Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Целя РОЛИКИ

Отливка [В 29 изделий из пенопластов С 67/20-67/22 пластических материалов для получения трубчатых изделий С 39/00, D 23/00-23/22) В 22 D ( изделий равномерной твердости 25/08 слитков (7/00-7/12 машины для этой цели 9/00) чушек (установки 3/00-5/04 столы 5/02) для этой цели) роликов, колес, валков, цепей В 22 С 9/28-9/30 стереотипов, способы и устройства В 41 D 3/00-3/28 тара, изготовляемая из металла путем отливки В 65 D 1/00)] Отливки <В 22 защита С 1/04-1/06 извлечение из форм D 13/10, 29/00 из шликерных масс, изготовление F 3/22) металлические, ремонт В 23 Р 6/04)  [c.127]


К третьей группе относятся роликовые стенды с вращением коллектора от руки. Для этой цели ролики снабжены отверстиями, в которые по мере необходимости вставляется поворотный рычаг (к этой группе кантователей может быть отнесен любой роликовый стенд, не имеющий электромеханического привода).  [c.196]

Контроль радиального биения зубчатого венца можно производить универсальными зубоизмерительными приборами, предназначенными для поэлементного контроля зубчатых колес. В исключительных случаях проверку биения зубчатого венца осуществляют с помощью калиброванного ролика и индикаторного прибора. С этой целью колесо 3 (рис. 55) с помощью оправки 4 устанавливают в горизонтальных центрах 5. Затем укладывают в верхнюю впадину колеса ролик 2 определенного диаметра. В цилиндрическую поверхность ролика упирают измерительный наконечник индикатора ], ось которого должна проходить через центр проверяемого колеса (это положение соответствует наибольшему показанию по шкале индикаторного прибора). Принимая положение ролика в данной впадине за исходное, сравнивают с ним положения ролика последовательно во всех впадинах колеса. Для этой цели ролик перекладывают из впадины во впадину, причем вал с колесом поворачивают так, чтобы показания индикатора были наибольшими. Таким образом находят наибольшую разность двух показаний.  [c.140]

Если слой материала не снимается, а подвергается пластической деформации (например, при образовании рифлений или при обкатывании поверхности гладким роликом с целью ее уплотнения), также применяют понятие рабочего хода, как и при снятии стружки.  [c.10]

При накатывании внутренней резьбы в глубоких отверстиях применяется схема с осевой подачей ролика. Для этой цели используется резьбонакатная головка с тремя накатными роликами.  [c.257]

С целью уменьшения давления на ролик применяют в и б р о о б к а -тывание (ролику сообщают колебания в радиальном направлении с помощью пневматического или электромагнитного вибратора).  [c.322]

Статическая балансировка ротора. Этот вид балансировки преследует цель превращения оси вращения ротора в его центральную ось. Удалением избытка металла в более тяжелой части ротора или добавлением металла в более легкой его части добиваются безразличного равновесия ротора на роликах или горизонтально расположенных линейках, что служит признаком его статической уравновешенности (= 0). Статическая балансировка достаточна при малых угловых скоростях и небольших размерах вращающейся детали в направлении оси вращения (маховики, неширокие шкивы, зубчатые колеса). При деталях значительной длины и больших угловых скоростях (роторы турбин, электродвигателей и т. д.) статическая балансировка не гарантирует устранения динамических нагрузок на подшипники, а иногда даже увеличивает их. Кроме того, недостатком существующих способов статической балансировки является не всегда достаточная точность ее, обусловленная влиянием трения.  [c.98]


Кулачковые механизмы. Кулачковый механизм с вращающимся кулачком показан на рис. 1.4. В его состав входят неподвижное звено — стойка 1 н три подвижных звена. Звено 2 называется кулачком. Его профиль представляет собой некоторую замкнутую кривую. Звено 4, совершающее качательное движение, называется штангой. С целью уменьшения потерь на трение штанга обычно снабжается цилиндрическим роликом 3. Этот кулачковый механизм преобразует вращательное движение кулачка в качательное движение щтанги. Постоянный контакт ролика и кулачка осуществляется с помощью пружины 5.  [c.7]

