Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебательная при запрещенных электронных

Из правила (11,39) и условия (11,30) следует, что в случае запрещенного электронного перехода не может происходить никаких колебательных переходов, возможных для разрешенного электронного перехода. Однако это вовсе не означает, что все колебательные переходы, запрещенные для разрешенного электронного перехода, могут происходить при запрещенном электронном переходе. Действительно, в соответствии с выражением (11,35) строго запрещены для дипольного излучения все переходы, для которых выражение  [c.174]


Помимо расщепления определенных колебательных переходов, будут наблюдаться дополнительные переходы, строго запрещенные правилом отбора (11,30) при отсутствии электронно-колебательного взаимодействия. В случае сильного электронно-колебательного взаимодействия полную волновую функцию нельзя записывать в виде произведения функций (П,4) и для момента перехода следует пользоваться выражением  [c.158]

На фиг. 59 показаны переходы между колебательными уровнями при электронном переходе П — S в линейной молекуле без расщепления и с расщеплением уровней из-за электронно-колебательного взаимодействия. Показаны только уровни, соответствующие возбуждению деформационного колебания. Внизу приводится схематический вид спектров. Переходы образуют три секвенции Ау = -f 2, О и —2, из которых секвенция с Аг = = О значительно интенсивнее других. При низкой температуре должны наблюдаться только полосы 2-0 и 0—0. Как видно из фиг. 59, б, влияние электронно-колебательного взаимодействия проявляется в том, что некоторые одиночные переходы (фиг. 59, а) расщепляются на две или три компоненты. В гл. I, разд. 2, уже говорилось о том, что расщепление может быть весьма значительным, часто даже намного большим, чем расстояние между полосами в секвенции. На фиг. 59 пунктиром показаны некоторые переходы, запрещенные правилом отбора (И,30) в предельном случае, когда отсутствует электронно-колебательное взаимодействие, однако они могут происходить в соответствии с более общим правилом (11,19) (см. разд. 1, б, у). Так, например, в левой части фиг. 59, б показан переход с колебательного уровня А на колебательный уровень S он запрещен правилом отбора (П,30). Однако электронно-колебательный верхний уровень относится к типу П, и поэтому при наличии электронно-колебательного взаимодействия в соот-  [c.158]

Если это условие не выполняется хотя бы для одной компоненты дипольного момента М,, то электронный переход разрешен. Запрещенные компоненты этого разрешенного перехода, т. е. компоненты, для которых равенство (11,22) выполняется, могут рассматриваться как истинно запрещенные электронные переходы, для которых обращаются в ну.пь все три компоненты матричного элемента. В обоих случаях как мы уже видели в разд. 1,6, у, общее правило отбора (при выполнении которого переход разрешен) состоит в том, что для электронно-колебательных волновых функций долн но соблюдаться неравенство  [c.173]

Вращательная структура запрещенных электронных переходов, которые происходят благодаря электронно-колебательному взаимодействию, совершенно такая же, как и соответствующих разрешенных переходов. Например, при изогнуто-линейном переходе Az — в молекуле XYg, который запрещен правилами отбора для дипольного излучения, возможны электронно-колебательные переходы с уровня ООО основного состояния на верхние колебательные уровни, связанные с возбуждением нечетного числа квантов антисимметричного валентного колебания. Поскольку эти верхние состояния относятся к электронно-колебательному тину Bi, тонкая структура соответствующих полос должна быть такой же, как и полос электронных переходов типа В —  [c.221]


При запрещенных переходах Во, — i i, которые могут осуществляться благодаря кориолисову взаимодействию, структура полос совершенно такая же, как нри переходах Л 2 — Ai - Следует только соответствующим образом заменить на фиг. 113 электронно-колебательно-вращательные типы симметрии (табл. 6).  [c.266]

По-лосы становятся диффузными при более коротких длинах волн и переходят в непрерывный спектр при Я < 3600 А. Авторы работы [1209] безуспешно пытались обнаружить спектр флуоресценции в узкой спектральной области. В согласии с этими наблюдениями в работе [565] при исследовании на приборе с высоким разрешением была обнаружена несколько размытая благодаря диффузности линий J-структура. ЙГ-струк-тура основных полос соответствует структуре полос перпендикулярного типа (АК = 1), в то время как некоторые более слабые полосы имеют гибридную структуру, отвечающую запрещенной электронно-колебательной компоненте. Барьеры внутреннего вращения для концевых и центральных связей С—С равны соответственно 2700 и 5300 см-1.  [c.661]

