Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Штамповка Особенности при сплавах и сталях

Следовательно, для штамповки поковки из того или иного сплава необходимо разработать технологический процесс с учетом физико-химических особенностей этого сплава и соблюдать его более строго, чем при ковке и штамповке стали. Особенно это касается нагрева. Нагрев цветных сплавов рекомендуется вести в электрических печах сопротивления, где достигается равномерный прогрев заготовки и легче осуществляется контроль режима.  [c.340]


Вытяжку с подогревом фланца применяют главным образом при штамповке деталей из алюминиевых и магниевых сплавов, но этот способ может быть использован также при штамповке из латуни и стали. Особенно необходим подогрев заготовки при вытяжке магниевых сплавов, которые в холодном состоянии обладают плохими вытяжными свойствами.  [c.226]

В современном машиностроении все большее распространение находят сложные по составу дорогостоящие стали и сплавы. Многие из них хорошо деформируются в горячем состоянии при ковке и штамповке под молотом, но значительно хуже куются и штампуются под гидравлическими (или парогидравлическими) прессами. Объясняется это тем, что открытые ручьи, в особенности в верхней части штампа, заполняются лучше на молотах, потому что начальная скорость деформации металла на прессе значительно меньше, чем на молоте. Тем более, что процесс заполнения верхней части штампа на прессе должен закончиться за один ход, а деформируемый металл при этом меньше заполняет полость и больше течет в стороны. При ковке на молоте этот процесс осуществляется за несколько ударов. Таким образом, инерционные силы, возникающие Б деформируемом металле при больших скоростях, в момент удара влияют на заполнение верхней части штампа многократно в зависимости от числа ударов, потребных до конца ковки-штамповки.  [c.235]

Заготовки из сталей и сплавов первой группы после подготовки поверхности и разупрочняющей термической обработки (РТО) по известным режимам имеют высокую технологическую деформируемость. Холодная объемная штамповка заготовок из сталей и сплавов второй группы затруднена из-за пониженной технологической деформируемости, особенно из-за пониженных пластичности и деформируемости сложных сплавов цветных металлов и высокого сопротивления деформации легированных сталей. Кроме того, при холодной объемной штамповке деталей ответственного назначения значительно повышается актуальность прогнозирования возможности внутреннего макроразрушения и уровня повреждаемости (по терминологии В. Л. Колмогорова) металла на суб-микроскопическом и микроскопическом уровнях. Поскольку проблемы деформируемости и разрушения неотделимы, то при их реализации должны комплексно решаться задачи как улучшения технологических свойств заготовок, так и повышения качества штампованных заготовок.  [c.155]

Из указанных выще смазок для вырубки и пробивки преимущественное значение имеют быстровысыхающие и хорошо смываемые спирто-бензиновые смеси, пониженная вязкость которых позволяет избежать прилипания деталей друг к другу при штамповке их из металлов малых толщин. Однако они не дают должного эффекта при изготовлении деталей из твердых металлов, в особенности значительных толщин. Исходя из этих соображений, на операциях вырубки и пробивки применяют при штамповке молибдена и ковара — машинное масло СУ тантала — минеральное масло никеля и алюминированных металлов — спирто-бензиновые смеси с добавлением или без добавления минерального масла (в зависимости от толщины металлов) железа, углеродистых сталей и железо-никелевых сплавов — минеральное масло и эмульсионные составы меди — минеральное масло или спирто-бензиновые смеси. В некоторых случаях используется мыльная вода иногда штамповка производится без смазки.  [c.32]


Обработка давлением титановых сплавов имеет больше общего с обработкой сталей, чем с обработкой цветных металлов и сплавов. Многие параметры технологии ковки, объемной и листовой штамповки титановых сплавов близки параметрам обработки сталей. Однако имеются и некоторые существенные особенности, которые необходимо учитывать при обработке давлением титана и его сплавов.  [c.19]

Штамповку выдавливанием особенно успешно применяют при производстве поковок из малопластичной стали и сплавов.  [c.19]

Ввиду большой чувствительности цветных сплавов к неравномерности деформации и схеме напряженного состояния, в результате чего появляются трещины, должны быть тщательно продуманы способы ковки, штамповки, конструкция штампов. Так, если бронзу АЖ 9-4 еще можно ковать вытяжкой на плоских бойках, то другие медные сплавы, а особенно алюминиевые, этого це выдерживают. Поэтому считают наиболее рациональным цветные сплавы штамповать в закрытых штампах, например, методом выдавливания и прессования (рис. 1). Поскольку в производственных условиях не всегда имеются такие возможности, то применяют и обычную штамповку в открытых штам-пах. Однако технология такой штамповки отличается от технологии штамповки стали. Например, заготовительные ручьи назначаются в редких случаях подкатной почти не применяется, а протяжной применяется только при штамповке малыми обжатиями с определенной скоростью деформации.  [c.341]

