Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Излучение Преобразования

Излучение, отраженное частицами, не включенными в ячейку, моделируется фоновым излучением, заданным на боковых гранях нижней (е, f, g, h) и верхней (е, g, /i ) частей ячейки с плотностью Qbs и соответственно, Вследствие аддитивности потоков теплового излучения преобразования в ячейке внешнего и фонового потоков можно рассматривать раздельно. В связи с этим потоки на поверхности частиц удобно представлять в виде суммы двух составляющих qp+Ър на поверхности 1/8 сфер а, i, с, d и < р + бр на а, V, с, d . Потоки qp, q p образуются в результате преобразования внешнего излучения q , 6р и бр — фонового излучения qbs.  [c.151]


Экспозиционная доза К рентгеновского или у-излучения выражает энергию квантового излучения, преобразованную в кинетическую энергию заряженных частиц в единице массы атмосферного воздуха.  [c.12]

Радиоскопия основана на просвечивании контролируемых объектов ионизирующим излучением, преобразовании прошедшего излучения в светотеневое или электронное изображение с последующим усилением,  [c.348]

Если поверхности II и III пересекаются (такой случай показан на рисунке), то для всех точек на кривой пересечения выполняется условие векторного синхронизма. Следовательно, если исходное излучение распространяется по направлению Ui, в направлениях, определенных кривой пересечения (на рисунке зта область заштрихована), может наблюдаться излучение, преобразованное в режиме векторного синхронизма.  [c.159]

Исследовано два типа двухканального лампового источника питания — Плаз и ИПЛ-10-001. Их внешний вид показан соответственно на рис. 6.1 и 6.2. Под излучателем Карелия (см. рис. 6.2) расположен блок модуляторов, под измерительной камерой — источник тока для питания модуляторов, слева — стойка управления. Принципиальные схемы этих источников питания практически одинаковы (рис. 6.6, б). В системах стабилизации мощности лазерного излучения имеются отличия. В ИПЛ-10-001 часть лазерного излучения, преобразованная датчиком ТИ-3 в электрический сигнал, подается на систему сопоставления, и при наличии отклонения опорного сигнала посылается соответствующий сигнал на управляющие сетки ламп ГМИ-29А-1 по обоим каналам — для поддержания заданного уровня средней мощности излучения. В Плазе поддерживается на заданном уровне средний ток в модуляторе каждого канала. Выходные параметры излучателя Карелия с этими ламповыми источниками примерно одинаковы. У Плаза более высокое анодное напряжение и как следствие меньше потери мощности на лампах и меньший расход воды. При использовании ламповых источников питания потребляемая мощность АЭ выше, и поэтому условия работы его катода и разрядного канала более тяжелые, чем при использовании тиратронных источников питания.  [c.175]

Теплообмен излучением - теплообмен, включающий переход внутренней энергии тела (вещества) в энергию излучения, перенос излучения, преобразование энергии излучения во внутреннюю энергию другого тела (вещества).  [c.269]

Действие излучения на металлы состоит в нарушении их кристаллической решетки при упругих столкновениях с ядрами атомов тяжелых металлов и при термических преобразованиях, что приводит к изменению ряда свойств понижению пластичности и возрастанию сопротивления пластической деформации, росту электропроводности, ускорению процессов диффузии, инициированию фазовых превращений в металле.  [c.369]


Магнитогазодинамические уравнения. Чрезвычайно высокий коэффициент теплоотдачи смеси газ — твердые частицы вследствие интенсивного переноса излучения при высоких температурах делает возможным использование такой системы для магнитогидродинамического преобразования энергии, например с ядерным нагревом (разд. 5.6). Относительно низкую электропроводность, например, гелиево — циркониевой смеси можно возместить добавлением цезия, так что электропроводность будет соответствовать уровню кривой С на фиг. 10.12. Это важно, так как плотность мощности Р при магнитогидродинамическом преобразовании энергии определяется в виде [155]  [c.469]

Солнечная энергия может быть преобразована непосредственно в электрическую при помощи полупроводниковых элементов. Сейчас подобные системы — необходимая часть энергоснабжения всех космических кораблей. Создание земных установок для прямого преобразования солнечной энергии в электрическую связано с определенными трудностями и экономически выгодно лишь в районах с благоприятным климатом. Рациональным является размещение станций на спутнике, обращающемся вокруг Земли (рис. 0-4) [228] в космосе, где наиболее эффективен процесс преобразования солнечной энергии, доступной почти 24 ч в сутки при удвоенной интенсивности излучения. Солнечные космические энергосистемы могли бы полностью обеспечить энергетические потребности в будущем, удовлетворитель-  [c.8]

