Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полимеры вязкость

Линейные полимеры значительно легче совмещаются с наполнителями в растворах. Вследствие высокой молекулярной массы термопластичных полимеров вязкость их растворов заметно уменьшается только при концентрациях ниже 10%. Это требует большого количества растворителей и ограничивает возможности использования растворов. Кроме того, растворители полимеров обычно очень дороги, легко воспламеняются и трудно испаряются. Этих недостатков не имеют водорастворимые полимеры, хотя и при их применении используется длительное и дорогостоящее выпаривание. В большинстве случаев полимеры коагулируют из водных растворов и отделяют фильтрованием или декантацией.  [c.366]


Для многих (но не всех) растворов полимеров вязкость Т1 не является возрастающей функцией скорости сдвига G, и, следовательно,  [c.262]

Зависимость адгезионной прочности от реологической характеристики расплава адгезива (вязкости) показана в работе [134]. В качестве адгезива применяли наполненный тальком нестабилизированный полиэтилен низкой плотности. Пленку полиэтилена наносили на стальную фольгу толщиной 70 мкм, поверхность которой для придания шероховатости подвергалась дробеструйной обработке. Адгезионную прочность определяли методом отслаивания. Вязкость расплава адгезива оценивали по отношению к наиболее вязкому расплаву данного полимера, вязкость которого принимали за 100%.  [c.220]

Следовательно, при заданном содержании полимера вязкость органодисперсии повышается с увеличением набухания полимерных частиц в среде. Такая закономерность справедлива как для разбавленных, так и для концентрированных органодисперсий.  [c.28]

Способы нанесения жидких материалов заключаются в предварительном диспергировании — превращении их в состояние аэрозоля с последующим осаждением в тонком слое, а также адсорбции лакокрасочного материала на поверхности порошка. Способность жидкого материала переходить в состояние аэрозоля зависит от молекулярной массы пленкообразователя (олигомера, полимера), вязкости системы, летучести растворителя и поверхностного натяжения жидкости. Качество покрытия зависит от свойств аэрозоля и от полноты его осаждения и коагуляции.  [c.191]

Скорость слияния частиц можно регулировать путем изменения их размера, вязкости и поверхностного натяжения расплава полимера. Вязкость снижают использованием пленкообразователей с меньшей молекулярной массой, введением пластификаторов, применением более высоких температур или более активных растворителей. Наполнение отрицательно сказывается на пленкообразовании.  [c.58]

Для оценки влияния вязкости на распространение волн верхний слой полагаем выполненным из вязкоупругого материала типа полимер (Е = 300 МПа р = 500 кг/м V = 0,48 г = 0,01 МПа с) [140]. Импульс нагрузки имел ту же продолжительность, как и ранее, но в 10 раз меньшую амплитуду. Расчеты проводились при учете и без учета вязкости полимера. Вязкость приводила к тому, что амплитуда волны сильно уменьшалась, а ее профиль становился более пологим. В мо-  [c.240]

Перед тем как начать обсуждение исследований турбулентных течений, уместно привести феноменологическое описание наблюдаемого поведения. Наблюдаемый перепад давления при турбулентном течении разбавленных растворов полимеров в круглых трубах часто является неожиданно более низким, чем тот, который наблюдался при той же самой расходной скорости чистого растворителя, несмотря на то что вязкость раствора больше вязкости чистого растворителя. Это явление известно как явление снижения сопротивления. Аналогичное явление наблюдается и при обтекании погруженных тел, если полимер инжектируется в пограничный слой.  [c.281]


Заметим, что модель Фоккера—Планка широко используется для описания диэлектрической проницаемости, вязкости и других физических свойств жидких кристаллов, полимеров, магнитных жидкостей и ряда других систем. Более подробные сведения можно найти в специальной литературе.  [c.238]