В промышленности уже давно и весьма широко применяются методы поверхностного упрочнения деталей, работающих в условиях циклических напряжений (рессоры и полуоси автомашин, зубья шестерен, винтовые клапанные пружины и пр.). Эта специальная поверхностная обработка не преследует целей общего изменения прочностных показателей металла. Речь идет именно об усталостном упрочнении, часто в сочетании с требованиями износостойкости. К числу таких методов, применяемых в различных сочетаниях, относятся химико-термические (азотирование, цементация, цианирование), поверхностная закалка токами высокой частоты и наклеп поверхностного слоя обкаткой роликами или обдувкой дробью.  [c.96]

С целью повышения предела вьшосливости и долговечности деталей, работающих при переменных напряжениях, в современной технике широко используются эффективные технологические методы поверхностной обработки (обкатка роликами, обдувка дробью, поверхностная закалка, цементация, азотирование, цианирование и др.). За счет чего при этом достигается положительный эффект  [c.225]

Для кулачковых механизмов с роликом на выходном звене часть программы, начинающаяся с метки 14, рассчитывает минимальный радиус кривизны. Расчет ведется по формулам (III.5.14), (III.5.15). Для кулачкового механизма с тарельчатым толкателем в целях проверки соблюдения условия выпуклости профиля рассчитываются радиусы кривизны во всех точках по формуле (III.5.13) и формируется массив переменных RK (I)  [c.140]

Для увеличения стойкости кулачки изготовляют из высококачественной стали с рабочей поверхностью высокой твердости. С целью уменьшения трения и износа на толкателе устанавливают ролик, который вращается на осп и катится без скольжения по рабочей поверхности кулачка (рис. 206, б).  [c.248]

У двухволновых генераторов свободной деформации гибкого звена на водиле закрепляются две оси с роликами (рис. 11.4, в). Трехволновые генераторы применяются реже (рис. 11.4, г). Генераторы волн принудительной деформации имеют форму кулачка определенного профиля (рис. 11.4, д). Они применяются с целью более рационального распределения напряжений в материала  [c.191]

По формуле (1.3) получаем И =6-3 — 5-4-)-3=1. Примером местных подвижностей звеньев, не влияющих на степень свободы механизма в целом, может служить вращение роликов на их осях или вращение колец шарикоподшипников. Такие подвижности обычно вводят в конструкцию механизма, чтобы уменьшить износ элементов кинематических пар.  [c.27]

Определение основных размеров из условия выпуклости кулачка. Если по условиям размещения звеньев кулачкового механизма не удается поставить ролик между кулачком и толкателем, то применяют тарельчатый толкатель, который взаимодействует с кулачком / по плоскости (рис. 122). С целью уменьшения износа нижнюю часть толкателя выполняют в виде круглой тарелки, которая вместе с толкателем может поворачиваться относительно его оси. Для этого кинематическую пару толкатель — стойка выполняют как цилиндрическую пару.  [c.221]

В приборостроении большое распространение имеют лобовые вариаторы, у которых с целью уменьшения скольжения ролик выполняют в виде тора или заменяют двумя шариками (рис. 3.36).  [c.259]

С целью уменьшения износа и потерь на трение применяют толкатели и коромысла с роликом (рис. 3.97, г). Благодаря ролику трение скольжения в высшей кинематической паре заменяется трением качения. Типичные способы крепления роликов на толкателях показаны на рис. 3.98.  [c.331]


Ролики обычно устанавливаются на цапфах, укрепляемых неподвижно на направляющих или ползуне (рис. 4.75, а,, в, г). Для уменьшения потерь на трение стремятся заменить скольжение между роликом и цапфой на трение качения. С этой целью в качестве роликов часто применяют стандартные шарикоподшипники (рис. 4.75, г).  [c.476]

Зубчатое колесо 14 в зависимости от положения муфты 15 либо сцеплено с валом ролика 16, либо расцеплено, как показано на рисунке, и тогда ролик 16 остается неподвижным, в то время как распределительный вал вращается непрерывно. Муфта образует с валом ролика поступательную пару и может скользить вдоль этого вала, следуя за перемещением толкателя /,2, движением которого управляет кулачок 11. В нижнем положении муфты 15 ее выступ входит в паз на колесе 14 и зацепляется за него, при этом звенья 14, 15 и 16 вращаются как одно целое. В изображенном на схеме верхнем положении толкателя 12 и муфты 15 зацепление ее выступа с пазом колеса 14 отсутствует и вращение колеса 14 не может быть передано ролику 16. При этом подачи прутка не происходит.  [c.77]

