Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Амплитуды нормальных колебаний яде

Этот вывод позволяет обосновать то положение, которым мы пользовались без доказательства при рассмотрении нормальных колебаний в сплошной системе. Именно, в 149 мы полагали, что распределение амплитуд нормальных колебаний должно быть либо синусоидальным, либо косинусоидальным теперь мы можем это положение считать обоснованным, поскольку мы убедились (в 154), что распределение амплитуд стоячих волн действительно является синусоидальным или косинусоидальным, а значит, таким же оно должно быть для нормальных колебаний.  [c.692]


Выражение аргумента в синусоидальном распределении амплитуд нормальных колебаний выбрано так, чтобы для s = 0 и s = n + l для всех гармоник i/o и обраш,ались в нуль. При и = оо это распределение амплитуд совпадает с распределением для стержня с закрепленными концами. Для п конечного, т. е. для дискретной модели, полагаем, что амплитуды грузов тоже распределены по закону синуса, но, конечно, это распределение уже не непрерывное, а дискретное ys имеют смысл только для отдельных дискретных значений аргумента skn/ n + 1), соответствующих целым значениям s. Чтобы проверить правильность нашего предположения, подставим выражение (19.15) в уравнения движения грузов (19.14). Нетрудно убедиться, что при этой подстановке (19.14) обращается в тождество, если  [c.695]

Таким образом, собственные частоты и коэффициенты распределения амплитуд и являются теми характеристиками, которые необходимо определить экспериментально. Удобно свободные колебания системы представить суммой собственных каждое из которых является гармоническим колебанием нормальной координаты q Последнюю можно определить как координату, совершающую гармонические колебания лишь частоты Амплитуда нормального колебания определяется амплитудой колебаний (той же частоты) в одной из обобщенных координат, напри.мер q . Обычные, физические, координаты выражаются через нормальные в соответствии с (3).  [c.331]

Амплитуды нормальных колебаний ядер  [c.597]

В рассматриваемом случае, когда парциальные системы одинаковы, их парциальные частоты совпадают и по мере ослабления связи нормальные частоты сколь угодно приближаются друг к другу, а значит, биения могут быть сколь угодно медленными. С другой стороны, если амплитуды обоих нормальных колебаний одинаковы, то амплитуда колебаний каждой массы будет по очереди периодически падать до нуля независимо от того, насколько слаба связь между системами с одной степенью свободы. Следовательно, при сколь угодно слабой связи должна происходить полная перекачка энергии из одной системы в другую и обратно. Но так как при очень слабой связи период биений очень велик, а энергия полностью переходит из одной системы в другую за полпериода биений, то перекачка энергии будет происходить очень медленно. Если потери энергии в связанных системах велики, то колебания в них могут успеть полностью затухнуть за время меньшее, чем полпериода биений. Тогда биения наблюдаться не будут. Напомним, что все сказанное относится к случаю, когда обе парциальные системы одинаковы. Случай неодинаковых парциальных систем рассмотрен в следующем параграфе.  [c.638]


Амплитуды каждого из нормальных колебаний струны распределяются вдоль струны по закону синуса. Узловые точки — это точки, в которых этот синус обращается в нуль. Для основного тона на всей длине струны укладывается только один полупериод синуса (одна полуволна ). Для обертонов распределение амплитуд таково, что на длине струны укладываются две, три и т. д., вообще целое число полуволн.  [c.654]

Демонстрацией явления резонанса в сплошных системах может служить следующий опыт. На общем основании (легком столике) укреплены мотор с эксцентрично насаженной небольшой массой и длинная стальная пластинка, зажатая в тиски (рис. 43 ). При вращении мотора неуравновешенная масса вызывает колебания стола, которые действуют на пластинку. Изменяя число оборотов мотора, можно достигнуть того, что частота колебаний будет совпадать с основным тоном колебании пластинки — будет наблюдаться резонанс. Увеличивая число оборотов мотора, можно достичь того, что частота внешней силы окажется равной частоте одного из обертонов колебаний пластинки. При этом снова будет наблюдаться резонанс. Распределение амплитуд вынужденных колебаний будет совпадать с распределением, соответствующим тому нормальному колебанию, для которого имеет место резонанс. Кроме зажатого нижнего конца на пластинке появится еще одна или несколько узловых точек.  [c.658]

