Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность алюминиевых сплавов механическая

Сопротивление пластическим деформациям — Расчет 435 Прочность алюминиевых сплавов механическая — Характеристика 431  [c.554]

Проходы условные трубопроводной арматуры 4 — 735, 737 Проценты 1 — 84 Процессы необратимые 2 — 41 Прочностный расчет 3 — 428—487 Прочность алюминиевых сплавов механическая 3 — 431  [c.460]

Прочность алюминиевых сплавов быстро падает с повышением температуры (хотя есть сплавы, сохраняющие удовлетворительные механические качества до 250 —400°С).  [c.180]


Магниевые сплавы. Основными элементами, входящими в магниевые сплавы, кроме самого магния, являются А1, Zn, Мп, Первые два увеличивают прочность, а последний снижает склонность к коррозии. Вредными примесями являются Fe, Си, Si, N1. Магниевые сплавы обладают весьма высокой удельной прочностью (удельный вес магния 1,74 Псм , а его сплавов — ниже 2,0 Г/см ). Вследствие легкости сплавов магния их называют электронами. Применение магниевых сплавов позволяет уменьшать вес деталей, по сравнению с деталями из алюминиевых сплавов примерно на 20—30% и по сравнению с железоуглеродистыми — на 50—75%. Так же как и алюминиевые, магниевые сплавы делятся на литейные и обрабатываемые давлением. У последних высокая ударная и циклическая вязкость. Обработка давлением существенно повышает прочность магниевых сплавов. Механические свойства Mg литого и деформированного приведены в табл. 4.13. На основе магния созданы жаропрочные сплавы (см. раздел 13 настоящего параграфа).  [c.320]

Третьим положительным свойством является относительно высокая прочность алюминиевых сплавов, благодаря чему подшипники могут выдерживать высокие нагрузки и обеспечивать высокую усталостную прочность. Прочностные характеристики алюминиевых сплавов могут быть изменены в широких пределах путем их легирования. При этом можно получить сплавы, сохраняющие высокие механические свойства при повышенных температурах.  [c.112]

Характеристики механической прочности алюминиевых сплавов в термически обработанном состоянии  [c.431]

Сравнительная прочность алюминиевых сплавов. При оценке механических свойств металлов и сплавов, особенно предназначенных для воздушного и наземного транспорта, рекомендуется относить прочностные характеристики к удельному весу материала.  [c.243]

П. Характеристики механической прочности алюминиевых сплавов при повышенной температуре (в С) в кГ/мм  [c.480]

К первой группе относятся сплавы марок АДО, АД1 (химический состав по ГОСТ 4784—74, п. 1). АД1 содержит несколько большее количество примесей и по прочности превосходит АДО, но поскольку прочность алюминиевых сплавов сильно зависит от вида полуфабриката ГОСТы на сортамент определяют механические свойства обеих марок технического алюминия, как правило, одинаковыми (табл. 6.1).  [c.225]

Вследствие образования газовой пористости предел прочности алюминиевого сплава АЛ снижается с 25 до 15 кгс/мм [23]. Влияние водорода на пористость алюминиевых сплавов и их механические свойства отражено в работах [12, 24—25]. Образование пор объясняется изменением растворимости водорода при затвердевании металла и выделением молекулярного водорода.  [c.411]


Благодаря выгодным физико-механическим показателям, и несмотря на низкие прочностные свойства, алюминиевые сплавы и серые чугуны будут и в дальнейшем применяться для изготовления поршней. Дополнительным легированием предел прочности серых чугунов можно повышать до 42—46 кгс/мм (см. 6 гл. I). Предел прочности алюминиевых сплавов при t = 300° С удается повысить до 22 кгс/мм за счет перехода на спекание [78] с введением карбидов кремния (1,5%) и хрома (10%).  [c.195]

Наиболее прочный алюминиевый сплав В96, содержащий 8—9% Zn, 2,3—3% Mg 2—2,6% Си 0,1—0,2% Zr. Прочность этого сплава достигает 68 кгс/мм . Механические свойства сплавов системы А1—Zn—Mg—Си приведены в табл. 123.  [c.588]

