Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стабилизация частот

Проведенный выше анализ показывает, что под влиянием резонансной нагрузки автоколебательная система может в определенной области частот изменить свою частоту и амплитуду, вообще прекратить колебания (режим гашения) или попасть в режим скачкообразного изменения амплитуды и частоты. Поэтому при использовании резонансной нагрузки необходимо принимать меры для уменьшения ее обратного влияния на автоколебательную систему. Одним из примеров системы с резонансной нагрузкой является генератор, связанный с контуром волномера. Для правильного измерения генерируемой частоты необходимо, чтобы связь между контурами генератора и волномера была достаточно мала (режим отсоса энергии). Явления затягивания и гашений, наступающие при сильной связи, в этом случае снижают точность определения частоты. Однако явление затягивания может быть использовано для стабилизации частоты автоколебаний. Для этого в качестве дополнительного контура в систему включают контур с высокой добротностью. В радиодиапазоне обычно применяется кварцевый резонатор, а в диапазоне СВЧ — высокодобротный объемный резонатор. При малом 63 область затягивания увеличивается. В этой области значительные вариации парциальной частоты контура генератора сопровождаются малыми изменениями генерируемой частоты. На рис. 7.12 жирными линиями изображены области стабилизации частоты при затягивании.  [c.277]


При использовании явления затягивания для стабилизации частоты необходимо удовлетворить двум условиям, а именно а) диапазон изменения парциальной частоты генератора должен быть значительно меньше области стабилизации б) после включения системы генератор должен быть настроен на соответствующую ветвь стабильной частоты.  [c.278]

Наличие дополнительной степени свободы приводит к появлению третьей устойчивой ветви нормальных частот, причем стабилизация частоты может оказаться выше, чем в двухконтурной системе.  [c.312]

Пьезокварц находит широкое применение для стабилизации частоты, а также в узкополосных фильтрах и в качестве элемента обратной связи.  [c.161]

Рабочий диапазон давлений воздуха перед ротором 5-10 —3,5-10 Па. Для стабилизации частоты вращения сирены электромеханический привод оснащен обратной связью. Вращение от электродвигателя 4 к ротору 3 передается посредством сменных шкивов 7 и клиноременной передачи. Недостаток сирен этого типа (с электромеханическим приводом) — сложность воспроизведения требуемого спектра шума и автоматического управления им. Этого недостатка лишены генераторы с электродинамическим и электрогидравли-ческим приводом.  [c.452]

После стабилизации частоты с помощью синхронизатора восстанавливают номинальную частоту вращения турбоагрегата и докладывают вышестоящему оперативному руководителю о готовности турбогенератора к включению в сеть.  [c.126]

Вначале по одному из датчиков диск вводился в резонансные колебания путем соответствующего изменения частоты вращения ротора возбудителя. При этом давление воздуха на входе в возбудитель устанавливали таким, чтобы исключить возможность повреждения датчиков и разрушения испытуемого диска. После того как фиксировали резонансный (или близкий к нему) режим, включали систему стабилизации частоты вращения ротора. Далее частота вращения (возбуждения) изменялась жестко при варьировании частоты звукового генератора, осуществлявшего стабилизацию. Затем производили точную настройку на резонанс и устанавливали путем повышения давления воздуха уровень напряжений, на котором планировалось проведение эксперимента. Наследующем этапе последовательно через один канал усилителя опрашивались все 36 датчиков. С помощью электронного вольтметра фиксировался максимальный уровень напряжений по каждому из датчиков в пределах резонансной зоны, для чего всякий раз осуществлялся очень плавный переход через резонансную зону. В процессе эксперимента давление на входе в возбудитель поддерживалось постоянным. Изменением перепада давлений на соплах, вызываемым изменением частот вращения ротора, пренебрегали, поскольку вся резонансная зона укладывалась в очень узкий диапазон частот вращения.  [c.180]


Для стабилизации частоты возбуждения привод модулирующего диска в вибростендах типа КуАИ-ВВ осуществляется одновременно от двух электродвигателей, работающих на один вал. Основной двигатель (двигатель постоянного тока) покрывает основные затраты мощности, необходимые на привод модулирующего  [c.213]

Для стабилизации частоты вращения необходимо включить питание стабилизирующего двигателя, которое осуществляется переменным током с согласованными частотой и напряжением. В качестве источника питания стабилизирующего двигателя используют звуковой Генератор с усилителем. Для выхода на стабилизированный режим предусмотрено устройство для ввода в синхронизм.  [c.214]

