Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрическое сопротивление сред

Электрическое сопротивление среды 15, 142  [c.322]

Влияние температуры. Если коррозионный процесс идет с водородной деполяризацией, то при увеличении температуры одновременно повышается и скорость коррозии. Основной причиной этого является понижение перенапряжения катодного процесса, ускорение диффузии и уменьшение электрического сопротивления среды.  [c.25]


Катодное осаждение вольфрама и молибдена становится возможным при одновременном разряде ионов некоторых других металлов, главным образом группы железа. Образующиеся таким путем электролитические сплавы отличаются высокой твердостью, износостойкостью, жаропрочностью и химической стойкостью. Наилучшими свойствами в отношении износоустойчивости и коррозионной стойкости и наименьшим электрическим сопротивлением среди сплавов группы железа с вольфрамом обладают сплавы Со.  [c.258]

Способность сплава длительное время выдерживать воздействие агрессивных сред при высоких температурах зависит не только от диффузионно-барьерных свойств пленок продуктов реакции, но и от адгезии таких пленок к основному металлу. Нередко защитные пленки отслаиваются от поверхности металла во время циклов нагревания — охлаждения, так как коэффициенты расширения пленки и металла неодинаковы. Американское общество по испытанию материалов провело ускоренные испытания [58 ] на устойчивость различных проволок к окислению. Испытания заключались в циклическом нагревании проволоки (2 мин) и охлаждении (2 мин). Попеременное нагревание и охлаждение заметно сокращает срок службы проволоки по сравнению с постоянным нагревом. Срок службы проволоки в этих испытаниях определяется временем до разрушения или временем до увеличения ее электрического сопротивления на 10 %. В соответствии с уравнением Аррениуса, зависимость срока службы т (в часах) проволоки от температуры имеет вид  [c.205]

Чистая платина, для которой Лыо/ о= 1>3925, в наибольшей степени удовлетворяет основным требованиям по химической стойкости, стабильности и воспроизводимости физических свойств и занимает особое место в терморезисторах для измерения температуры. Именно платиновые термометры сопротивления используются для интерполяции международной температурной шкалы в диапазоне от —259,34 до 4-630,74 °С. В этом диапазоне температур платиновый термометр сопротивления превосходит по точности измерения термоэлектрический термометр. Но термометром сопротивления невозможно измерить температуру в отдельной точке тела или среды из-за значительных размеров его чувствительного, элемента кроме того, для измерения электрического сопротивления требуется посторонний источник электропитания.  [c.176]


Диэлектриками называют вещества, основным электрическим свойством которых является способность к поляризации и в которых возможно существование электростатического поля. Такое поле может длительно сохраняться лишь в средах, плохо проводящих электрический ток. Электропроводность — способность проводить электрический ток—обусловлена наличием в веществе свободных носителей заряда—электрически заряженных частиц, которые под действием внешнего электрического поля направленно перемещаются сквозь толщу материала, создавая ток проводимости (положительно заряженные носители движутся по направлению вектора напряженности электрического поля Е, отрицательно заряженные— против). Параметром вещества, количественно определяющим его электропроводность, является удельная электрическая проводимость у, См/м, а также удельное объемное электрическое сопротивление p = l/Y, Ом-м, причем  [c.543]

На стабильность показаний милливольтметра существенное влияние оказывает изменение температуры окружающей среды, приводящее к изменению тока в цепи прибора. Для уменьшения этого эффекта в цепь милливольтметра включают добавочное сопротивление Ry из манганина, температурный коэффициент электрического сопротивления которого равен нулю.  [c.29]

Рабочий участок (рис. 10.10) представляет собой тонкую пластину 1 шириной й = 0,11 м и длиной L = 0,9 м, изготовленную из текстолита. Наружная поверхность пластины обтянута с обеих сторон тонкой фольгой 2, изготовленной из нержавеющей стали и выполняющей роль электрического нагревателя. Фольга, электрическое сопротивление которой 7 = 0,07 Ом, нагревается током низкого напряжения. Такая конструкция нагревателя практически исключает тепловые потери в окружающую среду.  [c.153]