Среди литейных сплавов наиболее высокими механическими и антикоррозионными свойствами обладает сплав алюминия с магнием (АЛ8), содержащий 9,5—11,5% Mg. После закалки прочность его достигает 30 кгс/см при удлинении 1 2%. Однако этот сплав обладает худшими литейными свойствами, чем другие алюминиевые сплавы.  [c.592]

ВН-76/13, а материалу ВН-76 с добавкой смешанного катализа-тора — индекс НТ-1. Пленки из этих материалов после отверждения при температурах 120 и 100° соответственно удовлетворяют требованиям, предъявляемым к материалам для изготовления и наклейки тензодатчиков. Эти материалы имеют хорошую адгезию к стали, алюминиевым сплавам и стеклопластикам. Покрытия из материалов ВН-76/13 и НТ-1 термостойки до 400° в течение длительного времени, стойки к резким перепадам температуры в диапазоне от минус 60 до плюс 400°, имеют высокое удельное-объемное сопротивление (10 ом-см при 20° и не менее 10 ом см при 400°), влагостойки в условиях тропической влажности и обладают достаточной механической прочностью. Жизнеспособность материалов ВН-76/13 и НТ-1 сохраняется в течение нескольких месяцев.  [c.281]

Деталь была изготовлена из алюминиевого сплава В95 с пределом прочности 600 МПа. По механическим характеристикам и структуре материал удовлетворял требованиям чертежа на изготовление профиля.  [c.739]

Хрупкое разрушение сепаратора подшипника из алюминиевого сплава АК4-1 произошло вследствие пониженных свойств материала прочности и, главное, пластичности, из-за перегрева при закалке. Перегрев был местный, что выявилось анализом изломов, микроструктуры и механическими испытаниями образцов, вырезанных вблизи и вдали от места разрушения. Эксплуа-  [c.50]

При анализе разрушения деталей из алюминиевых сплавов выявляется большое влияние различных концентраторов напряжений следов от грубой механической обработки, забоин, малых радиусов переходов и т. д. По-видимому, еще недостаточно обращается внимания на совершенствование технологии изготовления и рациональное конструирование этих деталей. Фактором, суш,ественно снижающим усталостную прочность деталей, является также наличие анодного слоя большой толщины. Так. местное увеличение толщины анодного покрытия до 20 мкм (вместо допустимых 7—10 мкм) при одновременном наличии в этом месте механической забоины привело к возникновению первичного очага усталостного разрушения в детали из сплава В91 после 420 000 циклов нагружения ( r i,=0,07 ГН/м , а = = 0,05 ГН/м2).  [c.115]

Полуфабрикаты из алюминиевых сплавов, изготовленные из одной и той же заготовки разными способами (прокаткой, прессованием, ковкой, штамповкой, волочением и т. п.), имеют различные механические свойства. При этом наибольшее увеличение предела прочности и текучести с пониженным значением удлинения получаются у изделий, прессованных вдоль волокна. Это явление получило название пресс-эффекта .  [c.54]

Следует отметить, однако, что механические испытания образцов-свидетелей не позволяют судить о наличии или отсутствии пережога материала детали, поскольку в начальной стадии пережога материал сохраняет высокий уровень статической прочности. Опыты показывают, что для листов с плакированным слоем из алюминиевых сплавов Д1, Д16, Д19 и некоторых других механические испытания в целом ряде случаев не позволяют также выявлять и занижение температуры при нагреве под закалку. Кроме того, механические испытания листов из сплавов Д1, Д16, Д19 в обычных условиях проводят лишь после естественного старения в течение примерно 100 ч, что значительно увеличивает весь производственный цикл.  [c.84]