Поглощение света кристаллами определяет окраску последних. Например, многие диэлектрики при комнатной температуре оптически прозрачны. Эта прозрачность обусловлена отсутствием в них электронных или колебательных переходов в видимой области спектра. Видимая область простирается от 740 до 360 нм, что соответствует интервалу энергий от 1,7 до 3,5 эВ. Этой энергии излучения недостаточно для перевода электронов из валентной зоны в зону проводимости (если ширина запрещенной зоны больше 3,5 эВ). Так, например, чистые кристаллы алмаза, имеющие ширину запрещенной зоны 5.2 эВ, являются прозрачными. Однако 312  [c.312]

При выводе общего электронного правила отбора (11,1) пренебрегалось весьма существенными в ряде случаев электронно-колебательными взаимодействиями типов (а) и ( ), хотя известно, что запрещенные этим правилом переходы часто происходят с небольшой интенсивностью именно за счет электронно-колебательных взаимодействий. Как упоминалось ранее, общее правило отбора, справедливое, если не пренебрегается электронно-колебательными  [c.137]

Подобным образом могут быть рассмотрены и запрещенные компоненты разрешенных электронных переходов. Б таких случаях переходы Y — X и Z — X (фиг. 48) разрешены с различными компонентами перехода однако из-за электронно-колебательного смешивания состояний Z и У запрещенная компонента перехода У — X может появиться с той же самой компонентой момента перехода, что и у перехода Z — X. Примером для линейной молекулы может служить электронный переход 2 — П в молекуле N O, при котором наблюдалась слабая параллельная компонента (типа П — П) (гл. V, разд. , в).  [c.141]

Структура полос запрещенных переходов, которые становятся возможными для магнитного дипольного излучения, совершенно аналогична структуре полос при обычных электрических дипольных переходах (как в линейных молекулах). По этой причине правила отбора для квантовых чисел / и К остаются теми же, тогда как правила отбора для электронно-колебательно-вращательных типов симметрии изменяются А <--> А вместо А <-- А о  [c.242]

Поэтому, для того чтобы Re v e"v" было ОТЛИЧНО ОТ нуля, электронно-коле-бательные типы симметрии должны отличаться от электронных. Таким образом, переходы между колебательными уровнями при запрещенном электронном переходе будут другими, чем переходы при разрешенном электронном переходе (см. ниже). Очевидно, что запрещенные переходы этого типа не имеют аналогии в двухатомных молекулах, поскольку колебания двухатомных молекул всегда полносимметричны и, следовательно, электронно-колебательная симметрия всегда такая же, как и симметрия электронного состояния. Запрещенные электронные переходы различного рода в многоатомных молекулах возможны по той причине, что в сложных молекулах могут возбуждаться антисимметричные или вырожденные колебания, понижающие симметрию молекулы по сравнению с равновесной конфигурацией. При возбуждении таких колебаний электронные правила отбора накладывают меньше ограничений на переходы.  [c.138]


Переходы, индуцированные кориолисовым взаимодействием. Структура полосы при запрещенных электронных (или электронно-колебательных) переходах будет отличаться от структуры полосы при разрецюнных переходах, если запрещенные переходы становятся возможными в результате взаимодействия с вращением, т. е. в результате кориолисова взаимодействия. Рассмотрим в качестве наиболее наглядного примера полосу 0,0,. .. —  [c.265]

Итак, мы показали, что энергетические уровни молекул можно классифицировать по типам точной симметрии, базисной симметрии и приближенной симметрии, а также по точным и приближенным квантовым числам. Наиболее полезными символами для классификации уровней являются Г (или четность), F, Frve, /, /, S, N, колебательные квантовые числа Vt и вращательные квантовые числа К, ( /) для симметричного волчка, Ка, Кс ДЛЯ асимметричного волчка и R для сферического волчка. Для определенных целей можно использовать также базисные типы симметрии Гг, Fv, Ге, Frv и Fve группы МС. Эти типы симметрии могут быть использованы для выявления смешивания уровней различными возмущениями и при определении правил отбора для электрических дипольных переходов. Среди наиболее важных правил отбора для возмущений особое место занимают правила, согласно которым ангармонические возмущения связывают уровни одинакового типа Fv, центробежное искажение и кориолисово взаимодействие связывают уровни одинакового типа Frv, а вибронное взаимодействие связывает состояния одинакового типа симметрии Fve. Получены также правила отбора по колебательным и вращательным квантовым числам. Выведены правила отбора для электрических дипольных переходов по колебательным, вращательным и электронным квантовым числам и по типам симметрии переходы, не подчиняющиеся этим правилам отбора, называются запрещен  [c.362]