Здесь 01—электрическое сопротивление единичного квадрата первой среды в предположении, что она занимает все пространство  [c.40]

V р>.. Если Рг— > то при Хк =" О величина Д о, так как в среду с р = со электромагнитная волна не проникает. Электрическое сопротивление такой среды равно бесконечности.  [c.42]

Максимально допустимый поляризационный потенциал для сооружений с температурой транспортируемого продукта не более 333 К или непосредственно контактирующих с водной средой менее 6 мес в году, либо в грунтах с цельным электрическим сопротивлением не менее 10 Ом-м, относительно медно-сульфат-иого электрода сравнения должен быть (по абсолютной величине) не менее ми-  [c.75]

При тепловом пробое п,, уменьшается с ростом температуры окружающей среды (рис. 5.39, в). Уменьшение вызывается ростом теплоты, выделяющейся в образце за счет диэлектрических потерь, и уменьшением теплоты, отводимой от образца в окружающую среду. На постоянном напряжении диэлектрические потери вызываются электропроводностью и определяются электрическим сопротивлением образца. Для плоского конденсатора их рассчитывают по формуле U /R --= U l pjh). На переменном напряжении с уче-  [c.180]

Рутений менее дефицитен, чем платина и родий, и значительно дешевле как видно из табл. 31, рутений имеет наибольшую твердость и температуру плавления, он легко пассивируется на воздухе и очень хорошо противостоит действию агрессивных сред. На него не действуют разбавленные и концентрированные кислоты и щелочи. Рутений стоек к воздействию соединений фосфора и азота, в ряде случаев он превосходит по химической стойкости палладий, родий и платину он более устойчив к воздействию серы. Пленки сернистых соединений, образующиеся на поверхности, отрицательно сказываются на переходном электрическом сопротивлении. При обычных и повышенных температурах на воздухе и в среде, богатой кислородом, рутений не тускнеет и сохраняет блеск, что позволяет использовать его при покрытии отражателей. Рутений в отличие от платины и палладия не поглощает водорода и не образует гидридов. Несмотря на хорошие физико-механические свойства рутений недостаточно широко используется в промышленности. Одной из причин этого является сложность изготовления деталей из рутения вследствие высокой температуры плавления, высокой твердости и хрупкости. Рутений подвергается высокотемпературному окислению, как и родий образующаяся окисная пленка обладает хорошей электропроводностью.  [c.76]


Здесь 2о1 — электрическое сопротивление единичного квадрата первой среды в предположении, что она занимает все пространство и вторая среда отсутствует [х =со). Комплекс К учитывает влияние второй среды.  [c.65]

В современных котельных установках применяют в основном автоматические газоанализаторы, которые производят непрерывный контроль продуктов сгорания и передают показания на тепловой щит. Показания таких газоанализаторов записываются непрерывно на движущейся бумажной ленте. Принцип работы газоанализаторов основан на изменении электрического сопротивления проводников в зависимости от состава газовой среды, в которой он находится.  [c.112]

Точность передачи деформации электрическими тензометрами сопротивления с проволочными датчиками зависит в большой степени от применяемых изоляционных покрытий и клеев. Покрытия и клеи должны иметь следуюш ие основные свойства а) достаточную механическую прочность б) высокий модуль упругости в) минимальную пластическую деформацию г) легкость нанесения и сравнительно быстрое отверждение д) способность к сцеплению с проволокой и поверхностями изделий, на которые устанавливаются датчики е) стойкость к воздействию воды и других сред ж) химическую инертность к тензометрической проволоке и материалу изделий и) высокое электрическое сопротивление. Свойства клеевых пленок должны по возможности мало изменяться как при хранении тензодатчиков, так и при их работе в широком интервале температур.  [c.279]

Датчик в зондах для определения электрического сопротивления может быть сделан в виде проволоки, ленты, трубки. При выборе конструкции датчика важно учитывать условия, в которых ему предстоит работать (неподвижная среда, поток), оценить степень агрессивности среды. При малых диаметрах зондов возможно  [c.113]