Жидкости, вязкость которых не является константой, а зависит от времени действия и величины касательных напряжений, называются неньютоновскими. К ним, в частности, относятся растворы полимеров, резко снижающие сопротивление течению воды в трубах, пластические материалы, обладающие порогом текучести, ниже которого они ведут себя как твердые тела, а выше — как жидкости (глинистые и цементные растворы, коллоиды, консистентные смазки и пр.). Свойства пластических материалов и неньютоновских жидкостей изучает наука реология.  [c.17]

Химическая стойкость полимерных материалов зависит от строения полимеров. Молекулы большинства полимеров имеют линейное строение. Отдельные линейные цепи дополнительно соединены главными связями, при этом они становятся менее подвижными. С ростом числа поперечных связей полимеры теряют ряд характеристик, присущих линейным полимерам, — эластичность, вязкость и т. д. Такие полимеры в большинстве случаев не растворимы и не плавятся. Процессы сшивки молекул происходят за счет разрывов двойных связей. Сила сцепления между отдельными линейными молекулами может быть увеличена, если между ними создавать химическое взаимодействие. Поэтому появляется необходимость создания поперечных химических связей между отдельными цепями высокомолекулярных соединений, т. е. необходимость создания молекул трехмерного строения. На рис. 9 показана схема строения высокомолекулярного вещества.  [c.59]

Обширные экспериментальные исследования, проводившиеся в области реологии полимеров в течение последних 10 лет, позволяют утверждать, что большинство полимеров в условиях переработки обладает свойствами аномально-вязких неньютоновских жидкостей [65]. Полимерам в этом состоянии присуща способность к высокоэластическим деформациям. Существование аномалии вязкости полимеров требует определения функциональной зависимости между эффективной вязкостью и скоростью сдвига (или напряжением). В настоящее время разработано и создано большое количество реометров, на которых можно экспериментально определять реологические свойства термопластов.  [c.114]

Отечественная промышленность выпускает олигомер МБ К трех марок МБК-1, МБК-2, МБК-3, отличающихся между собой по величине эластичности полимера. В качестве основы герметизирующего материала применялся олигомер МБК-1, сорта В , вязкостью 3 мии по ВЗ-4 (ТУ-СТУ-1056—62).  [c.94]

Клеящие лаки (см. клеи) представляют собой коллоидные растворы полимеров, повышенной концентрации и, как правило, высокой вязкости. По технологии применения лаки разделяются на горячей и холодной сушки.  [c.112]

Реакция образования полимера из мономера носит название полимеризации. При полимеризации молекулярная масса, естественно, увеличивается возрастает температура плавления и кипения, повышается вязкость в процессе полимеризации вещество может переходить из газообразного или жидкого состояния в состояние весьма густой жидкости и далее в состояние твердого тела уменьшается растворимость и т. д.  [c.103]

Помимо источников нелинейности, описанных выше, имеются и другие, которые объединяются под общим названием обратимой нелинейности. Этим термином определяется поведение образцов, у которых после пребывания в ненагруженном состоянии в течение длительного времени предшествующие эффекты нелинейности постепенно исчезают. Такой тип нелинейного поведения армированных пластиков обусловлен по большей части зависимостью напряжений от вязкости материала. Это отражается на коэффициентах ат, которые быстро уменьшаются при высоких напряжениях [63, 90]. С другой стороны, обратимые нелинейности во многих эластомерах являются прямым результатом высокой деформации, которую такие полимеры выдерживают, не разрушаясь.  [c.185]


Для органических полимеров, армированных минеральными волокнами, характерно сочетание полезных свойств пластиков и минералов. Такие композиты имеют сходство с пластиками по коррозионной стойкости, диэлектрическим свойствам, вязкости разрушения, низкой плотности и просты в изготовлении. В то же время они обладают жесткостью и прочностью минералов, использование которых в качестве наполнителей дает возможность существенно понизить стоимость изготовления композитов. Некоторые свойства рассматриваемых композитов значительно превосходят суммарные показатели свойств входящих в них компонентов. Так, например, энергия разрушения стекла составляет  [c.9]