Запрещенные переходы между невырожденным электронными состояниями. Из общего правила отбора следует, что при всех запрещенных электронных переходах, которые становятся возможными вследствие электронно-колебательных взаимодействий, полоса 0—0 отсутствует, как и все другие колебательные переходы, разренуенные при разреятенпом электронном переходе. Как было показано выше, отсутствие в спектре полосы О—О при электронных переходах, запрещенных но симметрии, является строгим для электрического дипольного излучения, если можно пренебречь электронновращательным взаимодействием (т. е. в отсутствие вращения) ).  [c.175]

До сих пор предполагалось, что электронно-колебательное взаимодействие в вырожденном электронном состоянии (эффект Яна — Теллера) очень мало. Если же это взаимодействие не пренебрежимо мало, то могут оказаться возможными некоторые электронно-колебательные переходы, запрещенные правилом отбора (11,31) при отсутствии такого взаимодействия. Например, могут наблюдаться полосы 1 — 0 и О — 1, обусловленные возбуждением вырожденного колебания (у )- Эти переходы могут иметь как параллельные, так и перпендикулярные компоненты (фиг. 61), однако лишь перпендикулярные компоненты будут наблюдаться со значительной интенсивностью, так как они могут заимствовать интенсивность у главных перпендикулярных полос. Таким образом, эти полосы 1 — О и О — 1 относятся к перпендикулярному типу, но по структуре отличаются от главных полос из-за различия эффективных значений С- Впервые это было показано Малликеном и Теллером [917] для СНз1.  [c.235]

Как и в случае молекул типа симметричного волчка, структура полос молекул типа асимметричного волчка ири запрещенных электронных переходах, которые становятся возможными в результате электропно-колебатель-ного взаимодействия, совершенно такая же, как и при разреигепных переходах направление момента перехода и, следовательно, структура полос определяются электронно-колебательной симметрие верхнего и нижнего состояний.  [c.265]

Следует отметить, что поворот осей вызывает появление запрещенных подполос независимо от наличия какого-либо другого близко расположенного электронного состояния. При кориолисовом взаимодействии вблизи верхнего или нижнего состояния должно находиться соответствующее третье электронное состояние. Единственными запрещенными электронными или электронно-колебательными переходами в молекулах с достаточно низкой симметрией (достаточно низкой для того, чтобы мог происходить поворот осей) являются переходы типа g — gnu — и. Поворот осей не может пндуцп-ровать эти переходы.  [c.268]

Если все электронные переходы в основное состояние из различных возбужденных состояний, образовавшихся при столкновении партнеров, запрещены, остается возможность колебательного (инфракрасного) перехода в пределах основного электронного состояния, если это состояние также образовалось из сталкивающихся частиц. Таким образом, имелось бы обращение случая II предиссоциации непосредственно в основное состояние с последующим переходом с излучением (инфракрасным) с диффузного уровня на резкий уровень ниже диссоциационного предела. Однако вероятности инфракрасных переходов малы — порядка Ю (а не 10 ), а поэтому применимы те же самые рассуждения насчет выхода, что и для запрещенных электронных переходов.  [c.489]

Таким образом, переход разрешен между электронными состояниями, прямое произведение типов симметрии которых содержит тип симметрии поступательного движения в группе МС ). При этом участвующие в переходе колебательные уровни должны относиться к одному и тому же типу симметрии группы МС. Следовательно, так как волновая функция основного колебательного уровня полносимметрична, переход с поглощением из основного вибронного состояния молекулы может происходить только на колебательные уровни полносимметричных колебаний возбужденного электронного состояния. Однако если имеется вибронное взаимодействие между состояниями Ф ФС и (или) Ф"Ф" и другими виброниыми уровнями других электронных состояний [51] или если электронный момент перехода Ма(е, е") сильно зависит от координат ядер, то остается справедливым только следующее правило отбора по симметрии для вибронно-разрешенных (но электронно-запрещенных) переходов  [c.349]


Появление индуцированных спектров поглощения определяется электрическими дипольными переходами, которые происходят в результате нарудтепия тех или иных правил отбора под действием внешних полей любого происхождения. Это могут быть поля, возникающие при столкновениях молекул, т. е. в общем случае межмолекулярные поля, или приложенные к образцу макроскопические поля внешних источников. Таким образом, индуцированные спектры входят в более обширную категорию запрещенных молекулярных спектров, которые включают также квадру-польные и магнитные дипольные спектры, переходы, обусловленные вращательно-электронными, колебательно-электронными, колебательно-вращательными взаимодействиями и т. д.  [c.214]

