Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Регулирование импульсное

По принципу регулирования импульсные стабилизаторы с широтно-импульсной модуляцией делятся на два основных класса [1]  [c.331]

При регулировании импульсно-предохранительных устройств на котле  [c.238]

Понятие о непрерывном и прерывистом регулировании. Импульсные системы, вибрационное регулирование  [c.31]

Пуск турбины осуществляется со сбросом отработанного пара в атмосферу через выхлопной трубопровод. Регулирование импульсного клапана предохранительной системы выхлопного трубопровода  [c.298]


В отличие от стабилизаторов с непрерывным регулированием импульсные стабилизаторы напряжения обладают более высоким КПД за счет меньшей мощности рассеяния иа регулирующем элементе, который работает в ключевом режиме. Это позволяет получить источники вторичного электропитания с высокими удельными характеристиками по массе и объему. Однако импульсные стабилизаторы имеют высокий уровень пульсаций, акустических шумов и радиопомех худшие динамические характеристики,  [c.104]

Рис. 1. Структурная схема системы автоматического регулирования импульсного отопления Рис. 1. <a href="/info/361174">Структурная схема системы автоматического регулирования</a> импульсного отопления
Установки на частоту 50 Гц небольшой мощности проектируются обычно на стандартное напряжение 127, 220, 380 и 660 В и подключаются непосредственно к промышленной сети. Если коэффициент мощности ниже 0,8, то следует предварительно скомпенсировать реактивную мощность с помощью конденсаторов до значения соз <р = 0,92 -т- 0,95 при индуктивном характере цепи. Регулирование режима может осуществляться изменением числа витков индуктора, автотрансформатором, вольтодобавочным трансформатором или тиристорным широтно-импульсным регулятором (ШИР). Если напряжение индуктора по условиям техники безопасности или изготовления меньше стандартного, используются понижающие трансформаторы — печные, сварочные и т. и.  [c.167]

Применение тиристорного управления частотой вращения электродвигателя требует очень малой энергии в цепи управления по сравнению с регулированием с помощью реостата. Благодаря импульсному характеру работы тиристора создаются благоприятные условия для преодоления инерции якоря и электродвигатель обеспечивает сохранение среднего значения крутящего момента при плавном изменении скорости деформирования в пределах нескольких порядков и, что особенно важно, при минимальной частоте вращения двигателя. Кроме того, применение стабилитронов в цепи управления частотой вращения и стабилизированного выпрямителя в цепи обмотки возбуждения электродвигателя позволяет легко обеспечить постоянство величины скорости растяжения образца.  [c.84]


Для импульсной, а также для непрерывной катодной поляризации -с успехом могут быть применены и автономные преобразователи частоты (АПЧ) с резонансными инверторами (АИР) [32]. Неоспоримыми преимуществами их являются высокий КПД (0,92-f-0,94), возможность непрерывной и импульсной поляризации с автоматическим регулированием защитного потенциала, высокая надежность, а также возможность нормального функционирования при коротком замыкании в цепи нагрузки.  [c.79]

На территории КС размещают коммуникации технологического газа для транспорта в пределах КС топливного газа для питания камер сгорания ГТУ пускового газа для привода в действие турбодетандера импульсного газа для нормальной работы контрольно-измерительных приборов и аппаратов автоматического регулирования ГТУ, а также для перестановки кранов.  [c.18]

В е й ц В. Л., К о ч у р а А. Е. Схематизация импульсных элементов в системах автоматического регулирования с ограниченным спектром.— Научные труды вузов Лит. ССР, Вибротехника, 1974, 2 (23).  [c.341]

Система управления реализует широтно-импульсное регулирование (ШИР) вентилями УПЭ. Для синхронизации работы системы управления при питании УПЭ переменным током используется датчик периода и нуль-органы. Вычисленное в микроконтроллере значение а записывается в память программируемого  [c.91]

Задатчик (3) предназначен для задания необходимого уровня температуры. Задатчик является обычно встроенным элементом прибора -и может быть выполнен в виде перемещающихся контактов или движков (например, реохорда) преимущественно в приборах позиционного регулирования, в виде переключателей и ручек потенциометров на наборном поле (например, в регуляторе ВРТ-3), а также в виде стрелочных указателей и поворотных шкал (импульсные регуляторы типа Ш45).  [c.469]