Н. э. играет определяющую роль в квантовой электронике. Он стабилизирует амплитуду колебаний в лазерах и мазерах, ограничивает сверху динамич. диапазон квантовых усилителей. В ряде случаев Н. э. применяется для стабилизации частоты генерации лазеров, для модуляции их добротности и т. д.  [c.248]

Стабилизация частоты мощных ионных лазеров представляет интерес для развития техники перестраиваемых лазеров на красителях и лазеров на центрах окраски. В качестве оптич. репера используются узкие резонансы насыщенной флуоресценции в шириной  [c.452]

Важнейшее направление использования Ф. п. связано с высокой чувствительностью её электрич. свойств к степени совпадения частоты лазерного излучения с частотой резонансного перехода в атоме. Это позволяет использовать Ф. п. как нелинейный оптич. элемент для преобразования и стабилизации частоты лазерного излучения, а также для анализа содержания примесей атомов и молекул, резонансно поглощающих лазерное излучение. Ф. п. служит удобным средством получения ионных пучков заданного состава, что связано с высоким коэф. преобразования энергии лазерного излучения в энергию ионов. Ф. п. широко используется при изучении элементарных процессов в низкотемпературной плазме. Эти исследования дали богатую информацию о параметрах и механизмах процессов ионизации при участии возбуждённых атомов.  [c.358]

Многие из существующих устройств для интерференционного измерения длины с помощью лазера имеют высокую точность. Точность каждого из них определяется главным образом степенью стабилизации частоты применяемого лазера и реально может быть порядка 10 — 10  [c.416]

Эффективность работы шлифовальных машин в значительной мере зависит от режима работы, прежде всего от стабилизации частоты вращения рабочего органа при изменении внешней нагрузки, а также от прочности и износостойкости рабочего инструмента. В машинах с асинхронными электрическими двигателями стабильность частоты вращения обеспечивается жесткой механической характеристикой самого двигателя, а в машинах с коллекторными двигателями, имеющими мягкую механическую характеристику, для этой цели применяют электронные регуляторы, дублированные независимыми центробежными предохранительными устройствами, устанавливаемыми на валу якоря двигателя и отключающими его питание от сети при превышении номинальной частоты вращения более чем на 15%. Эта мера вызвана необходимостью предотвратить разрыв шлифовального круга при запредельной частоте его вращения на холостом ходу в случае выхода из строя электронного регулятора.  [c.355]

В имная синхронизация двух генераторов может быть использована для стабилизации частоты в том случае, если захватывающий генератор более стабилен, чем захватываемый.  [c.280]

В последние годы стали находить применение автоколебатель-ньи системы ЕС-типа с числом степеней свободы больше двух. Такие устройства обеспечивают лучшую стабилизацию частоты, чем рассмотренная в гл. 7 автоколебательная система с одним дополнительным контуром ).  [c.311]

Для пьезоэлементов из природного кварца обычно допускают температуру (—50) (+90)° G. Если необходима высокая стабилизация частоты, пьезоэлемент помещается в камеру (термостат), где автоматически по,пдерживается неизмененная температура. Природный кварц в последнее время заменяют синтетическим кварцем, имеющим ряд преимуществ. Так, добротность иьезоэлемента из природного кварца резко надает при нагревании до 250° С пьезоэлементы из синтетического кварца сохраняют высокую Добротность 5-10 при температуре до 500° С. Для устранения внутренних дефектов строения синтетического кристалла вырезанный из него брусок предварительно выдерживают при 500° С под напряжением в течение 48 ч создаваемая напряженность поля имеет величину 500 в1см и направлена по оси 2. После такой обработки из бруска кварца могут быть вырезаны пластинки под различными углами относительно осей х, у, z такие пластинки именуют срезами (рис. 11.6). >  [c.161]


Одной из важных и интереснейших областей применения достижений физики в радиотехнике 20—30-х годов было использование пьезоэффекта. Кварц, турмалин и некоторые другие кристаллы получили в эти годы широкое распространение для стабилизации и эталонирования частоты электрических колебаний и для ультраакустики. В области теории и практики применения кварца для стабилизации частот в радиотехнике известны работы Д. А. Рожанского, М. С. Неймана, Ю. Б. Кобзарева и др.  [c.319]