Намагничивающее устройство состоит из электромагнита, питаемого постоянным или переменным током промышленной частоты от блока управления и сменных полюсных наконечников. Для контроля сварных соединений на наличие трещин любых направлений, непроваров и других дефектов применяют полюсные наконечники, выполненные в виде двух параллелепипедов, которые располагаются под углом друг к другу со смещением полюсов по направлению перемещения и имеют профилированный и непрофилирован-ный ролики с обоих концов каждого полюса. При креплении намагничивающего устройства к основанию и установке опорного и направляющего роликов можно получить минимальный зазор полюс—изделие с целью оптимального намагничивания изделия и свободного перемещения установки.  [c.56]

Для повышения усталостной прочности вала под ступицей обычно номинальный посадочный диаметр увеличивают на 5 % с применением плавных переходов — галтелей (рис. 2.8, а). Для той же цели могут быть применены обкатка роликами, цементация или поверхностная закалка, азотирование.  [c.43]

В процессе движения звенья кулачкового механизма скользят одно по другому, что вызывает их износ. При этом наибольшему износу подвержен заостренный толкатель, поскольку острие его А (см. рис. 5.1, а) непрерывно скользит по поверхности кулачка. С целью уменьшения износа толкателя в качестве промежуточного звена часто вводится ролик (рис. 5.2. б и в), благодаря чему трение скольжения заменяется трением качения. Иногда толкатель оформляется в виде грибка (см. рис. 5.1, б) или имеет вид плоской тарелки, как это показано на рис. 5.2, г.  [c.118]

Долговечность бесконечных лент при ленточном шлифовании и полировании во многом зависит от свойств ведуш,их роликов, так как они передают крутящий момент с электропривода станка на ленту, определяют предварительное натяжение ленты и КПД передачи. Для этого ведущие ролики должны обладать определенной массой и высокой надежностью сцепления с основой ленты. Масса ведущего ролика в ленточно-шлифовальных и полировальных станках обычно выполняет роль маховика и определяет плавность работы бесконечной ленты и всего ленточного механизма. Надежность сцепления обычно обеспечивается варьированием угла охвата и обрезиниванием рабочей поверхности роликов. Применяются также бочкообразные или двухконусные ролики, формы которых приведены на рис. 8.1, б—ж. Для уменьшения перегрузки краев и повышения стойкости лент авторами разработана конструкция ведущих роликов переменной жесткости из фрикционных материалов. С этой целью ролик выполняют наборным из нескольких дисков 1—4, закрепленных на общей ступице 5 (рис. 8.4,6). Диски изготовляют из высокофрикционных материалов различной жесткости (резины разной твердости, полиуретана и т. д.). При этом диск 1 имеет наибольшую, а диски 4 наименьшую жесткость (по сравнению с досками 2, 3), т. е. жесткость ролика уменьшается от его середины к краям. В этом случае эпюра напряжений в поперечном сечении абразивной ленты будет иметь вид, указанный на рис. 8.4,6. Снижение напряжений по краям ленты по сравнению с напряжениями в ленте на ролике одной постоянной жесткости (рис. 8.4, е) объясняется тем, что под действием приложенной нагрузки Н края ленты могут смещаться в направлении приложенной силы вследствие большой податливости ролика в местах его контакта с краями ленты.  [c.189]

Создание натяжения трением и изгибом провода при его скольжении по фрикционным пальцам. Зажатие провода между пластинами и дисками создает значительные удельные нагрузки на изоляцию, поэтому предъявляются высокие требования к выбору материала фрикционной пары и к конструкции таких устройств. Для уменьшения удельных нагрузок на изоляцию провода для безынерционного натяжения применяют устройство в виде неподвижно устанавливаемых роликов, охватываемых проводом (рис. 83, б). Усилие натяжения регулируется изменением угла обхвата проводом роликов. С этой целью ролики 3 устанавливаются неподвижно на основании приспособления, а ролики 4 на подвижную пластину, перемещающуюся при регулировке относительно основания, при этом изменяется угол обхвата. Это устройство дает большую неравномерность натяжения, чем способ зажима провода пластинами, но зато при его работе меньшее влияние на натяжение оказывают местные переркутки провода, I оно не требует частой переналадки.  [c.135]