Оптимальное сочетание высокой прочности и вязкости разрушения в композитах. Так как сильная адгезия на поверхности раздела приводит к повышению прочности композитов, а слабая — к увеличению вязкости разрушения, то для создания композитов с оптимальным сочетанием высокой прочности и вязкости разрушения необходимо исследовать возможность образования химической связи между полимером и наполнителем через эластичные силаны. Такая связь в свою очередь должна способствовать релаксации напряжений по поверхности раздела.  [c.10]

Существуют различные классы композитных материалов, отличающиеся как областью применения, так и своими свойствами. Хотя прочностные свойства отдельных классов могут совпадать друг с другом, в этой главе будут рассмотрены только композиты с дисперсными частицами в хрупкой матрице. Понятие хрупкого поведения означает упругое состояние вплоть до разрушения и малую вязкость разрушения. Кроме керамики и перекрестно сшитых высокополимеров никакие материалы матрицы не подходят под это определение. Керамики являются наиболее хрупкими материалами и не обнаруживают текучести перед разрушением вплоть до температур, обычно превышающих половину их температуры плавления. Хрупким полимерам свойственна некоторая текучесть, но она пренебрежимо мала по сравнению с менее хрупкими полимерами (т. е. термопластами) и металлами.  [c.12]

Подробно изучен механизм, от которого зависит повышение вязкости термопластов, и, согласно [41, 42, 60], главные особенности их поведения такие же, как и для хрупких полимеров. Основа этого явления состоит в том, что эластомерная фаза приводит к увеличению молекулярной ориентации, которая происходит в объеме полимерной матрицы, окружающем частицы эластомера. В исследованиях [3, 4, 8] показано, что на поверхностях разрушения термопластов встречается существенная молекулярная ориентация. Предполагается, что в этом случае для развития начальной трещины требуется наибольшая затрата работы, и это также объясняет большое различив (на три-четыре порядка) между анергией разрушения и оцененной теоретически поверхностной энергией для этих материалов.  [c.27]

Композиты представляют собой материалы, объединяющие желаемые свойства или поведения двух или более составляющих материалов для получения большей жесткости, прочности и вязкости при меньшем весе (желательно без соответствующего увеличения стоимости). Виды микроструктуры таких материалов могут меняться в широких пределах от изолированных частиц, волокон, тромбоцитов или пластин, погруженных в непрерывную матрицу, до структур с взаимопроникающей пространственной решеткой. Некоторые встречающиеся в природе материалы, например асбест, и многие вещества органического происхождения, например дерево, хлопок, волос, кость, ведут себя как композиты. Кроме того, поведение, подобное поведению композитов, может быть присуще синтетическим полимерам вследствие вытягивания. Точные утверждения относительно процесса разрушения в композитах  [c.177]

Радиационно-индуцированные изменения в органических молекулах связаны с разрывом ковалентных связей. Б простых органических соединениях радиационные эффекты невелики, но в полимерах они выражены более резко. Радиационно-индуцированные изменения в каучуках и пластиках отражаются на их внешнем виде, химическом и физическом состояниях и механических свойствах. В качестве внешних изменений можно рассматривать временные или постоянные изменения цвета, а также образование пузырей и вздутий. К химическим изменениям относятся образование двойных связей, выделение хлористого водорода, сшивание, окислительная деструкция, полимеризация, деполимеризация и газовыделение. Физические изменения — это изменения вязкости, растворимости, электропроводности, спектров ЭПР свободных радикалов, флуоресценции и кристалличности. Об изменениях кристалличности судят по измерениям плотности, теплоты плавления, по дифракции рентгеновских лучей и другим свойствам. Из механических свойств изменяются предел прочности на растяжение, модуль упругости, твердость, удлинение, гибкость и т. д.  [c.49]

Это уклонение от основного плана настоящей книги связано с тем, что измерения разности нормальных компонент напряжения, как показали последние исследования, весьма важны для реологии полимеров и менее известны, нежели исследования вязкости. Ньютоновские текучие вещества типа воды или низкомолекулярных органических жидкостей не обнаруживают отличных от нуля разностей нормальных напряжений, и только вязкость определяет свойства сдвигового течения(хотя Рей-нер сообщил о существовании нормальных компонент напряжения в толуоле при весьма больн их скоростях сдвига). В растворах полимеров вязкость представляет лишь одну треть информации о реологических свойствах, даже для наиболее простого случая  [c.238]