Взаимодействие электронных состояний различных типов. В отличие от двухатомных молекул в многоатомных молекулах перемешивание (взаимодействие) электронных состояний различных типов может быть вызвано взаимодействием колебательного и электронного движений. Так происходит потому, что теперь для взаимодействия двух состояний друг с другом одинаковыми должны быть типы электронно-колебательных волновых функций. Это возможно при наличии двух подходящих колебательных уровней в двух электронных состояниях различных тинов. В таких случаях можно ожидать сдвиги колебательных уровней каждого из двух электронных состояний от их нормального положения в смысле взаимного отталкивания возникают электронно-колебательные возмущения. И обратно, величина этих возмущений зависит от расстояния между невозмущенными уровнями. В то же время каждое из взаимно возмущающихся электронно-колебательных состояний приобретает свойства другого электронного состояния, и это приводит к появлению запрещенных переходов (гл. II).  [c.69]

По тем же причинам могут наблюдаться запрещенные компоненты разрешенных электронных переходов. Например, электронный переход Ах — Ах в молекуле с симметрией -2v разрешен для Mz (т. е. момент перехода направлен по оси симметрии). Компоненты диполя и Му не приводят к разрешенному переходу. Одиако в каждом электронном состоянии имеются электронно-колебательные уровни Вх и В2, которые в соответствии с выражением (II, 19) могут комбинировать с электронно-колебательными уровнями Ах другого состояния, если момент перехода перпендикулярен оси симметрии. Подобным образом электронный переход 2 — П в линейной Соо,-) молекуле разрешен только для момента перехода, перпендикулярного межъядерной оси (т. е. только для Мх, у)- Однако в электронном состоянии 2 имеются электронно-колебательные уровни типа П, которые в соответствии с выражением (II, 19) могут комбинировать с электронно-колебательными уровнями типа П электронного состояния П момент перехода направлен при этом вдоль мен ъядерной оси М )- И на этот раз все запрещенные компоненты имели бы нулевую интенсивность, если бы не было взаимодействия между колебательными и электронными движениями.  [c.139]

Подтверждение правила отбора (II, 31) для некоторых точечных групп может быть получено из рассмотрения свойств симметрии. Это относится к таким точечным группам, как/>2 1 Dih, /Лл,Для которых только четные обертоны деформационного колебания имеют полносимметричные составляющие. Следовательно, только четные или только нечетные колебательные уровни могут комбинировать с данным уровнем другого электронного состояния. В таких случаях правило отбора (11,31) остается строгим, даже если принимать во внимание более тонкие взаимодействия. (Запрещенные компоненты разрешенных электронных переходов рассмотрены в разд. 2,6, р.) В других точечных группах (например, Г7зв, T ,. ..) все обертоны вырожденных колебаний имеют по крайней мере по одной полносимметричной составляющей (см. [23], табл. 32), и свойства симметрии допускают возможность перехода на какой-либо полносимметричный уровень другого электронного состояния как при четных, так и при нечетных значениях г следовательно, правило (11,31) не является строгим. Однако во всех случаях переходы 1—О (или О—1) по вырожденному колебанию запрещены из соображений симметрии, и правило (11,31) справедливо в весьма высоком приближении. Как и для антисимметричных колебаний, сммуарная интенсивность всех переходов с Ау О для вырожденных колебаний очень мала по сравнению с интенсивностью переходов с Ау = О даже при весьма сильном различии частот колебания в обоих состояниях.  [c.154]

ДЛЯ какого-либо колебательного перехода при электронном переходе, запрещенном симметрией. Причина этого заключается в том, что в данном с. учае значение Re v e"v дается в]>1ражением (11,11), и так как для запрещенного перехода (< о) по определению равно нулю, то для любых функцн  [c.174]

Однако если учесть электронно-колебательное взаимодействие типа (а), т. е. изменение г 3е и, следовательно, Яе е" при изменении Q [см. уравнение (11,9)], то для / е в й"г" следует по.пьзоваться выражением (11,8), которое в общем случае не равно нулю для запрещенного перехода, поскольку в случае ненолносимметрнчной ядерной конфигурации симметрия не приводит  [c.174]