Таким образом, фигура AB D — всегда параллелограмм, и, следовательно, расстояние между точками F и Е остается постоянным и равным расстоянию между точками А н D или В и С. Тогда без всякого нарушения характера движения механизма можно звено EF (или ВС) удалить, так как это звено, входящее в кинематические пары Е и F, налагает на движение механизма условия связи, являющиеся избыточными. Рассмотрим далее круглый ролик 6 (рис. 2.6), входящий во вращательную пару V класса Я со. звеном 4, соприкасающимся с ним по прямолинейному профилю НС. Нетрудно видеть, что мы можем свободно поворачивать ролик 6 вокруг оси, проходящей через точку G, не оказывая при этом никакого влияния па характер движения механизма в целом. Свободно поворачивающийся ролик дает лишнюю степень свободы. Поэтому без всякого нарушения характера движения механизма в целом можно ролик удалить и звено 4 со звеном 7 соединить непосредственно в кинематическую пару IV класса (рис. 2.7). Элементом пары звена 4 будет прямая KL, параллельная прямой D , проходящая от нее на расстоянии, рапном радиусу ролика 6, с элементом пары звена 7 будет точка С.  [c.39]


Материалы целей и звездочек. Цепи и звездочки дотжны быть стойкими против износа и ударных нагрузок. По этим соображениям болыпинство цепей и звездочек изготовляют из углеродистых и легированных сталей с последующей термическо обработкой (улучшение, закалка). Рекомендации по выбору материалов и термообработки цепей и звездочек можно найти в соответствующих справочниках [4, 27]. Так, например, для звездочек рекомендуется применять стали 45, 40Х и др. для пластин цепей — стали 45, 50 и др. для валиков, вкладышей и роликов — стали 15, 20, 20Х и др. Детали шарниров цепей в большинстве случаев цементируют, что повьниает их износостойкость при сохранении ударной прочности. Перспективным является изготовление звездочек из пластмасс, позволяющих уменьшить динамические нагрузки и шум передачи.  [c.247]

В некоторых случаях для повын1е)шя ра анальной грузоподъемности опоры при тех же радиальных размер )х можно изменить тин подшипника, папрнмер, вместо радиальнсго шарикоподшипника принять роликоподшипник с цилиндрическими или даже с коническими роликами. С этой целью возможно фименение даже двухрядного сферического роликоподшипника ам, где не требуется самоустановки.  [c.109]

При установке ролика в вилке (конструкция 17) затяжка оси вызывает е ст хмыкание проушин вилки до упора в торцы ролика, в результате чего ооооолик теряет подвижноеть. Введение дистанционной втулки (конструкция S) исправляет положение, по усложняет изготовление. Наиболее целе-X сообразно крепить ось штифто.м в одной из проушин (конструкция 19).  [c.566]

В роликовых планетарных передачах винт — гайка (рис. 15,6) для обеспечения трения качения между резьбой винта / и резьбой гайки 4 катаются резьбовые ролики 3, которые одновременно являются сателлитами планетарных зубчатых передач с внутренним зацеплением. Углы подъема резьбы на гайке и роликах одинаковы. Для этого резьба гайки делается многозаходной с числом заходов (целое число), равным отношению средних диаметров резьбы и роликов. Это обеспечивает невыкатывание роликов из гайки. На роликах нарезана треугольная резьба с выпуклым профилем, обеспечивающим точечный начальный контакт.  [c.314]

В кулачковых плоских и пространственных механизмах, широко применяемых в различных машинах, станках и приборах, высшая пара образована звеньями, называемыми — кулачок и толкатель (звенья I и 2 на рис. 2.9). Замыкание высшей пары может быть силовое (например, пружиной 5 на рис. 2.9,6) или геометрическое (ролик 3 толкателя 2 в пазу кулачка / на рис. 2.9,а). Форма входного звена — кулачка определяет закон движения выходного звена — толкателя ролик применяют с целью уменьшить трение в механизме путем замены трения скольжения в высшей паре на трение качения. На рис. 2.9,а вращательное движение входного звена (кулачка I) преобразуется в возвратно-поступательное движение выходного звена (толкателя 2). В механизме, изображенном на рис. 2.9, б, толкатель 2 — коромыс-ловый, совершающий возвратно-вращательное движение вокруг оси Оа. На рис. 2.9,в изображена модель пространственного кулачкового механизма с вращающимся цилиндрическим кулачком / и поступательно движущимся роликовым толкателем 2 замыкание высшей пары — геометрическое. На рис. 2.1,а дан пример применения кулачкового механизма с коромысловым (качающимся) роликовым толкателем 5 для привода выхлопного клапана 6, через  [c.30]

