Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод характеристической матрицы

Неудача асимптотического метода не вызывает удивления. Она связана с тем известным фактом, что во всех порядках по асимптотическое разложение функции обращается тождественно в нуль. Как мы покажем в разд. 3.12.4, эту трудность можно преодолеть, используя метод характеристической матрицы.  [c.169]

МЕТОД ХАРАКТЕРИСТИЧЕСКОЙ МАТРИЦЫ  [c.180]

Метод характеристической матрицы  [c.181]

Таким образом, свободный член характеристического уравнения (7.71) может быть найден по коэффициентам исходных уравнений (7.45). К сожалению, для определения остальных коэффициентов уравнения (7.71) необходимо знать хотя бы одну фундаментальную матрицу X (t) (легко доказывается, что уравнение (7.71) не зависит от выбора фундаментальной матрицы). Задача облегчается тем, что критерии устойчивости носят характер неравенств, поэтому можно пользоваться численными и приближенными методами.  [c.238]


Из характеристического уравнения (5.8) известными методами можно определить п собственных значений Xj (j = 1, 2,. . ., п). Каждому Xj соответствует модальный вектор Uj, представляющий собой собственный вектор матрицы Я. Поскольку система алгебраических уравнений (5.7) вырожденная, то каждый модальный вектор Uj может быть определен лишь с точностью до постоянного множителя.  [c.155]

Пример. Методом А, Н Крылова вычислим коэффициенты характеристического полинома матрицы  [c.86]

Метод А. М. Данилевского [108]. Сопровождающей матрицей характеристического полинома называется матрица  [c.86]

Несмотря на кажущуюся громоздкость этого метода, он легко может быть использован при наличии ЭВМ и программ для преобразования матриц и отыскания собственных векторов и характеристических чисел последних.  [c.48]

Теперь из уравнения (14) легко получить приближенное характеристическое уравнение, из которого определяется основная частота колебаний пластинки с круговым вырезом. При использований метода Фурье для задания границ пластинки ее основная частота колебаний определяется как первый корень Я приближенного. характеристического уравнения, получающегося при приравнивании нулю определителя, составленного из коэффициентов матрицы уравнения (14). Определив, таким образом, из уравнения (14) собственное значение Я, теперь можно найти коэффициенты ъА т, гВш, e i и eD rn из уравнения (15), используя для этого правило Крамера.  [c.171]

Вопрос об устойчивости линейной системы (7) решается непосредственно на основе изучения характеристических чисел этой системы (а иногда еш,е и структуры элементарных делителей фундаментальной интегральной матрицы решений системы). Но, как видно, и для нелинейной системы вопрос об устойчивости получает полное решение, если все характеристические числа % отрицательные (а система первого приближения правильная или неправильная, но обладает дополнительными свойствами) или если есть хотя бы одно ки > 0. Мы видим, таким образом, что первый метод позволяет не только решать задачу об устойчивости нулевого решения (безусловной или условной), но и получать уравнения интегральных кривых. Вместе с тем, пользуясь этим представлением решений, можно получить различные дополнительные сведения о поведении решений рассматриваемой системы дифференциальных уравнений. Выделяя главную часть этих представлений, можно получить решение с необходимой точностью в виде элементарных функций. При этом мы увидим различное влияние на происходящий процесс параметров, входящих в правую часть рассматриваемых дифференциальных уравнений. Например, если имеет место асимптотическая устойчивость, то можно видеть, как эти параметры влияют на скорость приближения точки ( 1 ( ),. . Хп ( )) к началу координат при - оо.  [c.71]


Мы не будем останавливаться на построении решений уравнений в частных производных, которые выполнил Ляпунов и которые также играют. большую роль в теории устойчивости. Что же на основе этого первого метода Ляпунов получил при других предположениях относительно характеристических чисел первого приближения (7) Те случаи, когда первое приближение (7) имеет только нулевые и отрицательные характеристические числа, Ляпунов назвал сомнительными. В этих случаях характер поведения общего решения или всей совокупности интегральных кривых вблизи начала координат (точки покоя) определяется коэффициентами при нелинейных членах правых частей дифференциальных уравнений. Ляпунов рассмотрел тот случай системы (4), когда коэффициенты рм и. ....постоянные и когда одно характеристическое число матрицы Р = р г нулевое, а все остальные  [c.71]