При этом частоты всех нормальных колебаний, очевидно, останутся неизменными, но распределения амплитуды скоростей и деформаций для каждого из нормальных колебаний поменяются местами, т. е. для стержня с закрепленными концами рис. 436, б дает распределение амплитуд деформаций, а рис. 436, а — распределение амплитуд скоростей, рис. 434, б дает последовательность импульсов деформаций для среднего сечения стержня, и т. д. В частности, как и должно быть, на закрепленных концах стержня образуются узлы скоростей и пуч-]юсти деформаций. Все же остальное, сказанное выше о расположении узлов и пучностей, остается в силе.  [c.668]

Вся эта картина характерна именно для явления резонанса, который должен наступать всякий раз, когда частота гармонической внешней силы совпадает с одной из нормальных частот колебательной системы. И действительно, сопоставив, с одной стороны, условия, определяющие частоты внешней силы, при которых амплитуды стоячих волн в стержне достигают максимального значения, а с другой — условия, определяющие частоты нормальных колебаний стержня ( 149), мы позднее убедимся, что те и другие условия совпадают.  [c.688]

Учтя все сказанное, мы можем констатировать, что частоты нормальных колебаний стержня и частоты действующей на стержень внешней силы, при которых амплитуды стоячих волн в пучностях достигают максимума, при аналогичных краевых условиях совпадают при одинаковых краевых условиях на обоих концах стержня на длине стержня должно укладываться целое число полуволн, а при разных краевых условиях на обоих концах стержня — нечетное число четвертей волн.  [c.692]

Итак, мы убедились, что возникновение в стержне под действием гармонической внешней силы стоячих волн значительной амплитуды представляет собой явление резонанса внешняя сила поддерживает сильные вынужденные колебания, частота и распределение амплитуд которых очень близки к частоте и распределению амплитуд одного из нормальных колебаний стержня. Роль внешней силы сводится при этом лишь к компенсации потерь энергии в стержне. Представим себе, что после установления стоячей волны потери энергии в стержне начинают уменьшаться, но вместе с тем мы уменьшаем амплитуду внешней силы (или заданного движения) так, чтобы амплитуда стоячей волны оставалась неизменной. В пределе, когда потери энергии в системе совсем прекратятся и амплитуда внешней силы обратится в нуль, в стержне останется стоячая волна, совершенно идентичная с соответствующим нормальным колебанием стержня. Таким образом, свойственные сплошной системе без потерь нормальные колебания тождественны со стоячими волнами, которые могут возникать в этой системе.  [c.692]


Как мы убедились, под действием внешней силы в случае резонанса в системе возбуждаются стоячие волны, по характеру распределения амплитуд близкие к тому из нормальных колебаний системы, частота которого совпадает с частотой внешнего воздействия. В других случаях возбуждения интенсивных колебаний в сплошной системе дело обстоит аналогичным образом. Так, в случае параметрического возбуждения колебаний ( 152) интенсивные колебания возникают, когда частота колебаний ножки камертона вдвое больше одного из нормальных колебаний струны, и распределение амплитуд колебаний будет такое же, как для соответствующего нормального колебания струны на струне укладывается половина синусоиды , целая синусоида , полторы синусоиды и т. д.  [c.692]

Если затухание собственных колебаний в системе мало, то механизм, поддерживающий автоколебания, подводит к системе за период энергию, составляющую лишь малую долю всей энергии, которой обладает колеблющаяся система. Поэтому он очень мало изменяет характер поддерживаемых колебаний автоколебания как по частоте, так и по распределению амплитуд оказываются близкими к нормальным колебаниям системы. Например, при игре на скрипке обычно основной тон колебаний таков, что для него вдоль свободной части струны — от пальца, прижимающего ее к грифу, до подставки — укладывается половина длины волны. Частота колебаний скрипичной струны, возбуждаемой смычком, совпадает с частотой собственных колебаний, которые получаются, если эту струну оттянуть, а затем отпустить.  [c.693]

Следовательно, лежащие в области низких частот (для которых k п) нормальные колебания дискретной и сплошной систем совпадают по частоте и имеют одинаковое распределение амплитуд. По мере увеличения k частоты дискретной и сплошной систем постепенно расходятся у дискретной системы спектр обрывается на частоте  [c.696]

Можно сказать, что в системе с одной степенью свободы также устанавливается стоячая волна с узлами смещений на закрепленных концах пружин и с пучностью смещений в средней точке, т. е. с таким же расположением узлов и пучностей, как у наинизшего нормального колебания исходной системы с п степенями свободы, но отличным от синусоидального распределением амплитуд.  [c.701]