Многие алюминиевые сплавы (особенно содержащие медь, цинк и магний) менее устойчивы к действию коррозии, чем чистый алюминий. Кроме того, они подвержены таким особым видам коррозии, как растрескивание под действием внутренних напряжений и межкристаллитная коррозия. Но поскольку эти сплавы часто являются катодными (имеют более положительный потенциал по отношению к чистому алюминию), то они могут получить защитное действие при нанесении покрытия из чистого металла. Комбинированное покрытие также обладает большей природной коррозионной стойкостью, чем покрытие из чистого алюминия, сохраняя большую механическую прочность основного сплава. Как плакировка, так и напыление покрытия этого типа обеспечивают долгий срок службы деталей из алюминиевых сплавов, подвергаемых атмосферным воздействиям или эксплуатируемых в питьевой воде.  [c.109]

Прочность клеевых соединений сильно зависит от способа и качества подготовки поверхности. Если для алюминиевых сплавов возможно использование агрессивных очистителей, удаляющих наружный слой, то для композиционных материалов необходимо пользоваться менее агрессивными очистителями во избежание обнажения волокон. Для удаления с поверхности посторонних включений допускается пескоструйная обработка или механическая очистка вращающейся стальной щеткой в мягких режимах.  [c.198]

Коррозия металлов в других типах вод в основном подчиняется закономерностям, рассмотренным для морской воды с учетом особенностей, связанных с ионным составом, температурой и биологическим фактором конкретной водной среды. В пресной воде с малым содержанием растворимых солей скорость коррозии всех материалов уменьшается. Отсутствие в воде ионов хлора позволяет успешно применять хромистые и хромоникелевые стали, алюминиевые сплавы без опасности возникновения язвенной коррозии. Отличительной особенностью пресной воды является ее меньшая электропроводность, что приводит к уменьшению опасности контактной и щелевой коррозии. Отсутствие в воде галоидных ионов повышает характеристики коррозионно-механической прочности, стойкость защитных лакокрасочных покрытий.  [c.30]

Алюминиевые сплавы не проявляют чувствительности к охрупчиванию при любом содержании газообразного водорода высокой чистоты в условиях комнатной температуры [80]. Прочность на растяжение и пластичность сплавов 6061-Т6 и 7075-Т73 не понижаются существенно, когда среда испытаний меняется от гелия к водороду при давлении 69 МПа. Аналогичный эффект наблюдается и для образцов с надрезом, изготовленных из тех же сплавов [81]. Нет потерь механических свойств и не изменяется характер разрушения сплава 7039-Т61 во время испытаний в среде водорода под давлением 69 МПа [82].  [c.190]

Сплавы системы А1 — Сц — Mg были первыми термически обрабатываемыми высокопрочными алюминиевыми сплавами и до настоящего времени относятся к наиболее широко используемым. Химический состав большинства применяемых промышленных сплавов серии 2000 приведен в табл. 3, вязкость разрушения, механические и коррозионные свойства — в табл. 4, 5. Сплавы систем А1 — Си и А1 — Си — Мд приобретают высокую прочность в результате дисперсионного твердения. Это достигается закалкой с высокой скоростью либо естественным старением при комнатной температуре (состояние Т4), либо искусственным старением при средних температурах (состояние Тб). Холодная обработка после закалки еще более увеличивает прочность и обозначается как состояние ТЗ, а после искусственного старения как состояние Т8.  [c.234]

Алюминий, его сплавы и соединения. Основными раднацнонными дефек. тами для сплавов алюминия являются радиационное распухание н увеличе. нне длительной прочности. Раднацион. ное распухание обусловлено реакциями взаимодействия быстрых нейтронов с ядрами алюминия, при которых образуются кремний, водород н гелий, Влияние флюенса нейтронов (с анергией более 0,1 МэВ) на относительное изменение объема сплавов алюминия приведено на рис. 10 . Длительная прочность алюминиевого сплава 1100 после облучения флюенсом (0,7-т-11) X X 10 нейтр./м возрастает (рве. И), что является следствием радиационного упрочнения материала. Прочностные и пластические свойства сплава 1100 в зависимости от флюенса быстрых нейтронов с энергией более 1 МэВ приведены на рис. 12 и 13. Значительные дозы облучения не приводя к радикальному изменению механических свойств.  [c.458]