При использовании цепи согласования следует учесть ее влияние на передаточную функцию. Частотную зависимость вносимого затухания можио получить, если воспользоваться полной блок-схемой фильтра на ПАВ в электрической схеме, изображенной на рис. 8.16, а. Собственно фильтр ограничен штриховой линией. К внешним акустическим клеммам преобразователей подключен характеристический механический импеданс Zm свободной поверхности. Из полной матрицы проводимости (7.93), полученной методом, описанным в разд. 7.7.5, и матрицы (7.97) для среды между преобразователями, вызывающей запаздывание, нетрудно получить полную матрицу проводимости фильтра иа ПАВ. С помощью этой матрицы можно проанализировать полную схему, приведенную на рис. 8.16, а.  [c.387]

Поскольку умножение на постоянную не влияет на решение уравнения Аш = Хт, будем рассматривать собственные векторы хю всегда в нормализованном виде. Аналогично можно получить собственный вектор, соответствующий Хг. Собственные значения как корни любого полиномиального уравнения можно получить, используя различные стандартные численные методы. В настоящее время существуют пакеты компьютерных программ для нахождения этих корней. Для уравнения, являющегося характеристическим уравнением матрицы, существуют компьютерные программы, которые для данной матрицы находят собственные векторы.  [c.278]

В качестве следующего шага можно отказаться и от предположения о постоянстве показателя преломления в каждом слое. Действительно, каждый непрерывный профиль можно аппроксимировать мультислоем, состоящим из бесконечно тонких пластин. Отсюда можно заключить, что метод характеристической матрицы применим и для общего случая произвольной плоскослоистой среды. В частности, для любой такой среды с1е1 М( , z ) = 1, так как для каждой матрицы М детерминант равен единице, а детерминант произведения матриц равен произведению детерминантов.  [c.181]

Как показывают исследования, с увеличением коэффициента усиления в многомерном регуляторе система стремится к автоматическому разделению на автономные подсистемы в статике, кроме того, точность отработки управляющих воздействий системой при этом возрастает. Однако при увеличении коэффициента усиления регулятора трудно обеспечить динамическую устойчивость системы в целом. Анализ устойчивости САУ заключается в исследовании ее характеристического уравнения, определении характеристических чисел системы. Методы линейной алгебры дают возможность отыскивать характеристические числа уравнения многомерной системы, когда описывающая матрица числовая. Сложность исследования устойчивости многомерных САУ обусловлена тем, что характеристическая матрица системы в общем случае полиномная.  [c.117]

Один из этих методов состоит в следующем. Задав начальные условия (7.55), численным интегрированием уравнения (7.45) определяют значения линейно независимых решений (7.49) в конце периода Т, т. е. матрицу X (Т) = А. Так как интегрирование нужно производить на конечном промежутке времени [О, Т], то все вычисления можно произвести с любой наперед заданной точностью (для этой цели лучше всего, конечно, использовать электронно-вычислительные машины). По найденной матрице А составляется характеристическое уравнение (7.64), после чего определяются корни Рх, р2,. . ., Рп- Хорошим контролем этого метода может служить равенство (7.72), которое с помощью последней формулы Виета (4.23) приводится к виду  [c.238]


Пример Вычислим по методу А М Данилевского коэффициенты характеристического полниома матрицы (14) из предыдущего примера Необходимо выполнить два шага. Так как е = е,, то и, = Е и ОШ = "  [c.87]

Здесь G — матрица, N — порядок матрицы, Р — массив коэффициентов полинома размерности N + 1 R, RN, В — массивы размерности N + 1- Матрица G не сохраняется. Если фактическое значение предпоследнего параметра равно 1, то подпрограмма вычисляет дополнительно и корни характеристического уравнения по методу Берстоу [62]. Для этого используется соответствующая подпрограмма PRBM.  [c.88]