В простейшем случае, когда в спектре присутствуют все номера нормальных колебаний, расстояние между частотами равно наинизшей нормальной частоте если же амплитуды некоторых нормальных колебаний обращаются в нуль, то раз-нада в ч.астотах двух смежных нормальных колебаний может быть больше, чем наи-низшая нормальная частота.  [c.702]

Вследствие отражения звуковых волн у концов трубы столб воздуха, заключенный в трубе конечной длины и диаметра, малого но сравнению с длиной волны, как и стержень, представляет собой одномерную колебательную систему, обладающую определенными нормальными колебаниями — основным тоном и гармоническими обертонами. Частоты этих колебаний и распределение их амплитуд вдоль трубы, а также возникновение резонанса при вынужденных колебаниях определяются совершенно теми же условиями, что и в случае стержня, причем закрытый конец трубы аналогичен закрепленному концу стержня, а открытый конец трубы — свободному 154).  [c.734]

Таким образом, для каждого нормального колебания тот маятник имеет большую амплитуду, у которого парциальная частота близка к собственной частоте рассматриваемого колебания. При равенстве парциальных частот связанность системы велика даже при малых коэффициентах связи. В этом случае относительная величина амплитуды каждого колебания одинакова в обеих координатах.  [c.245]

Каждому нормальному колебанию соответствует определенное распределение амплитуд по координатам, или определенная форма колебании. Формы колебаний, соответствующие разным собственным частотам, ортогональны друг другу. Для того чтобы показать это, запишем уравнение (8.1.7) для з-й и г-й форм колебаний  [c.285]

В одном важном частном случае, а именно, при расположении всех атомов данной молекулы вдоль одной прямой, молекула называется линейной. Число колебательных степеней свободы линейной молекулы равно Зп —5, так как вращение вокруг данной оси молекулы нельзя рассматривать как самостоятельную степень свободы. Вдоль оси линейной молекулы расположены п атомов, поэтому возможны п независимых движений вдоль этой оси. Из них одно движение является поступательным, а п—1 — колебательными. Таким образом, для колебательных движений, выводящих атомы с оси молекулы, остается Зп —5 —(я—1)== = 2 (я — 2) степеней свободы. Поскольку обе ортогональные плоскости, проходящие через ось молекулы равноправны, то все колебания, выводящие атомы с оси молекулы, дважды вырождены. Таким образом, линейная молекула из я атомов имеет 2я —3 различные частоты собственных колебаний. При я = 2 имеется лишь одна собственная частота, при я = 3 —три собственные частоты и т. д. Примером линейной трехатомной молекулы может служить молекула углекислого газа СО . Эта молекула имеет четыре колебательные степени свободы. Два нормальных колебания молекулы происходят вдоль ее оси. Третье и четвертое колебания выводят атомы с оси молекулы. Рассчитаем собственные частоты и коэффициенты распределения амплитуд по координатам Д.ПЯ этой молекулы. Пусть атомы расположены по оси ОХ и имеют координаты х , х . Запишем кинетическую и потенциальную  [c.290]

Величины Ds и определяются начальными условиями. Собственное колебание л-го звена цепочки представляет суперпозицию N нормальных колебаний. Распределение амплитуд по координатам для каждой собственной частоты происходит по синусоидальному закону.  [c.300]


Зависимость амплитуд Q нормальных колебаний от р носит резонансный характер. Максимальную амплитуду имеет то колебание, для которого собственная частота (Ип = пт/1 совпадает с частотой внешней силы р.  [c.337]

Колебания, описываемые одной гармоникой, называются первыми нормальными колебаниями. Поскольку величина k2i отношения амплитуд не зависит от начальных условий, то рассматриваемые одночастотные колебания характеризуются вполне определенным соотношением амплитуд, зависяш,им только от параметров системы. Следовательно, K21 определяет первую нормальную форму колебаний.  [c.619]

Резюме. Движение произвольной механической системы вблизи положения устойчивого равновесия удобно изучать с помощью пространства конфигураций. В этом случае пространство евклидово, а переменные qi служат в нем прямолинейными координатами. Главные оси квадратичной формы потенциальной энергии определяют п взаимно ортогональных направлений в пространстве конфигураций, которые могут быть выбраны в качестве осей естественной системы координат. С-точка совершает гармонические колебания вдоль этих направлений с частотами, меняющимися от одной оси к другой. Амплитуды и фазы этих колебаний, называемых нормальными , произвольны и зависят от начальных условий. Произвольное движение системы является суперпозицией нормальных колебаний. В результате такого движения С-точка описывает фигуры Лиссажу в пространстве конфигураций. Для устойчивости равновесия требуется, чтобы корни характеристического уравнения были положительны, так как в противном случае нарушается колебательный характер движения.  [c.189]