Импульсные регуляторы сочетают в себе свойства непрерывных регуляторов — реализацию ПД- и ПИД-за-конов регулирования, и позиционных регуляторов — ступенчатое подключение нагрузки. Однако в отличие от последних частота переключений значительно выше и составляет, например, для регуляторов типа Ш45 0,1—0,5 Гц, что уменьшает амплитуду колебаний температуры испытуемого объекта в несколько раз.  [c.471]

При позиционном регулировании тиристоры используют в роли ключа. При импульсном регулировании на управляющие электроды подается меняющий скважность регулирования сигнал с частотой срабатывания регулятора. При непрерывном регулировании БУ вырабатывает сигнал, определяющий угол открывания тиристоров в течение одного периода. Схема встречно-параллельного включения тиристорных силовых элементов при трех нагревательных секциях (НС) температурной камеры приведена на рис. 6.  [c.477]

Вспомогательные регулируемые параметры применяют в качестве дополнительных сигналов, подаваемых на вход регулятора. Это позволяет регулятору начать регулирующее воздействие на объект раньше, чем наступит отклонение параметров воздуха от заданных значений в основном объекте регулирования, т. е. тогда, когда возмущения в цепи регулирования только создают предпосылки для отклонения параметров воздуха в объекте. Для этого переходят от одноконтурной к многоконтурной схеме регулирования (рис. 15), которая реализуется с помощью одного импульсного или группы регуляторов, включенных по схеме каскадно связанного регулирования. Регулируемый объект состоит из двух последовательно соединенных участков / и 2, при этом каждый регулируемый участок состоит из нескольких емкостей. Технологический режим нарушается в результате изменения нагрузки на стороне притока или на стороне потребления Q , а также при других возмущающих воздействиях (Xj и X,), что вызывает отклонение промежуточной ф и главной ф регулируемых величин.  [c.484]

Рис. 5.62. Импульсный вариатор скорости с роликовой обгонной муфтой. Ведущий вал 5 вариатора получает движение от вала двигателя 2 посредством клиноременной передачи и может поворачиваться относительно оси 1. Опоры вала могут фиксироваться в заданном положении. На валу закреплены кулачки 5, смещенные по фазе на 180°. Рычаги 6 с установленными на них роликами 4 прижимаются к кулачкам 3 пружинами 10 и во время вращения вала 5 получают колебательное движение. Это движение передается ведомому валу 9 муфтами свободного хода 8 с роликами 7. Максимальный угол поворота рычага 7, а следовательно, и передаточное отношение вариатора зависит от размеров кулачка и положения оси вала 5 относительно оси вала 9. Регулирование передаточного отношения вариатора достигается из.менением положения вала 5. Рис. 5.62. <a href="/info/159493">Импульсный вариатор</a> скорости с <a href="/info/49317">роликовой обгонной муфтой</a>. Ведущий вал 5 вариатора получает движение от вала двигателя 2 посредством <a href="/info/2385">клиноременной передачи</a> и может поворачиваться относительно оси 1. <a href="/info/159126">Опоры вала</a> могут фиксироваться в заданном положении. На валу закреплены кулачки 5, смещенные по фазе на 180°. Рычаги 6 с установленными на них роликами 4 прижимаются к кулачкам 3 пружинами 10 и во время вращения вала 5 получают <a href="/info/12919">колебательное движение</a>. Это движение передается ведомому валу 9 <a href="/info/2331">муфтами свободного хода</a> 8 с роликами 7. Максимальный <a href="/info/2649">угол поворота</a> рычага 7, а следовательно, и <a href="/info/206">передаточное отношение</a> вариатора зависит от <a href="/info/449996">размеров кулачка</a> и положения оси вала 5 относительно оси вала 9. Регулирование <a href="/info/206">передаточного отношения</a> вариатора достигается из.менением положения вала 5.