Разброс. Как и в случае сталей, полезно связывать уста-л остную прочность алюминиевых сплавов с другими их механическими характеристиками, величины которых легче определяются. К сожалению, алюминиевые сплавы имеют большой разброс характеристик. И такой разброс обнаруживается не только при испытании материалов одной и той же марки, но даже при испытании образцов, вырезанных из одного и того же бруса Естественным следствием из того, что оценка усталостной прочности таких сплавов на основании их других механических характеристик недостаточно точна, является необходимость использовать в расчетах большие запасы прочности. Тем не менее, если расчетчик имеет доступ к подходящим к данному случаю экспериментальным результатам, то их анализ и сопоставление с другими свойствами представляет некоторый существенный шаг в развитии рационального расчетного метода.  [c.74]


Термическая обработка литых деталей из алюминиевых сплавов существенно улучшает механические свойства этих сплавав. Предел прочности и относпте 1Ы1ое удлинение литейных алюминиевых сплавов после термической обработки (закалка с последующим искусственным старением) угаелпчипают-ся п два раза.  [c.590]

Алюминий, упрочненный частицами окиси алюминия (САП). Дисперсноу-прочченный алюминий, содержащий 6—23% АЬОз или САП спеченная алюминиевая пудра), значительно превосходит деформируемые и литейные алюминиевые сплавы по прочности при температурах выше 300°С (рис. 465). В табл. 153 приведены составы и механические свойства отечественных марок С.4П. По плотности и коррозионной стойкости САП практически не отличается от алюминия.  [c.636]

В последние десятилетия наряду с традиционными материалами появились новые искусственные материалы — так называемые композиты. Строго говоря, термин композитный материал или композит следовало бы относить ко всем гетерогенным материалам, состоящим из двух или большего числа фаз. Сюда относятся практически все сплавы, применяемые для изготовления элементов конструкций, несущих нагрузку. Соединение хаотически ориентированных зерен пластичного металла и второй более прочной, но хрупкой фазы позволяет в известной мере регулировать свойства конечного продукта, т. е. получать материал с необходимой прочностью и достаточной пластичностью. Усилиями металлургов созданы прочные сплавы на основе железа, алюминия, титана, содержащие различные. тегирующие добавки. Достигнутый к настоящему времени предел прочности составляет примерно 150 кгс/мм для сталей, 50 кгс/мм для алюминиевых сплавов, 100 кгс/мм для титановых сплавов. Эти цифры относятся к материалам, из которых можно путем механической обработки получать изделия разнообразной формы. Теоретический предел прочности атомной решетки металла, представляющий собою верхнюю границу того, к чему можно в идеале стремиться, по разным моделям оценивается по-разному, в среднем это 1/10—1/15 от модуля упругости материала. Так, для железа теоретическая прочность оценивается значением примерно 1400 кгс/мм что в десять раз выше названной для сплава на железной основе цифры. В настоящее время существуют способы получепия тонкой металлической проволоки или ленты с прочностью порядка 400—500 кгс/мм , что составляет около одной трети теоретической прочности. Однако применение таких проволок пли лент в конструктивных элементах неизбежным образом ограничено.  [c.683]

Железо-никель-алюминиевые сплавы, как и железо-никель-алюминиево-медные и железо-никель-алюминиево-кобальтовые, используются для получения деталей и металлокерамическим способом. Этот способ особенно выгоден для изготовления мелких деталей массой от долей грамма до 30 г. Применение металлокерамической технологии решило задачу производства мелких деталей из сплавов, содержащих кобальт. Металлокерамическая технология обеспечивает при производстве деталей из этих сплавов меньше отходов вследствие отсутствия литейных дефектов, лучшей шлифуемости, большей механической прочности, однородности. При давлении спекания в чистом водороде 400—800 МПа при 1300° С металлокерамические магниты из железо-никель-алюминиепого сплава имеют плотность на 8—7% меньше, чем литые, и магнитные свойства, близкие к таковым у литых магнитов. Существуют два способа получения магнитов по металлокерамическому принципу.-В первом случае детали из смеси чистых порошков или их лигатуры прессуются в пресс-формах в два приема сначала при пониженных давлении и температуре, потом при полном давлении с последующим окончательным спеканием завершающей операцией является термическая или термомагнитная обработка. Второй способ заключается в изготовлении металлокерамических заготовок сутунок , из которых после термообработки и прокатки на полосы и  [c.310]