Большую работу по контролю, эталонированию и стабилизации частот радиостанций в СССР в эти годы проделал Научно-исследовательский институт связи НКПиТ (А. Я. Вайнберг, Г. Г. Важинский, В. А. Смирнов и др.) [431.  [c.319]

В середине 30-х годов началась борьба за решительное улучшение качества материалов и деталей, применяемых в радиоаппаратуре. В области температурной стабилизации частоты особенно важное значение имело появление керамики — установочной и конденсаторной, предлоншнной, разработанной и внедренной в производство советскими учеными и инженерами В. П. Вологдиным, Н. П. Богородицким, Б, М. Вулом, Г. И. Ска-нави, Д. М. Казарновским и Г. А. Смоленским.  [c.319]

В ЦРЛ решались многие задачи, связанные с осуш,ествлением новых разработок для промышленности. Сюда прен де всего относятся почти все основные разработки радиоприемных устройств. Особо в этой связи должны быть отмечены теоретические работы в области радиоприема В. И. Сифорова, разработка синхронных методов приема Е. Г. Момотом, работа по конструированию образцов длинноволновых и коротковолновых радиоприемников профессионального назначения (А. П. Сивере). В ЦРЛ вели свои исследования по нелинейной радиотехнике академики Л. И. Мандельштам и Н. Д. Папалекси. Здесь начинал свои работы по распространению радиоволн А. Н. Щукин, здесь же были проведены первые работы по стабилизации частоты коротковолновых передатчиков (М. С. Нейман). С именем ЦРЛ связаны многие работы по телевидению, инфракрасной технике, электроакустике, гидроакустике и др. В ЦРЛ проводились работы в области ультракоротких волн (В. И. Калинин), первые испытания радиолокационных станций (Ю. К. Коровин) и др.  [c.360]

В большинстве градуировочных стендов используется фазоимпульсная статическая система регулирования скорости [4], которая отличается высоким быстродействием и малой средней квадратической погрешностью скорости ротора — порядка 10 % (за оборот). В качестве задатчика скорости обычно используется широкодиапазонный генератор с кварцевой стабилизацией частоты типа ГЗ-110, специальные генераторы или ЭВМ. Кроме задающего генератора и датчика обратной связи, в систему управления входят блок сравнения частот, фазовый детектор, корректируюш ее устройство, широтно-импульсный преобразователь. Источник опорного напряжения (грубый регулятор) выводит двигатель на заданный уровень скорости. После достижения равенства частот задающего генератора и частоты обратной связи включается в работу фазовый детектор. Сигнал, пропорциональный разности фаз входных частот, управляет работой широтно-импульсного преобразователя, который изменением скважности включения двигателя на источник питания обеспечивает стабилизацию скорости. Корректирующее устройство вводит в систему сигналы, пропорциональные первой и второй производным от угла рассогласования. Конструктивно система управления каждым ротором выполнена в виде отдельной унифицированной стойки с габаритами 1,7x0,6x0,6 м.  [c.152]

Сравнительные характеристики двух типов датчиков показаны на рис, 2.28, б. Они отражают влияние параметра Z)/ f= 1,5- 3,0 и диэлектрического покрытия на центральном электроде. Датчики Д1 Djd=2i) и Д2 (D/d=l,5) с фторопластовым покрытием толщиной 0,8 мм имеют слабый сигнал и узкий интервал линейной зависимости А/(бпл) (бпл=т0,2- -0,4 мм). Открытый датчик ДЗ (DJd=2,5) имеет значительно больший сигнал и линейность характеристики при бпл 0,4 мм.. Влияние проводимости сказывается при дальнейшем увеличении толщины пленки и кривые Д/(бпл) рассеиваются. Рабочий вариант датчика ДЗ в результате доработки показал слабое влияние сквозной проводимости даже в случае открытой конструкции активной зоны, что иллюстрируется его характеристикой Д/(6пл), полученной как на конденсате, так и на водопроводной воде. Кривые Д/(бпл) представляют изменение частоты генератора в зависимости от толщины пленки жидкости, полученные на калибровочном стенде, поэтому возможно построить простые и точные системы измерения толщины пленок, содержащие измерительный генератор и цифровой частотомер. Генератор должен обладать высокой стабильностью частоты, что требует специального выбора схемы и расчета цепей температурной стабилизации частоты. Построение измерительных генераторов на микросхемах и современных радиотехнических индуктивных компонентах позволяет создать миниатюрные конструкции блоков датчик толщины пленки — генератор, а также упростить технологию их установки в исследуемых каналах.  [c.63]