Они работают в цени обратной связи системы регулирования скорости ротора. В P чаще всего используются импульсные индукционные преобразователи [31 угла поворота ротора с числом импульсов (зубцов) на оборот от 180 до 800. Такие датчики имеют высокую надежность, компактную конструкцию, сравнительно просты в изготовлении. Благодаря интегральному съему ЭДС. наведенной в сигнальной обмотке датчика одновременно от всех зубьев, их шаговая ошибка усредняется, что обеспечивает высокие точностные показатели датчика. В особо точных центрифугах число импульсов на оборот составляет 2000—4000 и более. В них используют фотооптические датчики и датчики на основе магнитной записи меток. Однако вопрос о выборе оптимального числа меток в зависимости от параметров P , системы управления и точностных требований к ним окончательно не решен. Важное значение имеет место установки датчика. В идеале его следует уста-  [c.150]

ЯР] — преобразователь НД — исполнительный двигатель, включающий в себя блок управления и шаговый двигатель РД — редуктор ДР — датчик рассогласования, состоящий из чувствительного элемента ЧЭ и преобразователя ПР — усилитель контура рассогласования ПР — импульсно-аналоговый преобразователь силового контура Уг — усилитель силового контура ЭМП — электромеханический преобразователь ЗМ — золотниковый механизм ИО — исполнительный орган ОР — объект регулирования — деталь 0 — угол поворота ротора ИД хд — координаты ДР У — перемещение измерительного элемента ЧЭ-, Ui — напряжение ДР И— усиленное напряжение ДР Япд — напряжение, являющееся аналогом программы — задающее напряжение Н — усиленное задающее напряжение I — перемещение золотника Р — перепад давления Н — перемещение поршня гидроцилиндра х — регулируемая координата (размер Детали) Zi(<) — возмущающие воздействия  [c.157]

Если основным дестабилизирующим фактором в устройстве являются колебания напряжения питающей сети, то конфликт между точностью и устойчивостью может быть разрешен применением комбинированного управления, т. е. введением дополнительного регулирования по возмущению. Однако использование в канале регулирования по возмущению линейных звеньев, как это предлагается в [3]для стабилизаторов непрерывного действия, в импульсных стабилизаторах не позволяет решить задачу полной независимости (инвариантности) выходного напряжения по отношению к напряжению сети.  [c.332]

Это объясняется тем, что широтно-импульсный модулятор (ШИМ) импульсного стабилизатора является нелинейным звеном, входящим в основной канал передачи возмущения. В этом случае, как известно из теории инвариантности [4], для полной компенсации возмущения в канал компенсации также необходимо включить нелинейное звено. Таким звеном может служить сам ШИМ. При этом требуется такой ШИМ, у которого у зависит от сигнала обратной связи и одновременно является нелинейной функцией определенного вида от входного напряжения Е. Вид функции у( ) определяется схемой силовой части стабилизатора и совпадает с видом функции Y (Д) для параметрического стабилизатора. Поэтому канал компенсации возмущения с нелинейным звеном назовем параметрическим, а стабилизатор с двумя каналами регулирования — компенсационно-параметрическим стабилизатором. В таком стабилизаторе компенсационный канал регулирования обеспечивает высокую стабильность выходного напряжения при изменении тока нагрузки. Параметрический канал регулирования значительно улучшает качество стабилизации при изменении входного напряжения и облегчает работу компенсационного канала регулирования.  [c.332]

Отметим, что по способу регулирования v ШИМы импульсных стабилизаторов можно разделить на три основные группы [1]  [c.333]

Време1нно ТКЗ рекомендует производить регулирование импульсных предохранительных устройств в соответствии с табл. 9-1, при составлении которой было учтено, что одновременное открытие нескольких клапанов может резко изменить режим работы котла и вызвать быстрое и значительное изменение температуры перегретого пара, опасное как для паровой турбины, так и для труб пароперегревателя  [c.162]

На каждом стенде рекомендуется иметь электронный строботахометр (стробоскоп) [34]. При помощи стробоскопа можно не только измерять число оборотов объекта, но и контролировать состояние вращающихся или колеблющихся с постоянной частотой деталей. Стробоскоп состоит из электронного импульсного генератора с регулируемой частотой и импульсной лампы. Импульсная лампа освещает исследуемый объект, а плавным регулированием импульсного генератора добиваются, чтобы частота вспы-  [c.45]

Более распространен метод регулирования тока путем подачи отрицательного, относительно катода, потенциала па управляющий катод Z7m величиной 1—3 кВ (рис. 86). Скорость установления тока луча при импульсном открывании электронной пуп1ки  [c.160]