Максимальный коэффициент преобразования излучения накачки в параметрические частоты в этих первых опытах, целью которых не было получение максимальных выходных мощностей, был порядка 1 %. В дальнейшем этот коэффициент был резко увеличен.  [c.410]

Для преобразования энергии светового излучения в энергию электрического тока широко применяются и полупроводниковые фотоэлементы.  [c.304]

В заключение этого краткого обзора фотоэлектрических приемников упомянем о возможности преобразования невидимого излучения (инфракрасные и ультрафиолетовые лучи) в видимое, что может быть осуществлено с помощью электронно-оптического преобразователя (ЭОП), который также способен выполнять функции усилителя света. Схема действия этого прибора представлена на рис. 8.24. На фотокатоде происходит преобразование оптического изображения в электронное. Затем электронные пучки от разных частей фотокатода фокусируются и попадают на флуоресцирующий экран, где происходит визуализация изображения. Качество изображения не очень хорошее, так как аберрации электронных пучков, как правило, больше оптических, но все же современные устройства подобного типа имеют в центре картины разрешающую способность порядка нескольких десятков линий на миллиметр, что близко к возможностям обычной фотографической пластинки.  [c.443]

Не менее часто нам приходится сталкиваться с преобразованием волн одной частоты в волны другой частоты. В приборах ночного видения излучение инфракрасной области спектра (у=10 Гц) преобразуется в излучение видимой области (Ю " - Ю Гц). Для передачи радиосигнала используется  [c.137]

Измерение распределения фаз можно осуществить с помощью интерференционных явлений (см. гл. IV—VII). Сущность интерференции заключается в том, что при сложении когерентных колебаний разность их фаз обусловливает изменение амплитуды суммарного колебания, иными словами, происходит преобразование фазовых соотношений волн в амплитудную структуру интерференционной картины. Следовательно, если на приемник излучения, помимо интересующей нас волны, послать другую, пробную волну с относительно простой формой фронта, например, плоскую или сферическую, то возникшая интерференционная картина полностью охарактеризует закон изменения разности фаз этих двух волн на поверхности приемника. Таким способом мы получим возможность составить представление о фазовой структуре изучаемой волны.  [c.236]

Установленная формальная аналогия, разумеется, не случайна. Как при голографировании, так и при отображении в линзовой либо зеркальной оптической системе речь идет о преобразовании одной сферической волны (предмета) в другую, также сферическую волну (изображения). Формальный вид закона такого преобразования (линейное преобразование кривизны волновых фронтов) предопределен самой постановкой задачи и никак не связан с конкретным способом его реализации. Любой способ, голографический или линзовый, может только изменить кривизну исходного волнового фронта в определенное число раз и добавить к ней новое слагаемое ), но не более того. Анализ физического явления, призванного осуществить эту процедуру, конкретизирует физический смысл соответствующего множителя и слагаемого и их зависимость от характеристик явления и конструктивных особенностей системы. Последнее оказывается очень существенным при сравнительном рассмотрении разных способов. Как уже упоминалось, применение разных длин волн на первом и втором этапе предоставляет голографии неизмеримо более широкие возможности, чем аналогичный фактор в линзовых и зеркальных системах (различие показателей преломления в пространстве изображений и предметов, иммерсионные объективы микроскопов, см. 97), ибо можно использовать излучение с очень сильно различающимися длинами волн, например, рентгеновское и видимое (когда будет создан рентгеновский лазер).  [c.253]


В дальнейшем была использована теневая установка с подсветкой исследуемой зоны ответвленной и преобразованной во вторую гармонику частью излучения второго лазера. Длительность подсветки, таким образом, составляла 15 не. Оптический пробой однозначно локализовался на фронте ударной волны, расходящейся от очага оптиче-  [c.154]