Стабилизация частоты при возбуждении пульсируюш,ей струей. На рис. 10.14 приведена типичная резонансная кривая для лопатки компрессора (декремент 6 = 0,006). Отклонение частоты возбуждения от резонансной на 0,2% приводит к падению амплитуд на 50%.  [c.213]

Параметрич. процессы в онтич, диапазоне — оспона перестраиваемых параметрич. лазеров и лазеров па свободных электронах, Воздепствпе лазерного излучения, частота к-рого совпадает с узкими спектральными линиями поглощения атомов разреженного газа, приводят к насыщению этих. тнннй. Этот процесс при-ме]шют для стабилизации частот , .лазеров.  [c.320]

Принцип стабилизации. Стабилизация частоты лазера, как и стандартов радиодиапазона, основана на использовании спектральных линий атомного или молекулярного газа (оптич. реперы), к центру к-рых привязывается частота V с помощью электроЕШОй системы автоматич. подстройки частоты, Т. к. линии усиления лазеров обычна значительно превосходят ширину полосы пропускания оптического резонатора, то нестабильность (бv) частоты V генерации в большинстве случаев определяется изменением оптич. длины резонатора /(б/) б V = Осн. источниками нестабиль-  [c.451]


Оптические реперы. Используемые в СВЧ-диапазоне методы получения узких спектральных линий оказались не применимыми в оптич. области спектра (доплеровское уширение мало в СВЧ-диапазоне). Для О. с. ч. важны методы, н-рые позволяют получать резонансы в центре спектральной линии. Это даёт возможность непосредственно связать частоту излучения с частотой квантового перехода. Перспективны три метода метод насыщенного поглощения, двухфотонного резонанса и метод разнесённых оптич. полей. Осн. результаты по стабилизации частоты лазеров получены с помощью метода насыщенного поглощения, к-рый основан на нелинейном взаимодействии встречных световых волн с газом. Нелинейно поглощающая ячейка с газом низкого давления может находиться внутри резонатора лазера (активный репер) и вне его (пассивный репер). Из-за эффекта насыщения (выравнивание населённостей уровней частиц газа в сильном поле) в центре доплеровски-уширен-ной линии поглощения возникает провал с однородной шириной, к-рая может быть в 10 —10 раз меньше доплеровской ширины. В случае внутренней поглощающей ячейки уменьшение поглощения в центре линии приводит к появлению узкого пика на контуре зависимости мощности от частоты генерации. Ширина нелинейного резонанса в молекулярном газе низкого давления определяется прежде всего столкновениями и эффектами, обусловленными конечным временем пролёта части-  [c.451]

П, э. играет большую роль в квантовой электронике в нелинейной оптике ячейки с просветляющимся веществом используются для т, н. пассивной модуляции добротности и синхронизации мод лазеров, формирования коротких импульсов в лазерных усилителях и т. п. П, э. в газовых средах, помещённых в резонатор лазера а. обладающих доплеровски уширенной линией поглощения на частоте генерации, используется для стабилизации частоты и сужения линий генерации. В нели-нейной спектроскопии наблюдение П. а. в неоднородно уширенных линиях поглощения является ордт/i из методов регистрации спектров с высоким разрешением.  [c.151]

П. р. широко используются в радиотехнике, электронике, электроакустике и др. в качестве фильтров, резонаторов в задающих генераторах, резонансных пьезопреобразователей и пьезотрансформаторов. Пьезоэлектриком в П. р. служит кристалл кварца или пьезо-керамика с малыми потерями. Кварцевые резонаторы применяются в качестве резонансных контуров генераторов злектрич. ВЧ-колебаний. Высокая добротность (10 — 10 ) кварцевого резонатора определяет малый уход частоты генератора от её номинального значения 1(10 — Ю )%] при изменении окружающей темп-ры, давления и влажности. Разработаны микроминиатюрные кварцевые резонаторы на частоты колебаний 30 кГц — 8,4 МГц, нашедшие применение в электронных часах, системах электронного зажигания двигателей внутр. сгорания и др. П. р. на основе кварца используются в акустоэлектронных устройствах фильтрации и обработки сигналов монолитных ньезо-электрич. фильтрах, а также фильтрах и резонаторах на поверхностных акустических волнах (ПАВ). Оси. достоинство резонаторов на ПАВ — возможность использования в устройствах стабилизации частоты и узкополосной фильтрации в диапазоне частот 100— 1500 МГц. Пьезоэлектрич. фильтры из пьезокерамики, как правила, многозвенные, изготавливают на частоты 1 кГц — 10 МГц. При этом на частотах до 3,5 кГц используют биморфные пьезоэлементы, когда П. р. совершает резонансные колебания изгиба по грани в  [c.192]