Совместимость технических средств — это обеспечение согласованной совместной работы этих средств в предусмотренном сочетании при этом однотипные технические средства должны обладать полной взаимозаменяемостью по всем нормируемым параметрам. Требования к совместимости функциональной, инфюрмациоиной, электрической, конструктивной (по присоединительным и габарнт-но-устаноЕочным размерам, эргономическим требованиям) и по другим параметрам установлены ГОСТ 22315—77. К настоящему вре-меии стандартизованы входные и выходные параметры пневматических сигналов, электрические непрерывные входные и выходные сигналы элементов систем контроля и регулирования неэлектрических величин параметры элементов импульсных и частотных сигналов входные и выходные электрические кодированные сигналы и др.  [c.73]

По конструкции и назначению резисторы можно разделить на группы постоянные, переменные и подстроечные (полупеременные). В зависимости от вида токопроводящего слоя резисторы подразделяют на углеродистые и бороуглеродистые, металлопленочные и металлоокисные, композиционные (объемные и пленочные) и проволочные. Наиболее распространены пленочные резисторы. Объемные резисторы обладают большим уровнем шума, но хорошо выдерживают импульсные нагрузки. Проволочные резисторы применяют в прецизионных схемах и цепях большой мощности, подстроечные или переменные резисторы со стопорными устройствами — для регулирования в схемах.  [c.131]


ДЖУРИ Э., Импульсные системы автоматического регулирования, перев. с англ., Физматгиз, 1963, 456 стр., ц. 1 р. 51 к.  [c.350]

Система с ручным сканированием. Структурная схема такого современного интроскопа приведена на рис. 78. Так же, как в импульсном эхо-дефектоскопе, здесь имеется преобразователь, высокочастотный усилитель (УС), устройство автоматического регулирования (АРУ), детектор (Дет), блок представления информации (здесь дисплей), генератор зондирующих импульсов (Г) и синхронизатор (Синхр). В отличие от эхо-дефектоскопа здесь после некоторого усиления сигнал логарифмируется в блоке лога-  [c.267]

Терморезисторы (термисторы) изготовляют в виде стерженьков, пластинок или таблеток методами керамической технологии. Сопротивление и другие свойства терморезисторов зависят не только от состава, но и от крупности зерна, от технологического процесса изготовления давления при прессовании (если полупроводник берут в виде порошка) и температуры обжига. Терморезисторы используются для измерения, регулирования температуры и термокомиен-сации, для стабилизации напряжения, ограничения импульсных пусковых токов, измерения теплопроводности жидкостей, в качестве бесконтактных реостатов и токовых реле времени.  [c.265]

Система регулирования температуры образца при нагреве включает в себя автоматический программный регулятор температуры АПРТ, программный задатчик РУ5-02, электронный потенциометр типа КСП-4, силовой тиристорный контактор. Последний, предназначенный для электропитания нагревателя, собран на кремниевых вентилях типа ВКДУ, включенных по биполярной схеме. Управление вентилями производится импульсно-фазовым способом. Температура образца измеряется хромельалю-мелевыми термопарами и записывается потенциометром КСП-4, служащим в системе нагрева также элементом управления.  [c.174]

Трубопровод должен иметь на концах и в местах соединения с сооружениями, имеющими низкоомное заземление, соответствующие изолирующие элементы. Эти элементы следует располагать по возможности доступно, например на станциях регулирования на поверхности земли. При хорошем изоляционном покрытии их можно укладывать и в грунт. На станциях регулирования расхода газа и во взрывоопасных мастерских электроизолирующие элементы необходимо закорачивать взрывозащищенными искровыми разрядниками. Эти искроразрядники следует располагать параллельно изолирующим элементам в непосредственной близости к ним. Импульсное напряжение срабатывания должно быть меньше 50 % эффективного напряжения пробоя изолирующего элемента при частоте 50 Гц [8]. Изоляционный элемент с взрывозащищенным искровым разрядником представлен на рис. 11.2.  [c.247]