Химическая коррозия протекает, как правило, в непроводящих электрический ток средах. Процесс окисления металла и восстановление окислителя среды протекает в одном акте. Характерным примером химической коррозии является коррозия в газах при высоких температурах. Электрохимический механизм коррозии наблюдается в проводящих электрический ток средах. Процессы окисления металла и восстановления окислительного компонента среды могут быть пространственно разделены. Скорость коррозии в этом случае зависит от электродного потенциала корродирующего металла. Для неметаллических материалов закономерности коррозионных разрушений и их химическое сопротивление воздействию окружающей среды также определяется природой и структурой материала, а также свойствами коррозионной среды.  [c.13]

Полиамид как материал покрытия является типичным примером пластмассы с высоким водопоглощением, чем обусловливается значительное падение удельного электрического сопротивления. Наименьшее водопоглощение среди рассмотренных полимерных материалов имел полиэтилен. Полиэтилен высокого давления в соответствии с низким  [c.156]

Электрическое сопротивление покрытия само по себе не дает никакой информации о требуемом защитном токе. Это утверждение справедливо и в том случае, когда плотность защитного тока для металла без покрытия в соответствующей среде известна. Так, для дефектов большого диаметра по формуле (5.14а) можно определить долю  [c.159]

Принцип действия термометров сопротивления основан на свойстве металлов изменять электрическое сопротивление с изменением температуры. Термосопротивления для измерения стационарных температур различных сред в производственных и лабораторных условиях изготовляют стандартными по установившимся формам, габаритам и электрическим параметрам. Термочувствительные элементы выполняют из платины, меди и никеля.  [c.112]

Фактическая площадь касания сопряженных деталей не является постоянной величиной, а со временем увеличивается в результате процесса ползучести. Одновременно увеличиваются контактные деформации. Особенно интенсивно процесс ползучести протекает при повышенных температурах. Непостоянство во времени фактической площади касания сопряженных поверхностей, нагруженных высокими давлениями, приводит к изменению контактной жесткости, электрического сопротивления контакта и других свойств сопряжений. В ко- 1 нечном счете эти факторы могут оказывать существенное влияние на работоспособность приборов и точных механизмов,- Исследование изменения фактической площади касания во времени было проведено Н. Б. Демкиным [19]. Для оценки величины зависимости глубины внедрения жесткой сферы в пластическую среду от времени f им получено выражение  [c.93]

Исследуемые металлические образцы, помещенные в вакуум или в среду защитных газов, нагреваются также за счет теплового действия электрического тока, подводимого к ним непосредственно. По характеру передачи электрического тока к образцам можно выделить два основных способа контактный и бесконтактный. При контактном нагреве образец непосредственно присоединяют к источнику переменного тока промышленной частоты (50 Гц) низкого напряжения. Использование постоянного тока нерационально, поскольку вследствие электролиза может происходить перенос содержащихся в образце примесей, в частности углерода, что изменяет химический состав образца по его длине. Скорость контактного нагрева образца зависит от величины его электрического сопротивления и эффективного значения пропускаемого тока /дф, протекающего через образец. Количество выделяющегося в образце тепла может быть определено из уравнения Ленца—Джоуля  [c.75]


Установка ИМАШ-5С-69 Киргизстан предназначена для прямого наблюдения, фотографирования и киносъемки микроструктуры металлических материалов с одновременным измерением электрического сопротивления образца при нагреве от 20 до 1500° С и растяжении в вакууме и защитных газовых средах.  [c.132]

Затем находят так называемое сопротивление растеканию для анодов i p — электрическое сопротивление данной системы электродов в среде заданной проводимости.  [c.65]