К особенностям высоколегированных сталей и сплавов при холодной штамповке можно отнести повышенную склонность к на-  [c.17]

Одной из особенностей строения жаропрочных сталей и сплавов является их значительная разнозернистость и неравномерность выделения карбидной и интерметаллидной фаз. В связи с этим при составлении технических условий на заготовки из коррозионно-стойких и жаропрочных сталей и сплавов, подвергающихся лезвийной обработке, следует уделять особое внимание равномерности их строения, поскольку в этих сплавах часто встречаются неравномерно деформированные зоны после прокатки, штамповки или ковки.  [c.132]

Штамповка листового металла взрывом, штамповка с использованием магнитных сил и электрогидравлического эффекта происходит не только при больших скоростях, но и при больших удельных давлениях., Совокупность особенностей высокоскоростной штамповки обусловливает то, что современные труднодеформируемые в обычных условиях прочные сплавы (жаропрочные стали, упрочняемые титановые сплавы и др.), в указанных условиях штампуются удовлетворительно. Кроме листовой штамповки, высокоскоростное деформирование применяют для резки металл-ургических полуфабрикатов, объемной штамповки, клепки (взрывные заклепки), для упрочнения поверхностных слоев деталей и других операций.  [c.206]

В настоящее время интерес к цирконию, как к новому конструкционному металлу необычайно возрос. Установлено, что цирконий при надлежащей очистке от примесей может быть получен в виде пластичного металла с хорошими механическими и коррозионными характеристиками. Наиболее чистый цирконий получают аналогично титану термической диссоциацией тетраиодида металла. Цирконий — это серебристый металл с высокой температурой плавления (1800 °С), удельный его вес 6,5. Чистый цирконий — весьма пластичный металл. Возможна его ковка, прокатка, протяжка, штамповка, изготовление тонкостенных труб, получение фольги. Небольшие примеси могут значительно повысить твердость и прочность циркония. Удельная прочность сплавов циркония может приближаться к удельной прочности конструкционных сталей. Цирконий легко абсорбирует, особенно при повышении температуры, азот, кислород, водород и теряет присущую ему пластичность. Водород при нагреве в вакууме до температур порядка 1000 °С может быть удален из циркония. Однако в результате подобной обработки не удается устранить абсорбированные кислород и азот и возникшую по этой причине хрупкость металла. Способность циркония при повышении температуры легко абсорбировать большое количество азота и кислорода позволяет использовать его в электронной и вакуумной промышленностях как геттер (поглотитель газов).  [c.254]


Сложнее обстоит дело с влиянием скорости при вытяжных и других формоизменяющих операциях штамповки. Эксперименты и теоретические исследования свидетельствуют о том, что пр вытяжке малогабаритных деталей простой формы типа стаканчиков или коробок увеличение скорости даже до 100 м/с лишь незначительно ухудшает коэффициент вытяжки и только при скорости порядка 300 м/с, когда в деформруемом материале развиваются заметные силы инерции, его штампуемость ухудшается . Что касается вытяжки деталей сложной формы типа оболочек двойной кривизны, то здесь данные разноречивы. Особенно, по-видимому, опасно увеличение скорости при вытяжке деталей, у которых должна быть глянцевая поверхность, например облицовочных абтокузовных. С возрастанием скорости на диаграмме рас-тяжейин металлов расширяется площадка текучести и, следовательно, на поверхности штампуемого материала могут появиться полосы скольжения и она станет шероховатой, что для таких деталей недопустимо. В настоящее время поэтому при увеличении у вытяжных прессов числа ходов используют двухскоростные муфты или другие механизмы или применяют для вытяжки листоштамповочные прессы с шарнирным приводом (например, фирма Шулер ФРГ), обеспечивающие при общем увеличении числа ходов неизменную или даже пониженную скорость на рабочем участке хода пресса. Принятые в настоящее время в промышленности скорости вытяжки составляют для низкоуглеродистых сталей 0,15...0,3 м/с, нержавеющих сталей, 0,1...0,15 м/с, алюминия и его сплавов 0,5...0,9 м/с, меди и латуней 0,4...1 м/с.  [c.216]

В изотермических условиях изменяется характер износа штампа. Практически отсутствует характерное для обычной штамповки размывание гравюры. При штамповке в обычных условиях температура поверхности инструмента повышается не только из-за контакта с нагретой заготовкой, но и в результате тепловыделения на границе между металлом и инструментом, особенно при высоких скоростях деформирования и большом коэффициенте контактного трения. Практически вся выделенная на этой границе теплота расходуется на нагрев штампа. В результате температура в приконтактной зоне штампа может быть выше температуры отпуска штамповой стали, что приводит к ин-. тенсивному износу штампа. В изотермических условиях тепловыделение на контакте штампа с заготовкой резко уменьшается из-за снижения скорости деформирования, коэффициента контактного трения и сопротивления деформированию штампуемого сплава. Выделяемая теплота равномерно распределяется между заготовкой и штампом, имеющими одинаковую начальную температуру, а стеклосмазка является теплоизоляцией между ними.  [c.62]