Сплавы алюминия отличаются легкостью и повышенной механической прочностью по сравнению с алюминием. В состав алюминиевых сплавов помимо алюминия могут входить марганец, цинк, магний, медь, железо и кремний, причем содержание железа и кремния в составе сплава не должно превышать 0,7 и 0,3 % соответст-венчо.  [c.122]

Титан обладает тремя основными преимуш,ествами по сравнению с другими техническими металлами малым удельным весом (4,5 Г1см ), высокими механическими свойствами (предел прочности 50—60 кГ1мм у технического титана и 80—140 кГ/мм у сплавов на его основе) и отличной коррозионной стойкостью, подобной стойкости нержавеющей стали, а в некоторых средах и выше. Сочетание малого удельного веса с высокой прочностью, обеспечивающее наибольшую удельную прочность (т. е. прочность на единицу веса), делает титан особенно перспективным материалом для авиационной промышленности, а коррозионная стойкость — в судостроении и в химической промышленности. Для современной высокоскоростной авиации особенно ценным свойством титановых сплавов является также их высокая жаропрочность сравнительно с алюминиевыми и магниевыми сплавами. Титановые сплавы по абсолютной и тем более по удельной прочности превосходят магниевые, алюминиевые сплавы и легированные стали в довольно широком температурном интервале.  [c.356]

Немагнитная сталь. Изготовляют путем введения в состав стали никеля и марганца, способствующих понижению температуры перехода v-железа в а-железо до 20 С и ниже. В виде примера немагнитной стали можно указать никелевую сталь, и.мею-щую состав 0,25—0,35 % С, 22—25 % N4, 2—3 % Сг, остальное Fe. Предел прочности при изгибе для такой стали 700—S00 МПа, магнитная проницаемость = 1,05- -1,2. Немагнитная сталь ввиду ее высоких механических с13ойств может применяться для изготовления детален, которые ранее выполнялись из сплавов меди и алюминиевых сплавов и не обладали достаточно высокими механическилн свойствами.  [c.291]

Применительно к условиям, существующим на поверхности раздела, можно оценить величину двух механических характеристик, изученных достаточно детально. Этим характеристикам, а именно, пределам прочности при продольном и поперечном нагружении, посвящены гл. 4 и 5. Для системы псевдопервого класса алюминиевый сплав 6061 — бор показано, что прочность как при продольном, так и при поперечном растяжении достигает максимума тогда, когда начинается разрушение псевдостабильной поверхности раздела. Через исходную поверхность раздела прорастают многочисленные, изолированные друг от друга иглы ди-  [c.25]

Борные волокна с покрытием из нитрида бора оказались весьма стабильными в контакте с расплавленным алюминием. Кэй-мехорт [8] показал, что до тех пор, пока сохраняется целостность этого покрытия, борное волокно остается неповрежденным в расплаве алюминия при 1073 К. На основании этих данных был разработан способ изготовления композитов А —В путем пропитки волокон расплавленным металлом. Форест и Кристиан [11] исследовали сдвиговую и поперечную прочности композита, состоящего из борных волокон с нитридным покрытием н матрицы из алюминиевого оплава 6061. Материал был изготовлен диффузионной сваркой. Прочность этого композита на сдвиг оказалась меньше, а поперечная прочность — существенно меньше, чем материалов, армированных волокнами бора и борсика. Такие низкие значения прочности, возможно, обусловлены слабой связью между нитридом бора и алюминием, хотя в работе отсутствуют данные о характере разрушения, которые могли бы подтвердить это предположение. Связь между алюминием и борным волокном с покрытием из карбида кремния в меньшей степени зависит от способа изготовления материала. По заключению авторов цитируемой работы, наиболее удачное сочетание механических свойств имеет композит алюминиевый сплав бОбГ —непокрытое борное волокно, закаленный с 800 К с последующим старением.  [c.128]