Синусоидальное распределение амплитуд нормальных колебаний является весьма распространенным, но все же не общим законом распределения амплитуд в сплошных системах. Чтобы распределение амплитуд нормальных колебаний было синусоидально, прежде всего необходимо, чтобы сплошная система была однородна, т. е. ее плотность и упругость во всех точках брлли одни и те же. Если, например, мы нарушим однородность резиновой струны, насадив на нее три свинцовых грузика, то при колебаниях струна до самого конца будет сохранять форму ломаной линии (рис. 426 и 427), а не приближаться (как в случае однородной струны) к синусоидальной форме. Вследствие неоднородности распределение амплитуд нормального колебания становится несинусоидальным.  [c.654]

Была записана траектория движения центра изделия при самовозбуждающихся (колебаниях У = 67 м1мин 5 = = , 2Ъ мм1об глубина резания 10 мкм высота круга 10 мм амплитуда нормальных колебаний 13,5 мкм, касательных —  [c.65]

При малых амплитудах колебания многоатомной молекулы, как и двухатомной, гармонические. Поскольку колебания отдельных атомов в молекуле связаны друг с другом, то многоатомную молекулу можно представить как совокупность набора осцилляторов, движения которых связаны между собой. Энергия, попадающая на один из осцилляторов, например на отдельную связь в молекуле, перераспределяется через некоторое время по другим связям, и все атомы и связи вовлекаются в колебание. Из механики известно, что движение связанной системы как целого может быть представлено наложением ее нормальных колебаний, т. е. таких колебаний, в которых все элементы системы движутся с одинаковой частотой и фазой в тех или иных направлениях. Именно нормальные колебания проявляются в спектрах и число их равно числу степеней свободы. В общем случае Л -атомпой нелинейной молекулы число степеней свободы и число нормальных колебаний равны ЗА —6. Это означает, что, например, в спектре трехатомной молекулы воды Н2О должны быть представлены три частоты и три нормальных колебания. Может оказаться, что некоторые из ЗМ—6 колебаний имеют одинаковые частоты и поэтому разным нормальным колебаниям соответствует одна и та же спектральная линия (полоса).  [c.241]

Нормальные колебания. Рассмотрим сначала возбуждения, связанные с колебаниями решетки, которые встречаются во всех твердых телах. Точно оннсать состояния всех атомов очень трудно, так как нотенциальная энергия такой системы зависит от разно( ти координат каждой нары атомов. Однако для малых амплитуд колебаний около положений равновесия силы, действующие между атомами, можно ириближенно рассматривать как гармонические. Тогда координаты отдельных атомов можно заменить их линейными комбинациями (называемыми нормальными координатами), подобранными таким образом, чтобы выражения для кинетической и потенциальной энергий содержали только квадраты нормальных координат и их производных по времени. Поскольку в этом случае выражения для энергпп уже не будут содержать произведений координат разных атомов, такую систему можно рассматривать как совокупность независимых гармонических осцилляторов. Число таких осцилляторов для кристалла, содержащего N атомов, будет равно 37V, что соответствует трем степеням свободы каждого атома.  [c.317]

Конечно, колебания струны вследствие сопротивления воздуха и внутреннего третш в резине постепенно затухают. При этом не только уменьшается амплитуда колебаний струны, но изменяется и форма колебаршй. Это объясняется тем, что, оттягивая струну в одной точке, мы возбуждаем в пей не одно нормальное колебание, а ряд нормальных колебаний (все, для которых эта точка ire является узловой). Но частоты этих колебаний различны и затухают эти колебания с разной скоростью ---тем быстрее, чем выше частота колебаний. Поэтому и изменяется форма колебаний к концу в струне остается только одно [гормальпое колебание, соответствующее наиболее низкой частоте, и колеблющаяся струна принимает форму синусоиды (рис. 425). Отдельные точки струны колеблются с одной и той же частотой, но с разными амплитудами, причем эти амплитуды распределяются по закону синуса.  [c.653]

Точки, в которых амплитуда скорости того или иного нормального колебания обращается в нуль, — это уже знакомые нам узловые точки, или, точнее, узлы скоростей данного нормального колебания. Точки, в которых амплитуда деформаций того или иного нормального колебания обращается в нуль, называются узлами деформаций данного нормального колебания. Точки же, в которых амплитуда скоростей или деформаций того или иного 1юрмального колебания достигает максимума, называются пучностями соответственно скоростей или деформаций данного нормального колебания.  [c.667]