В своем капитальном труде Н. С. Курнаков рассматривает измеримые физические свойства веществ, применяемые в физико-химическом анализе. Общее число таких свойств достигает 30. Среди них тепловые свойства — плавкость и растворимость, теплота образования, теплоемкость, теплопроводность электрические свойства — электрическое сопротивление, электродвижущая сила, термоэлектрическая сила, диэлектрическая проницаемость объемные свойства — удельный вес и удельный объем, объемное сжатие, коэффициент теплового расширения. При физико-химическом анализе измеряются также основные оптические свойства объектов исследования, свойства, основанные на молекулярном сцеплении (вязкость, твердость, давление истечения, поверхностное натяжение и др.)) магнитные свойства и многие другие. В физико-химическом анализе широко применяется изучение микроструктуры систем, позволяющее определить их фазовый состав. В последние десятилетия физико-химический анализ пополнился таким важным методом исследования, как рентгенография, который позволяет установить параметры и структуру кристаллографических решеток твердых фаз изучаемой системы  [c.159]

Платина и сплавы на ее основе. Платина, как и палладий, имеет наибольшее удельное электрическое сопротивление среди благородных металлов и низкую теплопроводность, обладает незначительной летучестыа по сравнению с другими благородными  [c.300]

При решении задач теплопроводности с граничными условиями III рода в электрической модели приходится переходить к граничным условиям I рода. Для этого между шиной, на которую подается электрический потенциал, соответствуюший температуре среды Г/, и поверхностью модели включается дополнительное электрическое сопротивление из электропроводной бумаги, имитирующее термическое сопротивление теплоотдачи ат=1/а. Дополнительное электрическое сопротивление Ra, и длина дополнительного слоя бумаги определяются из соотношения (4.31) в случае, когда это дополнительное сопротивление изготавливается из той же электропроводной бумаги, из которой изготовлена модель, длина дополнительного слоя бумаги будет определяться соотношением 1доп = ао5 = Я/а в случае, когда модель изготовлена из бумаги с удельным электрическим сопротивлением рм, а дополнительное  [c.80]

В последнем случае г х рИ(ЬА) представляют собой электрические сопротивления участка длиной I и шириной Ь, выделенного в полубесконечной среде, огра[гиченной плоской поверхностью (см. 1-2).  [c.53]

При создании электрических моделей применяются два способа. По первому способу, согласно которому электрические модели должны повторять геометрию исследуемой системы, их изготавливают из материала с непрерывной проводимостью (электропроводная бумага, фольга, электролит и т. д.) — это модели с непрерывными параметрами процесса. Вырезав из электропроводной бумаги фигуру, соответствующую поперечному сечению тела, и создав на ее контурах граничные условия, можно, измеряя и (х, у), найти температурное поле I х, у). Граничные условия первого рода задаются некоторым потенциалом и, второго — плотностью тока, третьего — электрическим потенциалом и , соответствующим температуре окружающей среды и добавочным электрическим сопротивлением Яа, имитирующим термическоб сопротивление теплоотдачи 1/а.  [c.192]

Поверхность адсорбирует пыль, газы и другие вещества, образующиеся в результате протекающих в ходе эксплуатации изоляции физико-химических процессов в окружающей диэлектрик среде. Сильно загрязняется поверхность электроизоляционных конструкций (высоковольтных вводов, изоляторов и др.), работающих в загрязненной атмосфере промышленных и приморских районов. Образовавшийся на поверхности слой загрязнений имеет здесь такое небольшое электрическое сопротивление, что значение поверхностного тока утечки достаточно для нагрева поверхности до температур, больших 373 К (100 °С). При таком нагреве происходит вскипание воды на поверхности. Если этот процесс происходит в условиях увлажнения дождем, то перепады температур приводят к образованию микротрещин и механическому разрушению приповерхностного слоя изоляции. Не исключена и возможность воздействия различных агрессивных продуктов на приборы радиоэлектроники и автоматики при их использовании для регулирования работы электрических машин и аппаратов в устройствах энергетики, наземного, воздушного и водного транспорта. Поэтому в конструкциях приборов предусматриваются герметизация узлов с развитой поверхностью электроизоляционных промежутков, защита их поверхности специальными несмачиваемыми, незагрязняющими герметиками. Настройка и ремонт приборов, требующие разгерметизации, должны выполняться при условии, когда исключено всякое загрязнение и увлажнение электроизоляционных деталей. Элек-трокерамические электроизоляционные конструкции покрываются специальными грязестойкими глазурями, широко используется защита их поверхности гидрофобными кремыийорганическими лаками и герметиками. Покрытие из кремнийорганических соединений применяют для защиты поверхности электроизоляционных конструкций, изготовленных из стекла.  [c.148]