Алгоритм метода обобщенных определителей Хилла. Для системы с п степенями свободы при сохранении в рядах Фурье (54) и (55) первых Ра р гармоник соответственно размерность матрицы К равна 2п (2/io + 1) (2р + 1). В связи с высокой размерностью могут встретиться затруднения при проверке условий устойчивости. Если система обладает полной и достаточно сильной диссипацией, то следует отдать предпочтение критерию Зубова. Если диссипация отсутствует или она не является полной, то в области устойчивости все или часть характеристических показателей — чисто мнимые. Критерии Рауса — Гурвица и Зубова в этих случаях непригодны. Устойчивость проверяют непосредственным вычислением комплексных корней уравнения (56).  [c.130]

Характеристические показатели линейной системы с постоянными параметрами совпадают с собственными значениями линейного оператора этой системы. Если дискретизация системы выполнена на уровне выбора расчетной схемы или она оказалась результатом применении какого-либо метода к распределенной системе (например, метода конечных элементов, граничных элементов, конечных разностей, Бубнова -Галеркина и др.), то оператор системы будет конечномерным. В принятом базисе этому оператору соответствует некоторая матрица (см. уравнение (7.2.3)]. Свойства этой матрицы зависят от характера внещних воздействий. Напри-  [c.486]

Размерность матрищя 6, как правило, большая. Для получения собственных значений необходимо применять вычислительные методы линейной алгебры [14, 38, 52, 54]. Особо следует отметить справочник алгоритмов по линейной алгебре [53], пользующийся заслуженной популярностью в прикладных исследованиях. Поскольку не существует алгоритма вычисления собственных значений, эффективного для матриц любого тина, то всякий раз приходится решать проблему выбора алгоритма. Для вычисления комплексных характеристических показателей линейной системы с матрицей С произвольной структуры следует применять QL- и (ЗЛ алгоритмы. При этом эффективность алгоритмов повышается, если предварительно выполнить процедуры масштабирования и приведения матрицы к почти треугольной форме (форме Хессенберга) [53]. Указанные алгоритмы позволяют получать характеристические показатели с машинной точностью, что особенно важно для исследования устойчивости систем, содержащих исчезающе малые параметры, как, например, параметры малых диссипативных сил.  [c.486]

Идея метода состоит в том, чтобы искать вектор-функцию х(0 виде ряда Фурье с векторными коэффициентами и затем свести задачу к некоторому уравнению относительно характеристического показателя А. Это уравнение оказывается условием равенства нулю определителя некоторой блочной матрицы - обобщением определителя Хилла в теории уравнений Матье -Хилла.  [c.493]

Для расширения области применения первого метода Ляпунова в том случае, когда коэффициенты линейной системы постоянны, а нелинейные члены не содержат времени, требовалось дополнить общие результаты Ляпунова исследованием особенных (критических) случаев. Ляпунову принадлежит анализ случая одного и двух нулевых корней (характеристического уравнения матрицы ) и двух чисто мнимых корней. Первые новые важные результаты были получены Г. В, Каменковым и И. Г. Малкиным Они в весьма широких предположениях провели анализ устойчивости при наличии двойного нулевого корня, затем нулевого корня любой кратности, нри наличии двух пар, затем любого числа мнимых корней (предполагается, что все остальные корни характеристического уравнения имеют отрицательные вещественные части). В тех же работах рассмотрены критические случаи для систем с периодическими коэффициентами в линейных членах и периодическими нелинейными членами (период предполагается одним и тем же для всех pgf и Zfe). Каменков и Малкин дополнили и в этом пункте результаты Ляпунова.  [c.130]

Обсужденный в п. 4.2 метод определения собственных частот колеблющихся систем обычно используется только в тех случаях, когда найти корни характеристического уравнения не представляет труда. Здесь также возможно применение различных численных методов , но они обычно эффективнее в случае систем с большим числом степеней свободы. Обсуждаемый в данном параграфе подход иногда называют методом степенных рядов или методом Сто-долы—Вианелло, но, как правило, его именуют просто итерационным методом. Этот подход удобно применять для работы с матрицами невысокого порядка, используя при расчетах логарифмическую линейку или настольный калькулятор, но решения больших задач следует программировать, чтобы проводить вычисления на цифровых ЭВМ.  [c.288]