Наиболее широко используются при штамповке в разъемных матрицах легкодеформируемые металлы и сплавы. Применение сталей, титановых сплавов и других труднодеформируемых материалов сдерживалось отсутствием мощного специального оборудования. В то же время именно штамповка в разъемных матрицах, особенно многополостная штамповка, в ряде случаев наиболее целесообразна для дорогостоящих труднод ормируемых материалов, так как здесь коэффициент использования металла достигает 0,65 [7,35].  [c.30]

Все стандартные нержавеющие стали легко поддаются горячей обработке путем ковки, прессования, штамповки или экструзии, хотя эти стали, в особенности сорта, содержащие никель, жестче , чем низколегированные или углеродистые стали. Для сплавов Ре— Сг и Ре—Сг-N1 обычно используют температуры 1100—900° С и 1200—900 С соответственно. Для достижения оптимальных механических свойств, а иногда и коррозионной стойкости, после формовки обычно проводят термическую обработку. Для мартенситных сталей, как правило, применяют нормализацию и отпуск (воздушное охлаждение от температуры аустенитизации, а затем повторный нагрев до определенной температуры ниже точки образования аустеннта), отжиг (охлан дение в печи от температуры аустенитизации) или простой отпуск. Для ферритных сталей обычно применяют нагрев до 750—800° С с последующим воздушным охлаждением, а аустенитные стали чаще всего нагревают до 1000— 1100° С с последующим воздушным охлаждением или закалкой (в зависимости от марки стали и поперечного сечения изделия). При больших сечениях изделий во избежание растрескивания не следует допускать резких изменений температуры в ходе нагрева и охлаждения ферритных сталей, а также мартенситных сталей в закаленном состоянии. Аустенитные стали очень стойки к растрескиванию, но сильные градиенты температур могут вызвать коробление.  [c.28]

В химической промышленнрсти для изготовления сосудов, работающих в агрессивных средах, из хромоникелевых и хромистых сталей, цветных металлов и их сплавов применяют автоматическую сварку под флюсом, автоматическую сварку по слою флюса полуоткрытой дугой (алюминиевый сплавы) и аргонодуговую сварку. Необходимость экономии дорогостоящих материалов заставляет расширять применение двухслойных листов, у Технология гибки, вальцовки, штамповки и механической обработки двухслойных сталей существенно не отличается от технологии обработки монолитных коррозионностойких сталей. Однако сварка двухслойных сталей имеет существенное отличие. Она должна выполняться так, чтобы не происходило одновременного плавления углеродистой стали И металла защитного слоя, из-за опасения понижения коррозионной стойкости и пластичности зоны шва. Поэтому особенностью сварки двухслойных сталей является необходимость использования не одинаковых технологических процессов и материалов для сварки основного и плакирующего слоев. Так, на рис. 20-36 показана форма разделки двухслойного проката Ст. 3 и Х18Н10Т под автоматическую сварку. Углеродистую часть шва / и 2 выполняют проволокой Св-08А под флюсом АН-348 за два прохода, облицовочный слой 3 также выполняют автоматом за один проход двумя проволоками ЭП-389 расщепленной дугой под флюсом АН-26. Использование автомата как для сварки основного, так и плакирующего слоя требует точной сборки и высокой культуры выполнения сварного соединения. Поэтому более часто при сварке двухслойной стали автомат используют только для основного слоя, а плакированный сваривают вручную.  [c.594]


Изучению в первую очередь была подвергнута операция осадки, встречающаяся в том или ином виде во всех процессах ковки и объемной штамповки. Экспериментально было установлено, что вибрационная обработка способствует более равномерному распределению деформации и уменьшению поэтому макроскопической локализации деформации. Этот существенный результат позволил рекомендовать вибрационную обработку давлением для малопластичных труднодефор-мируемых материалов (стали, специальных сплавов), которые получили широкое распространение во многих областях. Особенно благоприятно применение вибрационной обработки давлением для технологических процессов формоизменения, где существенно сказывается вредное влияние контактного трения. При этом было установлено, что наиболее эффективным является вибрационный режим, обспечивающий отрыв контактных поверхностей инструмента и обрабатываемой заготовки в течение каждого импульса нагрузки.  [c.42]