Сравнение рис. 12, а и 12, б показывает, как важны механические свойства матрицы для того, каким будет вид роста трещины и усталостная прочность композита. Матрица из высокопрочного алюминиевого сплава 6061-МТ6 ) фактически не давала трещинам разветвляться, что привело к сокращению усталостной долговечности по величине почти на порядок. Этот результат можно качественно объяснить, используя понятие относительных упругих модулей компонентов, и для того, чтобы учесть пластическое поведение, мы рассматриваем эффективные модули. Так, алюминий 1235 течет при низком уровне напряжений, отношение эффективных модулей волокна и матрицы увеличивается, что способствует ветвлению трещин. Пластическое течение в матрице с низким пределом текучести также затупляет конец трепцнны и сводит к минимуму напряжения около него. С другой стороны, напряжения у конца трещины в алюминиевом сплаве 6061-МТ6 высоки, отношение эффективных модулей более низкое и ветвление трещин минимально. Более того, вязкие волокна являются особенно чувствительными к высоким напряжениям вблизи конца трепщны, и поэтому рост усталостных трещин будет быстрым.  [c.420]

Во всем мире 1Продолжаются интенсивные поиски все новых сплавов алюминия. Эти сплавы отличаются высокими эксплуатационными свойствами и уже давно стали одним из основных материалов авиастроения. Разработаны и применяются литейные и деформируемые сплавы, сплавы повышенной прочности и жаропрочности, сплавы с замедленным ростом трещин усталости, антикоррозионные сплавы и т. д. Поэтому весьма остро стоит задача сортировки алюминиевых сплавов по маркам М1атериала без повреждения деталей. Конструкционные алюминиевые сплавы — это в основном твердые растворы. Их физические свойства зависят от количества компонентов оплава и точного соблюдения режимов те рмической и механической обработок.  [c.50]

Если при механической обработке возникают темпв ра-туры, превышающие 200 °С, то возможно размягчение материала (снижение его прочности). Весьма опасны нарушения режимов механической обработки при фрезеровании, так как в поверхностных слоях закаленных и состаренных деталей из алюминиевых сплавов в результате воздействия обрабатывающего инструмента выделяется большое количество тепла. Снижение прочности верхнего слоя сплава зависит от многих факторов, связанных с режимом механической обработки. На снижении прочности могут сказаться увеличение скорости резания выше установленной нормы, величина подачи, виды охлаждения. Чаще всего причиной разогрева поверхностного слоя является затупленный режущий инст-70  [c.70]

Наряду с железом и железными сплавами широкое применение в современной технике находят алюминий и его сплавы. Алюминиевые сплавы делят на две группы деформируемые и недеформируемые (или литейные). Наиболее распространены силумины и дюралюминий. Силумины содержат 10—13% кремния и небольшое количество магния и обладают хорошей коррозионной стойкостью из-за образования на их поверхности защитного слоя SiOj. Дюралюминий отличается высокими механическими свойствами наряду с легкостью. Изделия из этого сплава при равной прочности в два раза легче стальных. Коррозионная стойкость чистого алюминия во много раз выше, чем алюминиевых сплавов, в особенности сплавов, содержащих медь, железо и никель. Несмотря на то что алюминий имеет отрицательный потенциал (—1,67В), он является довольно коррозионностойким во многих средах в воде, в большинстве нейтральных сред и в сухой атмосфере. Такое поведение алюминия обусловлено его способностью к самопассивации. В зависимости от условий алюминий покрывается защитной пленкой разной толщины — от 150 до ЮООА, которая состоит из AljOj или AljOj  [c.72]