Родий обладает самой высокой отражательной способностью из всех платиновьис металлов. Коэффициент отражения родия в видимой части спектра несколько ниже, чем у серебра, но в ультрафиолетовой части практически не изменяется в атмосфере сернистых соединений и повышенной влажности. Коррозионные испытания родиевых покрытий при периодическом изменении температуры и влажности среды, а также в 3 %-ном растворе поваренной соли показали их высокую стойкость. Микротвердость электролитического родия в 8—10 раз выше, чем полученного металлургическим путем,— это связано с получением мелкозернистого покрытия, а также с включением водорода в осадок, что определяет высокие внутренние напряжения, которые приводят к возникновению сетки трещин. Удельное электрическое сопротивление родия значительно ниже, чем  [c.75]

Известно, что на границе жидкого и твердого металлов существует контактное электрическое сопротивление Оно зависит от электрического сопротивления собственно контакта определяющегося степенью смачиваемости твердой поверхности жидкостью и дополнительных сопротивлений, вносимых промежуточными слоями (твердыми — окисленными, осажденными из газовой фазы, выпавшими из расплава газообразными - адсорбированными из расплава). Экспериментально установлено, что при полной смачиваемости стенки = 0. О порядке значений дополнительных сопротивлений можно судить по экспериментальным данным, приведенным в ряде работ при примерно однородной температуре контактной зоны [19]. Властности, для контакта электрода из нержавеющей стали с различными легкоплавкими расплавами в [16] получено сопротивление естественных оксидных пленок приблизительно 10 Ом-м и искусственно созданных толстых оксидных пленок 10 -10 Ом-м . Сопротивление, обусловленное наличием пленок физической адсорбции, составляет при комнатной температуре 10 —10 Ом-м [16]. По имеющимся в литературе данным различных авторов, полученным экспериментально при комнатной температуре, суммарное сопротивление контакта электрода из меди с легкоплавкими расплавами имеет порядок 10 — 10 Ом-м , что близко к даштым [16]. Известно также, что сопротивление, вносимое рыхлыми осажденными слоями, а также возникающее в случае химического взаимодействия контактирующих сред, может принимать любые, неограниченно большие значения [19]. Прямые данные по контакту твердых металлов с высокотемпературными расплавами в литературе отсутствуют.  [c.19]


Плоскополяриаованное колебание Е можно представить в виде двух круговых противоположно направленных колебаний (рис. 11.21, а) Е,, поляризованного по кругу вправо, и Еа, поляризованного по кругу влево. В каждый момент времени эти составляющие образуют с плоскостью колебаний АА равные углы и в сумме дают вектор Е, лежащий в этой плоскости. Если такие колебания попадают в среду, в которой скорость распространения право-и левополяризованной составляющих оказывается неодинаковой, например е, < Са, то колебание Ej будет отставать от колебания Ез и по выходе из среды между ними возникнет разность фаз S. Складываясь, колебания Ei и Е дают снова плоскополяризованное колебание Е, но с плоскостью колебаний ВВ, повернутой относительно начального положения этой плоскости АА на угол 6/2 в направлении вращения более быстро распространяющегося колебания Ej (рис. 11.21, б). Такое явление поворота (вращения) плоскости колебаний или соответственно плоскости поляризации плоскополяризованной электромагнитной волны происходит при прохождении ее через намагниченный ферро- и ферримагнетик в направлении приложенного намагничивающего поля Н (в продольном магнитном поле). Это явление было открыто Фарадеем и называется эффектом Фарадея В металлических ферромагнетиках, сильно поглощающих электромагнитные волны, явление Фарадея можно наблюдать лишь в тонких пленках. В ферритах с высоким удельным электрическим сопротивлением, слабо поглощающим энергию электромагнитной волны, эффект Фарадея может быть реализован в образцах длиной в  [c.307]

