусферические элементарные волны являются когерентными н при поиске в некоторой точке экрана результирующей интенсивности необходимо учесть интерференщно всех этих вторичных волн. По Френелю, данный источник света заменяется окружаю-ш,ей его замкнутой светящейся поверхностью произвольной формы. Поскольку элементарные участки замкнутой поверхности взаимно когерентны, то при нахождении в произвольной точке экрана результирующей интенсивности учитывается вклад всех элементарных участков с соответствующими амплитудами и фазами колебаний.  [c.119]

Поставим на пути волн широкую преграду. Опыт показывает, что за преграду волны не распространяются, что опять противоречит принципу Гюйгенса. Для объяснения явлений, наблюдаемых при встрече волн с преградами, французский физик Огюстен Френель (1788—1827) в 1815 г. дополнил принцип Гюйгенса представлениями о когерентности вторичных волн II их интерференции. Отсутствие волн в стороне от направления луча первичной волны за широким отверстием согласно принципу Гюйгенса — Френеля объясняется тем, что вторичные когерентные волны, испускаемые разными участками отверстия, интерферируют между собой. Волны отсутствуют в тех местах, в которых для вторичных волн от разных участков выполняются условия интерференционных минимумов.  [c.230]

Изложение принципа Гюйгенса—Френеля в данном параграфе существенно отличается от приведенного в 3.3, где положение В0ЛН01ЮГ0 фронта в последующие моменты времени определялось как огибающая элементарных сферических волн, излучаемых каждой точкой, до которой дошел фронт в данный момент принцип Гюйгенса). Никакой интерференции между этими сферическими волнами Гюйгенс не учитывал, да и вообще не принимал по внимание фазовых соотношений. Поэтому принцип Гюйгенса в его первоначальной форме не мог служить основой волновой оптики. Потребовалось значительное время, чтобы после принципиальных дополнений Френеля оказалось возможным применить его для истолкования дифракции. Изложим идею принципа Гюйгенса—Френеля в тех терминах и понятиях, которые соответствуют электромагнитной теории света. Строггся математическая формулировка этого принципа, данная Кирхгофом, здесь не приведена .  [c.256]


Возникает вполне естественный вопрос а нельзя ли каким-либо способом зафиксировать всю информацию о предмете На этот вопрос в 1947 г. ответил Д. Сабор — изобретатель голографии. Он обратил внимание на то, что при фотографировании предмета всегда приходится осуществлять наводку на резкость, иначе изображение будет нечезким, а го и вовсе может отсутствовать. Между тем независимо от наводки на резкость лучи света, образующие изображение на фотопластинке, на участке между объективом и фотопластинкой нику/га не исчезают и к ним не добавляются новые. Разбираясь в этом парадоксе, Габор предположил, что изображение предмепа присутствует в скрытом от наблюдателя виде в любой плоскости между объективом и фотопластинкой. Иначе говоря, изображение в том или ином виде содержится в самой структуре световой волны, распространяющейся от предмета к объективу фотоаппарата. Это утверждение следует из хорошо известного принципа Гюйгенса—Френеля, согласно которому волна, излученная источником или отраженная от предмета, болыие не зависит от них и распространяется в пространстве как бы сама но себе. Так волновая теория света, впервые предложенная X. Гюйгенсом, привела английского, физика Д. Габора к открытию г олографии.  [c.5]

Мы получили совершенно очевидный результат, что круговая волна и дальше распространяехся в виде круговой. Но этот пример поясняет применение принципа Гюйгенса — Френеля для случаев, когда не приходится принимать во внимание краев волны. Как  [c.714]

Эта огибающая поверхность будет геометрическим местом характеристик и называется поверхностью Монжа. Характеристики — это кривые касания огибающей поверхности к йаждой из огибаемых. Поверхность Монжа по своей физической сущности характеризует совмещенные процессы. Примером может служить ф онт световой волны, который является огибающей поверхностью вторичных волн (принцип Гюйгенса — Френеля).-Согласно принципу Гюйгенса—, Френеля для нахождения нового фронта световой волны необходимо каждую точку фронта волны считать источником, самостоятельно испускающим сферические волны. Огибающая всех этих вторичных волн и дает новый фронт световой волны.  [c.89]

Однако такое представление удобно использовать обычно лишь тогда, когда размеры источника а малы по сравнению с длиной излучаемой В. X. При а А. и тем более при а>Я обычно оперируют непосредственно с интегралами типа (216), опираясь на принцип Гюйгенса — Френеля. Напр., излучение точечного мопо-поля эквивалентно излучению сияфазно колеблющихся радиальных диполей, равномерно распределённых на сфере произвольного радиуса окружающей моно-  [c.322]


Смотреть страницы где упоминается термин Принцип Гюйгенса Френеля : [c.118]    [c.256]    [c.151]    [c.716]    [c.716]    [c.675]    [c.269]    [c.459]   
Оптика (1977) -- [ c.119 , c.120 , c.125 ]

Справочное руководство по физике (0) -- [ c.371 ]



ПОИСК



Гюйгенс

Гюйгенса—Френеля

Гюйгенса—Френеля принцип амплитуды

Гюйгенса—Френеля принцип волнового фронта

Гюйгенса—Френеля принцип давление

Гюйгенса—Френеля принцип дактилоскопия

Гюйгенса—Френеля принцип дальнозоркий глаз

Гюйгенса—Френеля принцип двойное лучепреломление

Гюйгенса—Френеля принцип двулучепреломление

Гюйгенса—Френеля принцип двумерная интерференционная картина

Гюйгенса—Френеля принцип двухлучевая

Гюйгенса—Френеля принцип двухосный кристалл

Гюйгенса—Френеля принцип двухфотонное поглощение

Гюйгенса—Френеля принцип действительное изображение

Гюйгенса—Френеля принцип деление

Гюйгенса—Френеля принцип интерференционная картина

Гюйгенса—Френеля принцип интерференция

Гюйгенса—Френеля принцип поляризационная призма

Гюйгенса—Френеля принцип радиометрическое

Гюйгенса—Френеля принцип световое

Гюйгенса—Френеля принцип светореактпиное

ДИФРАКЦИЯ СВЕТА Принцип Гюйгенса — Френеля. Зоны Френеля

Дифракция Принцип Гюйгенса—Френеля. Зоны Френеля. Графическое вычисление амплитуды. Пятно Пуассона. Дифракция на прямолинейном крае полубесконечного экрана. Зонная пластинкакак линза. Трудности метода зон Френеля Приближение Кирхгофа

Дифракция света Принцип Гюйгенса—Френеля и некоторые его приложения

Замечания относительно принципа Гюйгенса — Френеля

ОСНОВЫ ТЕОРИИ Принцип Гюйгенса — Френеля

Подход в теории линейных оптических систем, основанный на принципе Гюйгенса — Френеля — Кирхгофа

Принцип Гюйгенса

Принцип Гюйгенса в формулировке Френеля

Принцип Гюйгенса — Френеля i Тсщчон, рнои фазы

Принцип Гюйгенса — Френеля аналогия с принципом Феом

Принцип Гюйгенса — Френеля для распространения интенсивности в частично когерентном поле

Принцип Гюйгенса —Френеля основная идея

Принцип Гюйгенса—Френеля (продолжение) количественная формулировка

Принцип Гюйгенса—Френеля магнитных полей

Принцип Гюйгенса—Френеля электрических полей

Принципы Гюйгенса и Гюйгенса — Френеля. Законы отражения и преломления волн. Дифракция

Решение, основанное на принципе Гюйгенса — Френеля

Френель

Френеля принцип



© 2025 Mash-xxl.info Реклама на сайте