Измерение вязкости с помощью системы конус — пластина было предложено в 1934 году Муни и Эвар-том [ 2]. В настоящее время на этом принципе построено большое количество приборов для определения коэффициента вязкости Р - . О - "i-107]. Они обеспечивают практически постоянную скорость сдвига, что особенно важно при работе с растворами полимеров, вязкость которых обычно зависит от скорости сдвига. Абсолютные величины вязкости при этом получают с точностью порядка 1%.  [c.261]


У многих материалов (полимеры, бетон, металлы при повышенной температуре) в эксплуатационных условиях закон связи а(е) существенно зависит от времени. Изменение напряжений и деформаций во времени при постоянных внешних нагрузках называют ползучестью (явление ползучести можно обнаружить при растяжении материалов даже в условиях нормальной температуры). Так, при растяжении образца для снятия показаний тензометров приходится, как правило, приостанавливать процесс нагружения либо по силам, либо по деформациям. Такая остановка в упругой области практически не приводит к изменению показаний во времени. Если остановка происходит в пластической области, то для машин кинематического типа (e = onst) благодаря вязкости материала происходит заметное самопроизвольное падение напряжений (рис. 1.12), т. е. релаксация. При нормальной температуре Та напряжение а асимптотически стремится к  [c.37]

При наличии таких структур прочность связующего повышается, увеличивается и прочность формы. В итоге структура связующего имеет вид неорганического полимера. Эти растворы о Зладают свойствами истинных растворов. Гидролизованный раствор содержит более 18% Si02, его вязкость не изменяется при хранении пленка раствора сохнет на воздухе медленно и обратимо. При этом растворы способны набухать при нанесении следующего споя суспензии. Раствор легко гидролизуется влажным аммиаком с образованием геля кремниевой кислоты. При этом пленка твердеет необратимо, т е. происходит аммиачная сушка. Оболочка имеет высокую прочность. Прочность формы на изгиб составляет 7 - 10 МПа. Стойкость до желатинизации до 400 сут.  [c.217]

Как и для зависимости Кр от Ср(з), используем линейные аппроксимации для вязкостей углеводородной (в зависимости от содержания воды) и водной (в Зовисимости от содержания загущающего полимера) жидкостей  [c.326]

В настояп1ее время в качестве охлаждающих сред применяют водные растворы полимеров и низкомолекулярных органических соединений. Они изменяют температуры кипения и испарения воды, ее вязкость, те.м самым позволяют изменять ох,лаждающую способность воды в широком диапазоне скоростей.  [c.68]

П. П. Кобеко и Г. П. Михайлов установили, что у высокомолекулярных органических соединений (полимеров), состоящих из звеньев с большим дипольным моментом, обычно наблюдаются два температурных максимума tg б один в области низких температур, другой в области высоких температур при низких температурах вследствие повышения вязкости твердого тела (достижения большой жесткости структуры) ориентироваться электрическим полем могут только непосредственно те группы атомов (радикалы), которые обладают дипольным моментом в это вращательное движение не вовлекаются соседние атомы. Максимум в области низких температур получил название дипольно-радикального. При повышенных температурах вследствие уменьшения вязкости твердого тела наблюдаются повороты  [c.56]

Наибольшей механической прочностью обладают материалы из полимеров резольного типа с длинноволокнистым наполнителем. Наиболее высокими электрическими параметрами — материалы высокочастотного назначения из ани-линфенолформальдегидного полимера с наполнителями кварц и слюда, tg б при 50 Гц обычно определяют для материалов, предназначенных для электроизоляционных низкочастотных деталей, tg б и е, при 10 Гц —для деталей высокочастотного назначения. Наибольшее значение теплостойкости по Мартенсу имеет материал на основе резольного полимера с асбестовым волокнистым наполнителем. Модификация фенолформальдегидных полимеров полиамидами, поливинилхлоридами и синтетическим каучуком улуч- нает некоторые параметры, например удельную ударную вязкость, влагостойкость. Материалы на основе анилинфе-ыолформальдегидного полимера в эксплуатации не выделяют аммиака,< что иногда имеет место с материалами на чисто фенольных смолах. Повышенную механическую прочность имеет материал на основе модифицированного фенол-формальдегидного связующего с наполнителем из длинных стеклянных волокон. Эта масса марки АГ-4 широко используется для изготовления сравнительно крупных коллекторов без миканитовых манжет.  [c.200]