В приводимом ниже примере при пробном наложении тока было установлено, что потенциал расположенного рядом газопровода высокого давления тоже снижается. Это свидетельствует о наличии контакта. На рис. 11.9 нредставлена схема системы трубопроводов и показаны значения измеренных токов в трубопроводе. Станция регулирования расхода газа может быть успешно использована для подсоединения измерительных кабелей. Поскольку к домовым газовым вводам тоже можно подключить измерительные кабели, участки излмерения тока в трубопроводах газораспределительной сети получаются сравнительно короткими. Измерение тока вдоль трубопровода (см. раздел 3.4.2) хорошо поддается контролю при наложении импульсного тока. Величина и полярность этого тока тоже показаны на рис. 11.9. Можно легко установить, что в районе домов № 22—24 по улице I через разыскиваемый контакт протекал ток 40 А. Соприкосновение произошло с домовым вводом газа в дом № 13.  [c.262]

В последнее время ведется много работ по исследованию этого явления для разработки технологии шокового упрочнения (sho k hardening) [71, 75]. Для этих целей используется излучение твердотельных неодимовых лазеров и газовых ОКГ с длиной волны 10,6 мкм, работающих в импульсном режиме. Авторы ряда работ измеряли давления, возникающие на поверхности образца при действии гигантских импульсов ОКГ. В частности, производилось измерение давления при использовании СОз-лазера, генерирующего излучения с длиной волны 10,6 мкм [75]. Длительность импульса изменялась путем регулирования состава газовой смеси лазера. Минимальная длительность импульса составляла 100 нс. Давление определялось путем измерения перемещений обратной стороны мишени, которая одновременно являлась одним из зеркал  [c.23]

В 40-х и начале 50-х годов теоретические исследования по автоматическому регулированию были сосредоточены в Институте автоматики и телемеханики АН СССР, где большая группа талантливой научной молодежи сплотилась вокруг академика А. А. Андронова (1901—1952 гг.), выдающегося физика и одного из основателей нелинейной механики. Многие ученые, работавшие в этом институте и других организациях и получившие мировое признание, выросли и воспитались на острых научных дискуссиях, характерных для деятельности семинара, организованного институтом. Здесь получили развитие частотные методы, было положено начало работам по теории импульсных систем и создан теоретический базис для постепенного перехода от теории обычного замкнутого контура с отрицательной обратной связью к современной теории сложных систем айтоматического управления, к теории оптимальных систем [52].  [c.248]

Двигатели внутреннего сгорания (ДВС). Двигатели внутреннего сгорания широко применяются в судовых силовых установках, в машинных агрегатах транспортных, сельскохозяйственных, дорожных и других машин. Под динамической силовой характеристикой ДВС понимаются закономерности формирования вращающих моментов, действующих на отдельные кривошипы коленчатого вала двигателя. При схематизации динамической характеристики ДВС в общем случае учитываются позиционные закономерности силовых характеристик ДВС от газовых сил рабочего процесса и неуравновешенных сил инерции шатунно-поршневых групп наличие локальной системы автоматического регулирования скорости (САРС) импульсный характер воздействия исполнительного органа управляющего устройства па входной поток энергии влияние сложной формы регулирующих импульсов на характеристики САРС.  [c.33]

Стабилизация скорости вращения ДВС на заданном скоростном режиме осуществляется замкнуто системо автоматического регулирования с отрицательной обратной связью но угловой скорости коленчатого вала (рис. 17, а). Управляющее устройство — автоматический регулятор — включает центробежный измеритель скорости с задающим устройством и, в общем случае, гидравлические усилители (сервомоторы) со стабилизирующими связями н рычажными передачами (рис. 17,6 — д). Исполнительный орган (рейка тонливного насоса в дизелях или заслонка карбюратора в карбюраторных двигателях) воздействует на ноток энергии, поступающей в двигатель в виде цикловых подач топлива, причем это воздействие имеет импульсный характер.  [c.36]

Условия мажорирования частотной характеристики САРС машинного агрегата с ДВС определяются следующими допущениями а) текущее значение частоты может совпадать с одной из собственных частот механического объекта регулирования б) необратимые потери энергии при колебаниях в центробежном измерителе угловой скорости отсутствуют в) потери энергии х и колебаниях в механическом объекте регулирования характеризуются постоянным коэффициентом поглощения, определяемым по параметрам низкочастотных резонансных колебаний силовой цепи ыашпны г) при наличии амплитудно-импульсных звеньев процесс управления принимается непрерывным д) постоянная времени центробежного измерителя, а в системах непрямого регулирования и постоянные времени сервомоторов принимаются равными своим минимальным значениям е) расчетный скоростной режим САРС соответствует минимальной степени неравномерности регулятора.  [c.141]