На фиг. 69 схематически показана колебательная структура спектра при переходе А2 — Ах в молекуле симметрии Сгг- Пунктиром обозначены колебательные переходы, которые наблюдались бы в случае разрешенного электронного перехода в предполонхении, что интенсивно возбуждается только одно полносимметричное колебание VI. Для такого разрешенного перехода при низкой температуре первой будет полоса О—О, с нее начинается прогрессия по VI. В случае же запрещенного перехода первой полосой прп низкой  [c.176]

В качестве второго примера рассмотрим переход Bzu — Ag в молекуле симметрии I)2h (например, в случае этилена или нафталина). Этот переход разрешен для компоненты дипольного момента Му, матричный элемент которой для чисто электронного перехода отличен от нуля. Матричные элементы двух других компонент (Мх и Мг) для чисто электронного перехода равны нулю. Однако для электронно-колебательного перехода матричные элементы компонент Мх и Afj могут быть отличными от нуля, если обладает типами симметрии соответственно Big и B g, поскольку ре Мх е и е Мг "е имеют такие типы симметрии. Следовательно, кроме главных полос, связанных с верхними полносимметричными колебательными уровнями (предполагается, что переходы происходят при поглощении излучения с самого низкого колебательного уровня основного состояния), очень слабо может возбуждаться один квант колебания типа big или b g с компонентой дипольного момента Мх или Мг), которая отличается от компоненты для основного перехода Му). В случае нафталина наблюдалось возбуждение колебания b g (Крейг, Холлас, Редис и Уэйт [253]). У этой молекулы интенсивность разрешенного перехода весьма невелика, так что запрещенные колебательные переходы сравнимы по интенсивности с основными разрешенными полосами (или даже несколько интенсивнее их).  [c.177]

Если, однако, запрещенный переход становится возможным благодаря возбуждению вырожденного колебания, то положение несколько меняется из-за наличия расщеплений типа Реннера — Теллера и Яна — Теллера. В соответствии с общим правилом отбора только определенные электронноколебательные компоненты вырожденного электронного состояния могут комбинировать с другим электронным состоянием (основным состоянием). На фиг. 71 приводятся два примера переход Hg — для молекулы с симметрией li h и переход Е" — А[р,ля молекулыс симметрией 2>з/,. В первом случае при возбуждении в электронном состоянии Hg одного кванта колебания типа Пи (скажем, V2) возникают три электронно-колебательных состояния, из которых только состояние типа может комбинировать с нижним состоянием тина Если, кроме того, возбуждены и другие полносимметричные колебания, то во всех случаях переходы с нижнего состояния возможны только на компоненты типа 2i. Расстояние первой интенсивной полосы (полосы 1—О по деформационному колебанию) от отсутствующей полосы 0—0 теперь уже не равно частоте деформационного колебания в верхнем состоянии, а больше нее или меньше из-за расщепления типа Реннера — Теллера.  [c.179]


Наконец, следует упомянуть запрещенные переходы, обусловленные кориолисовым взаимодействием (т. е. электронно-колебательно-вращательным взаимодействием). При усилении вращения могут смешиваться электронноколебательные уровни, отличающиеся на тип симметрии вращения. Следо-  [c.242]

Гибридные полосы. Как показано в таэл. 16, в молекулах точечных групп 6 1, Сь, Сз, С2 и Сгк могут наблюдаться гибридные полосы. Иными словами, при одном и том же электронно-колебательном переходе для таких молекул возможны вращательные переходы параллельного типа и вращательные переходы перпендикулярного типа. Относительные интенсивности параллельных и перпендикулярных компонент зависят от ориентации момента перехода по отношению к осям волчка. Из табл. 16 легко можно видеть, что перпендикулярные компоненты гибридных полос являются одиночными компонентами для каждой из них должно соблюдаться одно из грех правил отбора (И,97) — (Н,99). Другими словами, при А >0 ветви Р, а В имеют только по две, но не по четыре компоненты. Исключение составляют молекучы точечных групп С 1 (симметрия отсутствует) и (7,, полосы которых полностью гибридны, т. е. наблюдаются все три компоненты — тина А, типа В и типа С,— если момент перехода случайно не оказывается направленным по одной из главных осей. Характерные гибридные полосы были обнаружены в запрещенных компонентах системы полос пропиналя около 3800 А (Бранд, Калломон и Уотсон [141]). В отличие от главных полос, относящихся к строго перпендикулярному типу (тип С), запрещенная компонента состоит из электронно-коле-бательных переходов А — А% при которых имеются как параллельные, так и перпендикулярные составляющие момента перехода. В некоторых из этих полос разрешена А -структура. Подполосы с АК = О (тип ) и с АК = 1 (тип В) имеют приблизительно одинаковую интенсивность.  [c.260]