Удельная поляризуемость (или удельное поляризационное сопротивление) характеризует среднюю скорость изменения электродного потенциала с увеличением плотности поляризующего тока и может быть представлена как удельное (на единицу поверхности соприкосновения металла с коррозионной средой) электрическое сопротивление, обусловлейное явлениями электрохимической поляризации.  [c.15]

Из таблицы ояедуег, что литьевой -углеродно-полимерный материал при сравнительно низкой плотности (1,5-1,6 г/см ) имеет достаточно высокую прочность, низкую теплопроводность, высокое удельное электрическое сопротивление, низкую газопроницаемость и термостойкость. Материал о<Зладает высокой стойкостью к воздействию фтористоводородной и соляной кислот, т. е. к тем средам, в которых легированные стали нестойки.  [c.85]

Для измерения температуры масла и воды на станциях систем жидкой смазки, расположенных в ц, с. с., весьма удобны термометры сопротивления. Термометр сопротивления представляет собой чувствительный элемент, состоящий из тонкой медной проволоки, намотанной на каркас и заключенной вместе с ним в защитную оболочку. Принцип действия электрического термометра сопротивления основан на изменении величины электрического сопротивления проводника, имеющем место при изменении температуры среды, в которой помещен этот проводник. Широкое применение находят медные термометры ЭТ-Х1 (фиг. 37), предназначенные для измерения температуры от—50 до +100°С в трубопроводах и резервуарах, находящихся под давлением до 5 кПсм" . На фиг. 37 буквой а обозначена активная часть термометра. Глубина погружения термометра равна 100 мм. Величина электрического сопротивления измеряется логометром, стрелка которого показывает на шкале измеряемую температуру.  [c.74]

Так, В. Б. Тихомиров и М. А. Оржаховский разработали метод определения срока службы покрытий по изменению его электрического сопротивления. Метод основан на том, что влияние температуры на скорость многих химических и физических процессов, происходящих в полимерном материале, находящемся в агрессивной среде, можно выразить уравнением Аррениуса, которое может быть написано в виде  [c.174]

Особую универсальность способу придает возможность реализации процесса на большой площади забоя, например, при бурении скважин большого сечения. При выборе величины площади забоя разрушения руководствуются критериями технологической целесообразности, а ограничивающие критерии механической прочности конструкции и мощности привода не имеют значения. Большое сечение скважины в полной мере позволяет использовать такой фактор повышения эффективности процесса, как использование увеличенных разрядных промежутков (см. раздел 1.2). Главное значимое ограничение связано с условиями формирования на породоразрушающем инструменте импульсного напряжения требуемых параметров, особенно при использовании в качестве жидкой среды воды. В этих случаях проблема решается за счет использования специальных схем генерирования импульсов с коротким фронтом и специальных приемов улучшения электрических параметров (электрического сопротивления и емкости) породоразрушающих инструментов /11/. Технически возможно собрать в единый технологический блок несколько породоразрушающих инструментов, подключенных к индивидуальным источникам импульсного напряжения, и пропорционально увеличить площадь забоя разрушения.  [c.17]


Смотреть страницы где упоминается термин Электрическое сопротивление сред : [c.447]    [c.224]    [c.32]    [c.6]    [c.18]    [c.67]    [c.214]    [c.95]    [c.100]    [c.438]    [c.196]    [c.52]   
Установки индукционного нагрева (1981) -- [ c.15 , c.142 ]



ПОИСК



Сопротивление (среды)

Сопротивление электрическое

Электрическое и магнитное сопротивления участка ферромагнитной среды

Электрическое сопротивление сред активное

Электрическое сопротивление сред внутреннее реактивное

Электрическое сопротивление сред полное



© 2025 Mash-xxl.info Реклама на сайте