Импульсные регуляторы можно представить в виде позиционных с введенной отрицательной обратной связью, которая опре.целяет итоговый ПД- или ПИД-закон регулирования.  [c.471]

Силовыми элементами могут служить электромагнитные контакторы и реле — при позиционном и импульсном регулировании, а также магнитные усилители и полупроводниковые управляемые элементы (транзисторы, тиристоры, симисторы) — при всех видах регулирования.  [c.477]

Рис. 5.61. Импульсный вариатор скорости с пульсирующим движением ведомого вала. Эксцентрик I закреплен на ведущем валу вариатора и вращается с постоянной скоростью. Шатун 2 соединен с коромыслом 4 и шатуном 3 общим шарнн-ром, второй шарнир коромысла 4 установлен на неподвижной опоре 5, а второй шарнир шатуна 3 соединен с барабано.м б муфты свободного хода, звездочка 7 которой соединена с ведомым валом. Регулирование скорости осуществляется изменением положения неподвижного шарнира 5 с последующей его фиксацией. Для более равномерного вращения ведомого вала применяется несколько механизмов со смещенными по фазе эксцентриками. Рис. 5.61. <a href="/info/159493">Импульсный вариатор</a> скорости с пульсирующим движением ведомого вала. Эксцентрик I закреплен на ведущем валу вариатора и вращается с <a href="/info/333387">постоянной скоростью</a>. Шатун 2 соединен с коромыслом 4 и шатуном 3 общим шарнн-ром, второй шарнир коромысла 4 установлен на <a href="/info/174821">неподвижной опоре</a> 5, а второй шарнир шатуна 3 соединен с барабано.м б <a href="/info/2331">муфты свободного хода</a>, звездочка 7 которой соединена с ведомым валом. <a href="/info/187021">Регулирование скорости</a> осуществляется изменением положения <a href="/info/353564">неподвижного шарнира</a> 5 с последующей его фиксацией. Для более <a href="/info/7835">равномерного вращения</a> ведомого вала применяется несколько механизмов со смещенными по фазе эксцентриками.
Внутри барабана в коробке из изоляционного материала расположены четыре высоковольтных электрода (9), которые высоковольтными кабелями КПВЗОО связаны с источниками импульсного питания. Заземленным электродом служит решетка барабана. Бутара снабжена устройством для регулирования рабочего промежутка, а изоляционная коробка вместе с электродами может быть установлена в необходимое положение.  [c.272]

В большинстве градуировочных стендов используется фазоимпульсная статическая система регулирования скорости [4], которая отличается высоким быстродействием и малой средней квадратической погрешностью скорости ротора — порядка 10 % (за оборот). В качестве задатчика скорости обычно используется широкодиапазонный генератор с кварцевой стабилизацией частоты типа ГЗ-110, специальные генераторы или ЭВМ. Кроме задающего генератора и датчика обратной связи, в систему управления входят блок сравнения частот, фазовый детектор, корректируюш ее устройство, широтно-импульсный преобразователь. Источник опорного напряжения (грубый регулятор) выводит двигатель на заданный уровень скорости. После достижения равенства частот задающего генератора и частоты обратной связи включается в работу фазовый детектор. Сигнал, пропорциональный разности фаз входных частот, управляет работой широтно-импульсного преобразователя, который изменением скважности включения двигателя на источник питания обеспечивает стабилизацию скорости. Корректирующее устройство вводит в систему сигналы, пропорциональные первой и второй производным от угла рассогласования. Конструктивно система управления каждым ротором выполнена в виде отдельной унифицированной стойки с габаритами 1,7x0,6x0,6 м.  [c.152]


Смотреть страницы где упоминается термин Регулирование импульсное : [c.118]    [c.84]    [c.29]    [c.140]    [c.439]    [c.147]    [c.151]   
Электрические машины и электрооборудование тепловозов Издание 3 (1981) -- [ c.23 ]



ПОИСК



V импульсная



© 2025 Mash-xxl.info Реклама на сайте