Свойства волокнистых композиционных материалов, особенно их механические свойства, при одном и том же содержании упроч-нителя, сильно зависят от ориентации волокон в матрице и от угла между направлением действия приложенной нагрузки и ориентацией волокон [77 ]. Примером тому являются приведенные на рис. 80 кривые изменения предела прочности в зависимости от направления приложения нагрузки материала алюминий — 50 об. % борного волокна с тремя схемами укладки армирующих волокон и на рис. 81 кривые изменения модуля упругости и модуля сдвига одноосноармированного материала алюминий — 50 об. % борного волокна [10,30]. Значения предела прочности, модуля упругости и удлинения композиционного материала на основе алюминиевого сплава 6061, упрочненного волокнами бора и борсик, с различными типами укладки волокон, приведены в табл. 44, 45. Представленные на рис. 80, 81 и в табл. 44 и 45 данные свидетельствуют о широких возможностях изменения свойств композиционного материала в зависимости от типа укладки армирующих волокон при одном и том же их общем содержании. Это позволяет с максимальной степенью реализовать прочностные свойства композиционного материала в детали, сконструированной таким образом, что количество и направление укладки волокон учитывают ее напряженное состояние. Приведенные в табл. 45 данные позволяют также получить представление о прочностных свойствах при сжатии композиций алюминий — бор. 206  [c.206]


Смотреть страницы где упоминается термин Прочность алюминиевых сплавов механическая : [c.202]    [c.217]    [c.49]    [c.148]    [c.214]    [c.74]    [c.192]    [c.195]   
Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.3 , c.431 ]

Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.431 ]



ПОИСК



Алюминиевые прочность

Алюминиевые сплавы, механические

Прочность алюминиевых сплавов

Прочность алюминиевых сплавов легированной стали механическая— Характеристика

Прочность алюминиевых сплавов магниевых сплавов механическая— Характеристика

Прочность алюминиевых сплавов механическая арматуры трубопроводов

Прочность алюминиевых сплавов механическая балок

Прочность алюминиевых сплавов механическая балок постоянного сечения—Расчет

Прочность алюминиевых сплавов механическая балок при изгибе — Проверка

Прочность алюминиевых сплавов механическая балок — Расчет

Прочность алюминиевых сплавов механическая бесшпоночных соединений

Прочность алюминиевых сплавов механическая брусьев

Прочность алюминиевых сплавов механическая брусьев — Расчет

Прочность алюминиевых сплавов механическая валов

Прочность алюминиевых сплавов механическая вибрационная сварных соединени

Прочность алюминиевых сплавов механическая винтовых зубчатых передач

Прочность алюминиевых сплавов механическая дисков вращающихся переменной

Прочность алюминиевых сплавов механическая легированной стали механическая — Характеристика

Прочность алюминиевых сплавов механическая магниевых сплавов механическая — Характеристика

Прочность алюминиевых сплавов механическая при контактных напряжениях

Прочность алюминиевых сплавов механическая при кручении — Расчет

Прочность алюминиевых сплавов механическая при переменных напряжениях

Прочность алюминиевых сплавов механическая при повторных перенапряжения

Прочность алюминиевых сплавов механическая — Характеристика

Прочность алюминиевых сплавов механическая — Характеристика материалов 429 — Влияние напряженного состояния

Прочность алюминиевых сплавов механическая — Характеристика неметаллических материалов механическая— Характеристика

Прочность алюминиевых сплавов механическая — Характеристика при статических напряжениях

Прочность алюминиевых сплавов механическая — Характеристика при ударной нагрузке

Прочность алюминиевых сплавов механическая — Характеристика стержней — Расчет

Прочность алюминиевых сплавов механическая — Характеристика толщины — Пример расчета

Прочность алюминиевых сплавов механическая — Характеристика углеродистой стали механическая Характеристика

Прочность алюминиевых сплавов механическая — Характеристика чугуна механическая — Характеристика

Прочность алюминиевых сплавов неметаллических материалов механическая— Характеристика

Прочность алюминиевых сплавов углеродистой стали механическая Характеристика

Прочность алюминиевых сплавов чугуна механическая — Характеристика

Сплавы алюминиевомедномагниевые Коэфициент алюминиевые — Коэфициент изменения пределов выносливости 369 Механическая прочность — Характеристика



© 2025 Mash-xxl.info Реклама на сайте