Заслуживает внимания метод, основанный на применении дистанционной фоторегистрации (Ламбин Н.Е. Съемка подкрановых путей с использованием полуавтоматического устройства // Инж.геод. 1978, N 21. С. 21-25). Он заключается в том, что на одном конце рельса устанавливается фоторегистрирующее устройство 1, которое ориентируется по марке 3, установленной на другом конце рельса. Планово-высотное положение рельса проверяется с помощью экрана 2, смонтированного в установленном на основании 4 каркасе 5 (рис.68, а). В верхней части каркаса имеется винт б, приводимый во вращение микроэлектродвигатепем 7, питание которого осуществляется от двух батареек. На винте свободно подвешен стержень 8, занимающий вертикальное положение за счет утяжеленной нижней части, оканчивающейся пружинящей пластинкой, расположенной между двумя клеммами 9. После установки экрана в контролируемой точке, в случае наклона каркаса, происходит наклон стержня и соприкосновение его с одной из клемм. В связи с этим происходи замыкание цели А (рис.68, 6), включается электродвигатель и, приводя во вращение винт б, передвигает стержень вправо до тех пор, пока не произойдет размыкание цепи. При замыкании цепи Б стержень под действием электродвигателя переместится влево до размыкания контактов, что будет соответствовать его вертикальному положению строго по оси рельса. Это обеспечивается роликами 10 и II.  [c.140]

В целях I более наглядного сравнения способности оси 2 быстровращающегося ротора гироскопа и оси 2 твердого негироскопического тела сохранять заданное направление в абсолютном пространстве, рассмотрим двингения гироскопа и твердого тела, нагруженного моментом внешних сил. Представим гироскоп (рис. 11.9), движение которого около неподвижной точки для наглядности осуществляется с помощью карданова подвеса с невесомыми рамками, нагруженный моментом Мх = Рг внешних сил, где Р — вес груза, подвешенного на шнуре, перекинутом через ролик, а г — радиус ролика.  [c.79]

Величина и знак остаточных напряжений после механической обработки зависят от обрабатываемого материала, его структуры, геометрии и состояния режущего инструмента, от эффективности охлаждения, вида и режима обработки. Величина остаточных напряжении может быть значительной (до 1000 МПа и выше) и оказывает существенное влияние на эксплуатационные характеристики деталей машин, их износостойкость и прочность. Выбором метода и режима механической обработки можно получить поверхностный слой с заданной величиной и знаком остаточных напряжений. Так, при точении закаленной стали 35ХГСА резцом с отрицательным передним углом 45° при скорости резания 30 м/мин, глубине резания 0,2-0,3 мм было получено повышение предела выносливости образцов на 40-50% и обнаружены остаточные сжимающие напряжения первого рода, доходящие до 600 МПа [25]. При шлифовании закаленной стали в поверхностном слое были обнаружены остаточные сжимающие напряжения до 600 МПа [26]. В некоторых случаях напряжения первого рода создаются намеренно в целях упрочнения. Например, для повышения усталостной прочности. Такой эффект получают наложением на поверхностный слой больших сжимаюп их напряжений путем обкатки поверхности закаленным роликом или обдувкой струей стальной дроби. Такой прием позволяет создать остаточные напряжения сжатия до 900-1000 МПа на глубине около 0,5 мм [25].  [c.42]

Для получения оксидной изоляции на поверхности сплавов высокого сопротивления типа нихрома, константана и других (см. стр. 220) можно применять термическое оксидирование. Покрытую оксидной изоляцией проволоку из сплава высокого сопротивления можно наматывать при изготовлении проволочных резисторов плотно, виток к витку, конечно, если напряжение между ними не слишком велико. Достаточно гибкая и механически прочная оксидная изоляция на поверхности кои-стантана получается при кратковременном (не более 3 с) нагреве проволоки на воздухе примерно до 900 °С. Для этой цели перематывающаяся с одной катушки на другую проволока проходит через два металлических ролика, к которым подведено  [c.184]