Х5МФО Мелкие молотовые штампы, особенно чистовой штамповки с наименьшей стороной до 100—125 мм молотовые (диаметром или толщиной до 200 мм) и прессовые вставки (предварительного и окончательного ручья, знаки, выталкиватели, внутренние втулки, пресс-штемпели, иглы для прошивки труб) при горячем деформировании конструкционных сталей и цветных сплавов в условиях крупносерийного производства формы литья под давлением алюминиевых и магниевых сплавов со стороной до 70— 80 мм  [c.677]

Особенно хорошие результаты дает сплав меди с 10—12% цинка—томпак. Вместо того чтобы изготовлять изделия целиком из цветного металла, можно им покрывать тонкую сталь, а затем эмалировать. Это резко снижает стоимость изделий. В настоящее время изделия широкого потребления изготовляются почти исключительно путем штамповки или чеканки, причем в них делаются специальные углубления, заполняемые эмалью. Изделия из меди перед эмалированием подвергают обезжириванию и освобождают от находящихся на поверхности окислов. Эти окислы могут растворяться в змали и сообщать ей зеленый или голубой оттенок. Если эмаль прозрачна и содержит много окиси свинца, то иногда удается получить интересный декоративный эффект. При окислительной атмосфере в муфеле в эмали получаются зеленые тона, а при восстановительной — краснобурые. В случае применения непрозрачных белых эмалей пленка окислов меди часто окрашивает их в грязноватый цвет, что особенно часто бывает в том случае, когда эмаль наносится очень тонким слоем. Обезжиривание поверхности изделий производится путем обжига при температуре около 600°. После этого следует травление в 10% растворе серной кислоты, очистка прй помощи щеток из латунной проволоки и, наконец, промывка в воде и сушка..  [c.266]

В себестоимости продукции кузнечных цехов значительную долю затрат составляют расходы на изготовление, эксплуатацию и восстановление штампового инструмента. В связи с этим повышение стойкости штампов и уменьшение расходов на инструмент является одной из основных задач современного кузнечно-штамповочного производства. Вопрос стойкости штампов особенно важен при штамповке или прессовании труднодеформируемых сплавов. Стойкость штампов из сталей типа 5ХНМ при объемной штамповке титановых сплавов на гидравлических прессах составляет 150—200, на люлотах — 400— 600 заготовок.  [c.178]

Особенно сильно неоднородность температурного поля проявляется при штамповке титановых сплавов, теплопроводность которых в 5—6 раз ниже, чем у стали. По контуру поковок в результате подстывания металла и его затрудненной деформации может образоваться крупнозернистый ободок с пониженными механическими характеристиками [8]. Неоднородность деформации при прессовании иногда приводит к образованию разрывов на поверхности пресс-изделия. В процессе осадки неравномерность температурного поля способствует образованию бочкообразности поковки.  [c.7]

Г. Е. Мажарова и Б. Б. Чечулин исследовали [119, с. 42] технологические особенности процесса изготовления шатунов дизельных двигателей из сплавов титана ВТ5 и ВТЗ-1. Показана возможность изготовления титановых шатунов на промышленном оборудовании, применяемом для штамповки стальных заготовок. При этом отмечено, что замена стали 45Г17103 титаном марки ВТБ позволяет не только получить пригодные для двигателей детали, но и повысить в 6—10 раз производительность ковочного оборудования, уменьшить на 10—15% расход металла, идущего в облой, улучшить условия механической обработки. Использование сплава ВТЗ-1 не приводит к росту производительности и заметному снижению расхода металла, однако механические свойства полученных шатунов несколько лучше. Данные измерений механических свойств титановых заготовок дизельных шатунов в совокупности с результатами изучения микроструктуры металла и экономики П роцеоса позволили авторам [119, с. 42] сделать вывод о целесообразности внедрения титана в производство автомобильных и дизельных шатунов.  [c.111]


Смотреть страницы где упоминается термин Штамповка Особенности при сплавах и сталях : [c.89]    [c.210]    [c.468]   
Ковка и объемная штамповка стали Том 2 издание 2 (1968) -- [ c.0 ]



ПОИСК



Заготовки из сплавов цветных металлов и легированных сталей — Особенности технологии штамповки

Особенности ковки и штамповки высоколегированных жаропрочных сталей и сплавов (д-р техн. наук Л. В. Прозоров)

Особенности объемной штамповки инструментальных сталей, высоколегированных жаропрочных сталей и сплавов н цветных сплавов Скородумов)

Особенности технологии штамповки заготовок из сплавов цветных металлов и легированных сталей (В. А. Головин)

Особенности штамповки деталей из магниевых и титановых сплавов, коррозионно-стойких и жаропрочных сталей

Особенности штамповки деталей из магниевых сплавов, нержавеющих и жаропрочных сталей

Особенности штамповки на КГП

Сплавы Сталь

Сплавы Штамповка

Сталь для штамповки

Технологические особенности штамповки высоколегированных сталей и трудподеформнруемых сплавов



© 2025 Mash-xxl.info Реклама на сайте