Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность алюминиевых сплавов магниевых сплавов механическая— Характеристика

Стабильность такого соединения зависит преимущественно от механических характеристик материалов корпуса и шпильки, угла сбега резьбы (рис. 88, а) и момента завинчивания шпильки. Для стальных шпилек и корпусов из алюминиевых и магниевых сплавов угол сбега обычно составляет 20°. При стальных корпусах для повышения усталостной прочности и большей неподвижности соединения угол сбега уменьшают.  [c.128]


Механические свойства матрицы являются определяющими для свойств композиций при сдвиге, сжатии и нагружении нормальными напряжениями в направлениях, отличных от ориентации волокон, а также в сопротивлении композиций усталостному разрушению. С ростом механических характеристик матриц пропорционально увеличиваются характеристики механических свойств композиций при сдвиге и сжатии. В волокнистых композиционных материалах усталостное разрушение начинается с матрицы при достижении в ней определенного напряжения. Гетерогенная структура материала, различие в уровнях напряженности волокон и матрицы, а также наличие поверхностей раздела затрудняют процесс зарождения и роста трещин в направлении, перпендикулярном к направлению армирования, и образование мятигтряльной трещины, приводящей к разрушению. Поэтому у композиционных материалов более высокое сопротивление y iajio itiOHy разрушению, чем у традиционных материалов. Так, например, отношение усталостной прочности (на базе 10 циклов) к пределу прочности у стандартных алюминиевых и магниевых сплавов составляет 0,2— 0,3, а у бор алюминиевой композиции ВКА-1—0,7—0,75, т. е. в 3—4 раза больше.  [c.586]

Наиболее часто для изготовления конструкций применяются алюминиевые сплавы следующих марок алюминиево-марганцовистые АМц алюминиево-магниевые АМг с содержанием 2,5% Mg АМгб с содержанием б% Mg авиаль закаленный и естественно состаренный АВТ с повышенной пластичностью и коррозийной стойкостью более редко применяется дюралюминий Д16 с добавкой Си сплав В92 с добавками Mg и 2п, и некоторые другие. Алюминиевые сплавы хорошо свариваются дуговой сваркой с защитой флюса, а также нейтральных газов аргона и гелия и контактным способом. Исключение представляют сплавы дюралюминия, которые свариваются преимущественно контактны-М и машинами. Многочисленные исследования подтвердили возможность получения соединений с высокими механическими и антикоррозийными свойствами. Для алюминиевых конструкций, пр именяе-мых в строительстве, разработаны методы проектирования и расчеты прочности сварных соединений. В табл. 59 приведена характеристика механических свойств сплавов, наиболее часто применяемых в строительных конструкциях. Величины допускаемых напряжений (расчетных сопротивлений) для основного металла приведены в табл. 60.  [c.531]

На участке выведения наиболее существенную роль для прочности конструкции играет нагрев несущих баков и сухих отсеков (переходников и обтекателей). Температура нижней части бака, вследствие интенсивного отвода тепла в находящуюся в баке жидкость, практически не поднимается. Наиболее высокого значения, порядка 100—200 °С, достигает температура верхней части бака. Эта температура не настолько велика, чтобы возникла необходимость тепловой изоляции, но для алюминиево-магниевых сплавов она приводит к вполне ошутимо.му снижению механических характеристик материала. Поэтому расчету баков на прочность обязательно предшествует расчет теплового режима.  [c.342]


Поэтому для производства отливок, используемых в конструкциях широкофюзеляжных самолетов, например Ил-86, применяются такие технологические процессы и оборудование, которые обеспечивают более высокие характеристики усталостной прочности и выносливости, а также улучшение весовых характеристик деталей вследствие повышения их класса точности. Повышение качества алюминиевого и магниевого литья обеспечивается как применением новых высокопрочных сплавов, так и путем совершенствования технологии литья. Особенностью новых высокопрочных сплавов АЛ9-1, ВАЛЮ и МЛ8, которые по механическим свойствам приближаются к деформируемы. (сплав ВАЛЮ имеет Оо — до 50 кгс/мм ), является ограниченное содержание примесей и ужесточение пределов содержания основных компонентов, что повышает требования к качеству работы плавильно-заливочного оборудования. Для обеспечения необходимого качества сплава, а также повышения обшего уровня и стабилизации свойств отливок из илю.миниевых и магниевых сплавов применяются новые индукционные плавильные тигельные печи повышенной частоты тиристорных преобразователей модели ИАТ 04/08М4 (рис. 57) с керамическим тиглем н магнитногидродинамические дозирующие заливочные устройства типа МДН-6 (рис. 58). Это оборудование создано ВНИИЭТО.  [c.134]


Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.431 ]



ПОИСК



493, 494 — Прочность механическая — Характеристики

Алюминиевые прочность

Алюминиевые сплавы, механические

Магниевые сплавы, механические

Механическая характеристика

Прочность алюминиевых сплавов

Прочность алюминиевых сплавов механическая

Прочность алюминиевых сплавов механическая магниевых сплавов механическая — Характеристика

Прочность алюминиевых сплавов механическая магниевых сплавов механическая — Характеристика

Прочность алюминиевых сплавов механическая — Характеристика

Сплавы Прочность механическая — Характеристики

Сплавы Характеристики механических

Сплавы алюминиево-магниевые

Сплавы магниевые

Характеристики сплава



© 2025 Mash-xxl.info Реклама на сайте