Для проведения испытаний на абразивное изнашивание предложено несколько типов оборудования, реализуюш его различные схемы воздействия абразива на образцы [165, 1921. Общий вид установки для испытаний на изнашивание при трении о нежестко закрепленные частицы абразива изготовленной в Лаборатории ИГД СО АН СССР, представлен на фото 8. Принцип действия ее заключается в том, что к испытуемому образцу прижимается резиновый ролик, который при вращении захватывает частицы абразива, поступающего из бункера, и протягивает их по поверхности образца, С целью равномерного поступления абразива в зону контакта используется дозирующее устройство, состоящее из бункера типа воронки, нижняя часть которой находится на определенном расстоянии от медленно вращающегося диска. Изменяя величину зазора между воронкой и диском, регулируют расход абразива. Отсекатель, находящийся на некотором расстоянии от бункера, направляет абразив в лоток, ншп-няя часть которого находится у зоны контакта ролика с образцом.  [c.113]


Многочисленные исследования показали, что одним из наиболее эффективных методов воздействия на состояние поверхности, приводящих к повышению циклической прочности, является предварительное поверхностное пластическое деформирование (ППД). При этом применение ППД повышает циклическую прочность не столько в области многоцикловой усталости, сколько при больших перегрузках. Известны примеры, когда применение методов ППД позволяет повысить долговечность деталей из титановых сплавов, работающих в области малоциклового нагружения, в 17 — 20 раз, а предел выносливости—в 2 раза [ 187, с. 35, 43]. Вместе с тем по сравнению с многоцикловой усталостью эффективность применения ППД для деталей, работающих в малоцикловой области, изучена меньше. До последних лет отсутствовало даже научно обоснованное объяснение влияния ППД при больших перегрузках (выше предела выносливости), так как при этом роль остаточных сжимающих напряжений не может быть решающей. Возникающие при ППД остаточные сжимающие напряжения при значительных циклических пластических деформациях неизбежно релаксируют при первых же циклах нагружения. С целью установления природы влияния ППД на малоцикловую долговечность титановых сплавов были поставлены специальные опыты по изучению влияния ППД на статическую прочность и характер деформации. Исследование проводили на цилиндрических образцах сплава ВТ5-1 диаметром 10 мм. После механической шлифовки и полировки часть образцов подвергали электрополированию до полного удаления наклепанного слоя. Поверхностное пластическое деформирование осуществляли в трехроликовом приспособлении для обкатки (диаметр ролика 20 мм, радиус профиля ролика г= 5 мм, усилие на ролик изменялось от 300 до 1200 Н при определении статической прочности и равнялось 900Н при оценке характера деформирования). Обкатку вели на токарном станке в 2 прохода при скорости вращения шпинделя 100 об/мин  [c.193]

Способ з испытания на контактн) ю усталость заключается в том, что испытуемый образец обкатывают нагружающими роликами, и отличается тем, что с целью сокращения продолжительности испытаний и уменьшения усилий на нагружающие ролики и на испытуе-, мый образец при заданной величине напряжений в образце используют образец с тороидальной рабочей поверхностью. Чтобы приблизить условия испытания к условиям обкатки колеса по рельсу, плоскость  [c.278]

М. Лаппером были получены патенты Франции [30] и Великобритании [31] на Устройство для магнитного контроля металлических полос . В этом устройстве также используется принцип контроля движущейся стальной полосы путем ее намагничивания и последующего измерения величины остаточного следа считывающей погокочувствительной головкой, расположенной несколько дальше по ходу движения полосы, С целью уменьшения влияния колебаний зазора и устранения ударов вибрирующей полосы о намагничивающую и измерительную головки авторы предлагают следующее устройство (рис. 3, в). Лента 7 движется вокруг вращающегося катка 2. Плотное прилегание ленты к катку достигается при помоы.щ направляюш.их роликов 1. Каток крепится на неподвижном валу 4 и может свободно враш.аться относительно вала, на котором под углом неподвижно закреплены намагничивающая 5 и считывающая 3 головки. Для предотвращения влияния головок друг на друга между ними помещен магнитный экран 6. Вращающийся каток делается либо полностью из немагнитного материала, либо немагнитной делается цилиндрическая часть его (кольцо), лежащая против магнитных головок.  [c.74]


Смотреть страницы где упоминается термин Целя РОЛИКИ : [c.6]    [c.62]    [c.312]    [c.63]    [c.174]    [c.25]    [c.406]    [c.21]    [c.59]    [c.111]    [c.110]   
Детали машин Том 3 (1969) -- [ c.279 , c.289 , c.290 , c.292 , c.294 ]



ПОИСК



Ролик

Целит



© 2025 Mash-xxl.info Реклама на сайте