В случае, если концы стержня находятся в разных условиях (одни конец закреплен, а другой свободен), то не только распределение амплитуд, но и частоты нормальных колебаний отличаются от таковых для того же стержня со свободньмн концами. Вследствие того, что условия отражения от двух концов стержня различны, время, через которое повторяется вся картина распространения импульса по стержню, окажется вдвое больше, чем в случае стержня с одинаковыми условиями на концах. Чтобы убедиться в этом, рассмотрим стержень длины I, правый конец которого закреплен, а левый свободен (рис. 438) и на левый конец в момент t = О действует кратковременный удар, создающий импульс сжатия (рис. 438, а). Дойдя до закрепленного конца, импульс сжатия отразится ), не изменяя знака  [c.668]

Интересно отметить, что не только частота единственного неисчезнувшего нормального колебания, но и распределение амплитуд этого колебания не очень отличается от распределения амплитуд наиниз-шего нормального колебания исходной системы с п степенями свободы. В исходной системе с п степенями свободы амплитуды смещений распределены по закону синуса, причем на длине системы укладывается половина длины волны наинизшего нормального колебания в системе же с одной степенью свободы амплитуды отклонений точек пружин по мере удаления от закрепленных концов пружин растут по линейному закону, и если предположить, что размеры груза очень малы по сравнению с длиной самих пружин, то амплитуды смещений распределены по закону треугольника (рис. 451, б) ).  [c.701]


Нормальные частоты стержня зависят от его размеров, плотности и упругих свойств материала, из которого он изготовлен. Поэтому для данного стержня его пор.чальные частоты имеют вполне определенные значения. Нормальные частоты поперечных колебаний данной струны зависят, кроме того, еще и от ее силы натяжения. Выбирая соответствующим образом на-чал1)Иые условия в стержне, можно возбудить те или иные свойственные им нормальные колебания. Например, если струну, закрепленную по концам, слегка оттянуть в средней ее точке, а затем отпусппь, то мы возбудим в ней первое нормальное колебание. При этом все точки струны, кроме крайних, колеблются в одинаковых фазах, а отклонения различных точек от по.чожения равновесия находятся в определенном отношении, которое все время сохраняется и равно отношению их амплитуд (рис, 161, а). Такое колебание струны происходит с наиболее низкой нормальной частотой п является основным тоном собственных колебаний струны (см. 49). Как мы видели, второе нормальное колебание связанной системы из трех маятников происходит так, что средний маятник все время остается в покое, а крайние колеб.тются в противоположных фазах. Подобное нормальное колебание (рис. 161, б) можно возбудить и в струпе. Для этого нужно оттянуть средние точки каждой половины струны па одинаковое расстояние, но в противоположные стороны, и затем их одновременно отпустить. Тогда струна начнет колебаться так, что ее средняя точка будет все время находиться в покое, а точки одной половины струны колебаться в противофазе по отношению к точкам другой половины струны.  [c.198]

Еще более сложный характер имеют связанные колебания трехмерных тел, в которых образуются уже не узловые линии, а узловые поверхности. При колебании тела распределение уэловь7х поверхностей в нем может быть весьма сложным, особенно для тел неправильной формы. Однако и в этих случаях всякое колебание тела можно представить суммой нормальных колебаний с различными амплитудами и фазами.  [c.199]

Взаимодействие электронов с колеблющейся решеткой, называемое электрон-фононным рассеянием, сопровождается возбуждением одного из нормальных колебаний решетки. Это означает, что результатом электрон-фонон-ного взаимодействия будет излучение или поглощение фонона. Эффективное сечение рассеяния электронов на колеблющихся атомах определяется квадратом амплитуды колебаний атома и, следовательно, пропорционально температуре Т. Собственное сечение неподвижного атома не оказывает влияния на значение электрон-фононного рассеяния, так как оно учтено в т.  [c.457]


Смотреть страницы где упоминается термин Амплитуды нормальных колебаний яде : [c.400]    [c.48]    [c.29]    [c.359]    [c.636]    [c.637]    [c.653]    [c.656]    [c.659]    [c.695]    [c.696]    [c.253]    [c.236]    [c.187]    [c.118]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.80 , c.82 , c.190 ]



ПОИСК



Амплитуда

Амплитуда колебаний

Колебания нормальные



© 2025 Mash-xxl.info Реклама на сайте