Преобразование частоты осуществляется в смесителе при подведении к нему мопщости гетеродина. Большинство гетеродинов, применяемых в СВЧ-диапазоне, создаются на основе полупроводниковых активных элементов — диодов и транзисторов. Для создания гетеродинов на частотах / > 10 ГГц используют в оси. 2 вида диодов — Ганна диоды (ДГ) и диоды Шоттки, а также ПТШ. На основе ДГ создают автогенераторы (см. Генератор электромагнитных колебаний), использующие отрицательное дифференциальное сопротивление, возникающее в ДГ. Гетеродины на диодах Ганна (ГДГ) также являются самым распространённым видом гетеродинного автогенератора в диапазоне 10—150 ГГц благодаря своей миниатюрности, экономичности и малым шумам. Они могут быть с фиксиров. настройкой (со стабилизацией частоты и без неё) и с механич. или электрич. перестройкой частоты, к-рая в последнем случае часто осуществляется с помощью нелинейной ёмкости, включаемой в колебательный контур (систему) генератора. Обьячно в качестве такой ёмкости применяют полупроводниковый диод (нанр., диод Шоттки). Для стабилизации частоты используют высокодобротный объёмный резонатор, чаще в виде диэлектрич. резонатора (рис. 6). Для создания гетеродинов на частотах / > 150 ГГц применяют умножение частоты на диодах Шоттки, Такие умножители частоты (удвоители, утроители) конструктивно сложны и содержат элементы СДШ. Транзисторные гетеродины на ПТШ в виде пере-  [c.229]

СТАБИЛИЗАЦИЯ ЧАСТОТЫ — совокупность методов увеличения стабильности частоты. Различают а) затягивание частоты путём связи генератора колебаний с дополнит, колебат. системой, характеризуемой высокой добротностью 6) захватывание частоты путём связи данного генератора колебаний с генератором, обладающим более стабильной частотой в) параметрическую С. ч.— стабилизацию параметров приборов, генерирующих периодвч. колебания.  [c.658]

Разнос фиксированных частот определяется главным образом стабильностью частоты. В настоящее время применяются бескварцевая и кварцевая стабилизация частот. При бескварцевой стабилизации стабильность частоты имеет порядок 10- —10- . При кварцевой стабилизации можно получить стабильность порядка 10- —10-6.  [c.374]

Развитие техники стабилизации частоты и частотной селекции, так же как и развитие многих других вибрационных приборов, идет по пути создания многокомпонентных интегральных пьезоэлектрических микроэлектронных устройств, в которых КР конструктивно объединены с микросхемой (микроэлектронные кварцевые генераторы, интегральные пьезоэлектрические фильтры, электронные часы и др.). В целях микроминиатюризации аппаратуры разрабатывают и изготовляют также многоэлектродные и многочастотные КР. В последних на одной общей пластине кварца (пьезоэлементе) располон<ены на определенном расстоянии две, три пары электродов и более, образующих изолированные друг от друга резонаторы со степенью механической развязки более 40 дБ, что основано на использовании явления захвата (локализации) энергии колебании сдвига по толщине в подэлектродной области (между парой электродов).  [c.445]


Смотреть страницы где упоминается термин Стабилизация частот : [c.401]    [c.54]    [c.438]    [c.299]    [c.93]    [c.14]    [c.224]    [c.259]    [c.548]    [c.352]    [c.452]    [c.226]    [c.55]    [c.100]    [c.446]    [c.427]    [c.325]   
Машиностроение Автоматическое управление машинами и системами машин Радиотехника, электроника и электросвязь (1970) -- [ c.319 ]



ПОИСК



Использование пьезоэлектрических резонаторов для стабилизации частоты

Лимба для стабилизации частоты

Провал Лэмба и активная стабилизация частоты лазера

Резонаторы стабилизация частоты

Стабилизация

Стабилизация частоты в одномодовых лазерах

Стабилизация частоты внешним сигналом

Стабилизация частоты камертонная

Стабилизация частоты камертонная кварцевая



© 2025 Mash-xxl.info Реклама на сайте