Распознавание образов. Во многих областях науки и техники требуется решать задачи, связанные с выделением сигнала, предмета или образа из совокупности подобных ему, но имеющих некоторые отличия. Существует общий метод оптимального решения таких задач. Он основан на преобразовании сигнала, несущего информацию об объекте, в спектр частот исходного сигнала, который подвергают дальнейшей обработке (фильтрации) с помощью частотных фильтров, пропускающих лишь излучения определенных частот. Оптический сигнал, представляющий собой распределение амплитуд и фаз световой волны, идущей от объекта, также может быть разложен на частотные составляющие. Однако в отличие от частот радиодиапазона (временных), свет разлагается на пространственные частоты, которые можно наблюдать непосредственно на. экране или проявленной фотопластинке.  [c.50]

При условии равенства длин волн излучения, падающего на голограмму при восстановлении волнового фронта и используемого при записи голографического поля, а также при отсутствии масштабных преобразований голограммы (например оптического уменьшения или уве.ти-чения) формулу для расчета положений изображений можно представить в следующем виде  [c.59]

Если показатель преломления кристалла модулировать переменным полем с частотой соь то световая волна с частотой Ш2, проходя через кристалл, будет модулироваться по фазе, что приведет к появлению боковых компонент на комбинационных частотах— суммарной и разностной. Таким образом, с помощью модуляции параметров кристалла можно получить излучение на различных частотах. Такие взаимодействия называют параметрическими преобразованиями частоты.  [c.306]

Генерация излучения на суммарных или разностных частотах будет осуществляться, естественно, при выполнении условия волнового синхронизма. Например, для волны с суммарной частотой "= 1- - 2 и волновым числом к" условием волнового синхронизма будет соотношение г 1= 1/ 1 = 7 "= ( 1- - 2)//г". Отсюда /г" = = %1 (1-1-Й2/ ]). Если 2<С 1, то произойдет преобразование низкочастотного излучения 2 в высокочастотное " = 1-Ь 2. Если 1 2, будет генерироваться вторая гармоника 2 ь  [c.307]

Явление генерации кратных, суммарных и разностных гармоник имеет практическое применение. В лазерной технике удвоение частоты излучения или смешение излучений двух лазеров в нелинейной среде позволяет получать мощный поток когерентного света в области спектра, отличной от исходной. Например, удвоение частоты излучения лазеров на красителях, генерирующих в видимой области спектра, позволяет плавно перестраивать частоты в ультрафиолетовой области. Особый интерес представляет собой преобразование инфракрасного излучения в видимое. Так, смешение излучений с Я,1 = 4 мкм и  [c.307]

Наиболее важны в практическом отношении люминесцентные лампы дневного света, в которых происходит двухступенчатое преобразование электрической энергии в световое излучение. Трубка люминесцентной лампы содержит пары ртути стенки трубки покрыты слоем специального люминофора. Сначала за счет электрического разряда в трубке возбуждаются атомы ртути. Затем ультрафиолетовое излучение атомов ртути поглощается люминофором на  [c.197]

На рис. 9.7 изображены два когерентных трехфотонных процесса. Процесс на рис. 9.7, а удвоение частоты, или, иными словами, генерация второй гармоники — преобразование исходного монохроматического излучения с частотой оз в излучение с частотой o) =2oj переходы в поле излучения — уничтожаются два фотона с энергией fia и  [c.225]

Выбор метода описания волнового поля источника излучения зависит от системы допущений на его ) арактеристики (монохроматичность, когерентность, поляризацию) и, кап показано ниже, определяет аппарат, с помощью которого описьшается преобразование оптического сигнала в оптико-электронном тракте.  [c.42]

Возникшая как самостоятельный раздел оптики в начале 60-х годов (после появления лазеров) нелинейная оптика объединяет обширный круг явлений, обусловленных зависимостью параметров среды [коэффициенты поглощения k(v) и преломления n(v)] от интенсивности проходящего света. Оставим пока в стороне вопрос о нарушениях закона Бугера, связанных с у1сазанной зависимостью коэффициента поглощения k v) от напряженности электрического поля, и обратим внимание на свойства коэффициента преломления n(v), проявляющиеся в сильных полях. В таком изложении основ нелинейной оптики легче будет отделить классические эффекты (самофокусировка излучения, преобразование частоты света со всеми вытекающими отсюда последствиями) от квантовых, рассмотрение которых требует введения понятия фотона и других, более сложных представлений (см. 8.5).  [c.168]