Магнитные дипольные переходы. Как уже указывалось в разд. 1, некоторые электронные переходы, запрещенные для электрического дипольного излучения, могут происходить для магнитного дипольного (и квадрупольного) излучения. Это относится также и к электронно-колебательным переходам, когда учитывается взаимодействие колебательного и электронного двшкений. Так, например, электронно-колебательные переходы — Ах в молекулах точечной группы или электронно-колебательные переходы Ag — Ag точечной группы С2/-,, строго запрещенные для электрического дипольного излучения, могут происходить в случае магнитного дипольного излучения (табл. 10). Правила отбора для квантовых чисел / и А те же самые, что и для электрического дипольного излучения, а правило отбора для элек-тронпо-колебательно-вращательных типов симметрии противоположно. Следовательно, как это показано на фиг. 113, при магнитном дипольном переходе А2 — Ах наблюдаются те же подполосы и те же ветви, что и при электрическом дипольном переходе — Ль в частности, в подполосе А = О - —>-  [c.270]

Колебание, которое вызывает электронно-запрещенную предиссоциацию, может быть возбуждено или в состоянии п, или в состоянии г. Если по какой-либо причине оно возбуждено только в п, то окажется, что ни одна из интенсивных полос поглощения (при низкой температуре), содержащая полносимметричные колебательные уровни (гл. И, разд. 2,6), не будет диффузной. Только слабые полосы, соответствующие запрещенной компоненте дипольного момента, окажутся диффузными. С другой стороны, интенсивные полосы будут диффузными, когда возбуждены неполносимметричные колебания в непрерывном состоянии ( ). Трудно предсказать, в каком из состояний п или I электронно-колебательное взаимодействие будет более эффективным (Шпонер и Теллер [1155]).  [c.476]

Объясняя метастабильпость (т > 10 се ), следует предполагать, что метастабильные ионы находятся или на высоких колебательных уровнях основного состояния (Тг > 10 сев), или в возбужденном электронном состоянии, которое не может легко комбинировать с любым низким стабильным состоянием. При объяснении большого времени жизни Т/ предполагают, что имеется или случай II предиссоциации (если число атомов довольно велико и движение по фигурам Лиссажу достаточно сложное), или случай I предиссоциации, который строго запрещен.  [c.484]

Дуглас [293] показал, что в полосах первой системы наблюдается заметный эффект Зеемана, свидетельствующий о том, что верхнее состояние должно быть триплетным состоянием. На этом основании будем обозначать соответствующий переход как а — X-переход. Мерер [822] проанализировал вращательную структуру ряда полос рассматриваемой системы и нашел ясные доказательства триплетного характера расщепления, хотя он и не смог обнаружить некоторые из ожидаемых ветвей (см. стр 268). Он установил, что система связана с электронным переходом так как в спектре наблюдаются только подполосы с АК = 1. Представляется вероятным, что система А —X соответствует переходу 51—однако это предположение пока не подтверждено детальным анализом вращательной структуры полос. Другая интересная особенность системы при 3900 А заключается в появлении для колебания Vз (антисимметричное валентное колебание) полосы 1—О, интенсивность которой сравнима с интенсивностью полосы 0—0. Согласно Ван дер Ваальсу [1248а], появление такой запрещенной компоненты нри электронном переходе не может быть обусловлено простым электронно-колебательным взаимодействием с другим триплетным состоянием (типа В ), а должно быть связано с колебательным спин-орбитальным расщеплением. При этом расщеплении, если колебание Гз (Ьг) возбуждается нечетным числом квантов, Лг-ком-понента состояния смешивается с 1Д1-состоянием и электронный переход Вх — сопровождается появлением полос 1—О, 3—О,. . ., заимствующих интенсивность у соседнего перехода  [c.522]


Смотреть страницы где упоминается термин Колебательная при запрещенных электронных : [c.173]    [c.176]    [c.176]    [c.241]    [c.353]    [c.163]    [c.247]    [c.533]    [c.25]    [c.329]    [c.363]    [c.32]    [c.165]    [c.243]    [c.530]    [c.547]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.0 ]



ПОИСК



Запрещенные

Колебательная структура электронных запрещенных

Колебательные



© 2025 Mash-xxl.info Реклама на сайте