Класс симметризуемых систем, обобщающих аффинноинвариантные свойства канонического триплета,— класс 5-систем, был определен в 1 гл. 5. Регулярная квадратично-нелинейная 0-система, для которой построенная по 0-симметризатору 5 квадратичная форма в (д ) (матрица 0 обратна матрице 25) пропорциональна форме В х) = = 2 1(Л ) (д ) (Л = (5. ,/5д у) — матрица устойчивости), называется 5-системой. Представляет интерес выяснение вопроса о существовании -систем с трехмерным фазовым пространством, отличных от канонического триплета. Ниже изложено полное решение этого вопроса, основанное на вещественной классификации тернарных кубических форм. Другой метод исследования 5-систем в изложен в работе [199]. Кубическая характеристическая функция данной 0-системы Р (х , х , х ), согласно А. Пуанкаре [208], приводится невырожденным вещественным линейным преобразованием переменных х , х,) к одному из следующих канонических видов  [c.280]


Как уже упоминалось выще, оценку качества равновесия удобно получать на основании качественных критериев, хорошо разработанных в трудах Р. Р. Матево-сяна [39], Я. Л. Нудельмана [46], А. Ф. Смирнова [72] и других исследователей. В настоящей работе будем основываться на понятиях о степени устойчивости и неустойчивости, причем совокупность последовательных коэффициентов устойчивости по предложению Р. Р. Мате-восяна будем называть рядом устойчивости [39]. Следуя [39], ряд устойчивости используется в неортогональной форме, т. е. для определения степени устойчивости и неустойчивости системы не будем решать характеристическое уравнение и вычислять собственные значения матриц, хотя для некоторых рассуждений будут использованы известные свойства собственных чисел. Мы будем рассматривать качественный анализ систем, описываемых уравнениями смешанного метода. При этом будем предполагать, что система уравнений смешанного метода записана таким образом, что сперва расположены все условия совместности деформаций, а затем все условия равновесия (см. рис. 54).  [c.148]

Возможности программного обеспечения проектирование в режиме оп-Ипе , анализ и моделирование одномерных и многосвязных систем. Гибкие средства ввода-вывода данных, сервисные программы. Для анализа и проектирования одномерных систем используются методы Найквиста, корневого годографа, логарифмические характерист ики и диаграмма замыкания. Для анализа и проектирования многосвязных систем используется инверсный метод Найквиста (для непрерывных и дискретных систем). Для анализа систем применяются модели в пространстве состояния, описания в форме передаточных функций и эксп и-ментальные частотные характеристики. Численные методы основаны на QR-и QZ-алгоритмах, алгоритмах нахождения собственных значений комплексной матрицы, инверсном и обобщенном алгоритмах Фадеева, алгоритме минимальной реализации. Максимальная размерность систем 50 состояний или 50-й порядок характеристического уравнения.  [c.313]

Распределение элементов в различных участках сквозной трещины, исследованные микрорентгеноспектральным методом на установке Сатеса-М8-46, показано на рис. 8. На рис. 9 приведены концентрационные кривые в характеристических лучах N1, Сг, Т, XV, А1, Мо и Со, полученные при линейном сканировании электронного луча поперек трещины (примерно на ее середине). Из фотографий и концентрационных кривых следует, что в материале лопатки идет процесс коррозии. Середина трещины (серого цвета) имеет по никелю такое же содержание, как и матрица, - это оксид никеля.  [c.21]


Смотреть страницы где упоминается термин Метод характеристической матрицы : [c.79]    [c.186]    [c.233]    [c.86]    [c.88]    [c.75]    [c.81]    [c.83]    [c.50]   
Смотреть главы в:

Дифракция и волноводное распространение оптического излучения  -> Метод характеристической матрицы


Дифракция и волноводное распространение оптического излучения (1989) -- [ c.180 , c.185 ]



ПОИСК



Г характеристическое

Матрица характеристическая для матрицы

Характеристическая матрица



© 2025 Mash-xxl.info Реклама на сайте