Здесь j = h jk — т. н. вторая постоянная излучения в Планка законе излучения. Преобразование этих соотношений даёт ф ЛЫ для искомых значений темп-р  [c.642]

Это уравнение дает простое выражение для массы покоя перешедшей в 22 энергии. Поскольку 2, — произвольная физическая система, перешедшая в нее энергия может быть любого вида, так что формула (3.63) справедлива для всех видов энергии. В качестве 2з можно, например, выбрать электромагнитное поле, тогда полученная энергия имеет форму электромагнитного излучения. Преобразования энергии и импульса электромагнитного излучения должны определяться уравнениями (3.59), Далее, 2 а может быть телом, преоб-разуюш,пм полученную энергию АЕ в тепло, и поскольку прираш,ению энергии АЕ соответствует приращение массы Ат [см. (3.63)], то масса тела увеличивается прп нагревании. Наконец, 2 2 может быть системой, переводящей кинетическую энергию в потенциальную. Это значит, что потенциальной энергии также соответствует определенная инертная масса.  [c.62]


Прикладная Н. о.— круг вопросов, связанных с использованием явлений Н. о. для создания новых источников когерентного оптич. излучения, преобразования частоты, детектирования, преобразования сигналов и изображений. Созданы мопщые генераторы на длинах волн Я=0,34 мкм (2-я гармоника рубинового лазера) и на 2-й гармонике лазера на стекле с примесью N(1. Пром-сть выпускает оптич. умножители частоты, предназначенные для преобразования частоты лазеров на неодимовом стекле или на алюмоиттриевом гранате с примесью Nd (Х=1,06 Л1км), позволяющие получить мощное когерентное излучение  [c.461]

Многофункциональные быстродействующие диагностические комплексы, ориентированные на АСОИЗ, должны строиться на адекватном представлении используемых проникающих и отраженных физических полей и излучении, а также на эффективных алгоритмах преобразования и обработки информаций. Основные трудности, которые предстоит преодолеть - это большой объем обрабатываемой информации (до нескольких десятков мегабайт на одно изображение), двумерность массивов и векторный харак гер данных.  [c.227]

Повышение эффективности энергетических агрегатов, как правило, связано с изменением конструкции. Так, например, в котельной установке производительностью 950 т/ч ири сохранении старой конструкции потери тепла в окружающую среду составляют 0,1% к. п. д., П рисос воздуха в газовый тракт котла снижает его к. п. д. еще на 0,5 7о, за счет чего теряется около 80 000 руб. в год [178]. Эти потери могут быть значительно компенсированы увеличением доли энергии излучения в общем тепловом балансе. Повышение излучательной способности узлов находит широкое применение в установках для прямого преобразования тепловой энергии в электрическую, в котлах, турбинах, двигателях, высокотемпературных печах и в теплообменниках, электровакуумных  [c.5]

Поэтому для повышения эффективности работы батареи лучи солнечного спектра, бесполезные для преобразования в электрическую энергию, должны быть полностью отражены при одновременном оптимальном просветлении поверхности в спектре чувствительности фотоэлемента. Кроме того, в области собственного теплового излучения (3—25 мкм) поверхность должна иметь высокие значения степени черноты. М. М. Колтун разработал ряд покрытий для этих целей, например ZnS-t-MgF2 СеОг-ЬЗЮа [191—193].  [c.219]

Высвечивание может происходить как в отдельных центрах (молекуле, ионе или комплексе), так и при участии всего вещества люминофора. Например, при рекомбинационном свечении процесс преобразования энергии возбуждения в люминесценцию протекает, как отметили, следующим образом сначала в результате возбуждения происходит разделение разноименно заряженных частиц, затем они рекомбинируют с новыми партнерами , в результате чего в люминесценции участвует весь люмино( р. К аналогичному выводу придем и при объяснении высвечивания кристаллофосфоров на основе зонной теории. В этой связи различают два класса свечения так называемое свечение дискретных центров и свечение вещества. Под свечением дискретных центров понимают люминесценцию, развивающуюся в пределах отдельных частиц, выделенных из остального вещества среды. В случае люминесценции вещества, как отметили выше, при поглощении, переносе к месту излучения и излучении энергии участвует все вещество люминофора. Подобная классификация люминесценции была введена В. Л. Лев-шиным.  [c.359]

Точность измерения скорости света определяется в этом случае, во-первых, тем, насколько стабилен данный источник, и, во-вторых, тем, с какой точностью удается измерить частоту и длину волны излучения. Источниками электромагнитного излучения, наиболее удовлетворяющими этим требованиям, являются лазеры. Измерение длины В0Л1ГЫ , основанное на явлении интерференции света, производится с ошибкой, не превышающей величину порядка 10 , Измерение частоты излучения основано на технике нелинейного преобразования частоты. Используемый прибор (например, полупроводниковый диод), приняв синусоидальное колебание некоторой частоты, дает на выходе колебания более высокой частоты — удвоенной, утроенной и т. д. Этот метод с помощью нелинейного элемента излучс1П1Я кратной частоты позволяет измерять частоту излучения лазера и сравнивать его с частотами, измеренным прежде. Согласно результатам изме-рени , в1> пол 1ен ЫМ этим методом в 1972 г., скорость света в вакууме равна (299792456,2 1,1) м/с. Новые методы разработки нелинейных фотодиодов, испо.и.зусмых для смещения частот светового диапазона спектра, позволят в будущем увеличить точность лазерных измерений скорости света.  [c.418]

Значительно более весомым представляется другой процесс, основанный на когерентных эффектах, который также может быть полностью объяснен п рамках сделанных приближений. Речь идет о преобразовании частоты излучения и, в частности, получении второй гармоники. Эти возможности, открывающиеся в рамках нелинейной оптики, вносят существенный вклад в понимание оптических явлений. Ведь во всем предыдущем изложении мы, опираясь на принцип суперпозиции, исходили из неизмен-  [c.169]

Мы усматриваем аналогию с разложением излучения в спектр, которое проводилось для выявления истинной структуры спектральной линии, замаскированной уширением, создаваемым спектральным прибором, которое также называлось аппаратной функцией. Эта а11 алогия весьма глубокая, так как обе эти операции основаны на преобразовании Фурье, имеющем непосредственное отношение к данной проблеме (см. 6.6).  [c.338]

Не менее часто нам приходится сталкиваться с преобразованием волн одной частоты в волны другой частоты. В приборах ночного видения излучение инфракрасной области спектра (v=10 Гц) преобразуется в излучение видимой области (Ю - 10Гц). Для передачи радиосигнала испо 1ьзуется амплитудно-частотная модуляция, то есть колебания с частотой, которую способно воспринимать человеческое ухо (50-12000 Гц), передаются при  [c.337]

Процесс на рис. 9.7, б параметрическое рассеяние света — преобразование излучения с частотой со в излучение с частотами oi и соа=(о—соь при определенных условиях этот процесс превращается в процесс параметрической генерации света (см. 9.4) переходы в поле излучения — уничтожается фотон с энергией Аш, рождаются два фотона с энергиями A oi и Й(й2. Согласно условию сохранения энергии,  [c.226]

Образование больших квантов люминесценции, превышающих по величине поглощенные кванты возбуждающего света, связана с тем, что исследуемые молекулы в невозбужденном состоянии обладают некоторым запасом колебательной энергии. Эта энергия в комбинации с энергией поглощенного кванта и может образовывать большие кванты люминесценции, удовлетворяющие соотношению (4.9). Таким образом, при возникновении антистоксовской части спектра люминесценции происходит частичное преобразование колебательной энергии исследуемых молекул в энергию их излучения.  [c.177]


Смотреть страницы где упоминается термин Излучение Преобразования : [c.518]    [c.54]    [c.319]    [c.178]    [c.393]    [c.393]    [c.171]    [c.450]    [c.803]    [c.117]    [c.176]    [c.235]   
Приборы для неразрушающего контроля материалов и изделий (1976) -- [ c.319 ]



ПОИСК



98—200 — Принцип работы с преобразованием изображения Источник излучения 1 кн. 87 — Оптическая схема

Генерация и усиление электромагнитного излучения в результате нелинейного преобразования спектра оптической накачки

Преобразование ИК-излучения в оптический диапазон

Преобразование профиля поля при взаимодействии излучения с фильтром на этапе просветления

Проблема прямого преобразования солнечной энергии в лазерное излучение

Твердые диэлектрические среды для преобразования частоты когерентного излучения



© 2025 Mash-xxl.info Реклама на сайте