Органические полярные диэлектрики имеют дипольно-релаксационную поляризацию, которая связана с наличием в звеньях цепей полимера полярных радикалов (гидроксильных, карбоксильных, галоидных и др.) при несимметричном их расположении в цепи полимера. Эта поляризация в твердом диэлектрике, так же как и в жидкостях, связана с тепловым движением, но ориентация диполей здесь происходит в меньшей мере, не всей молекулы, а только ее радикалов, так как поворот диполей ограничивается высокой вязкостью полимера, превосходящей вязкость мономеров или олигомеров в десятки тысяч и миллионы раз. Диэлектрическая проницаемость твердых полярных полимеров, так же как и полярных мономеров и олигомеров, зависит от частоты и температуры, но максимум выражен тем меньше, чем больше, жесткость материала, чем выше его вязкость в одном и том же интервале температур и частот. Зависимость поляризации диэлектриков от частоты электрического поля иоказана на рис. 1.1.  [c.13]

Жидкие кремнийорганические полимеры (полиорганосилоксаны) сочетают многие цепные свойства, среди которых наиболее существенными являются высокая нагревостойкость и химическая инертность, низкая температура застывания, малый температурный коэффициент вязкости, а также высокие электрические характеристики в широком  [c.57]

По химической стойкости и рабочему диапазону температур фторопласт-3 несколько уступает политетрафторэтилену, но все же обладает высокой химостойкостью. Он стоек к действию серной, соляной и азотной кислот, щелочей и многих других химикатов. Р1зделия из него могут работать при температуре жидкого азота (—196,4 °С), при температуре Л ИДКого гелия (—269,3 °С). Он может применяться с ограничением механической нагрузки. Обладает более высокой механической прочностью, чем фторопласт-4 и отсутствием хладотекучести. Он также является кристаллическим полимером (до 90% кристаллической фазы). В отличие от Ф-4 он представляет собой жесткий полимер, так как эластичность и удлинение его при разрыве примерно в 10 раз меньше (это зависит от степени его кристалличности). При кристалличности порядка 40%, Ф-3 имеет высокую ударную вязкость до 60 кГ-сек/см .  [c.70]

Степень полимеризации в большей мере определяется условиями полимеризации. При специальных условиях возможно получение полимеров с молекулярным весом до 600 ООО и даже выше. Но такие высокомолекулярные полимеры для технического применения не всегда пригодны из-за их вязкости и большой твердости и хрупкости. Практическое применение находят полистиролы с молекулярным весом от 40 ООО до 150 ООО. Деполимеризация полистирола с молекулярным весом до 100 ООО обычно наступает при нагреве его до 300 °С. Деполимеризация же полимеров с молекулярным весом выше 100 ООО наступает уже при 180° С. Электрические свойства полистирола, в особенности его диэлектрические потери, зависят от метода полимеризации. Несмотря на то, что эмульсионный метод имеет ряд технологических преимуш,еств перед методом блочной иолимеризацпи, все же из-за присутствия остатка эмульгатора в полистироле, электрические свойства его, вследствие наличия полярных примесей, становятся ниже. Для повышения электрических свойств необходима тщательная отмывка эмульгатора.  [c.73]


Полиэфирные олигомеры представляют продукты поликонденсации многоатомных спиртов (гликолей, глицерина и т. д.) и смеси ненасыщенных одноосновных кислот с двухосновными кислотами или их ангидридов. Преимуществом полиэфирных олигомеров являются малая вязкость при 20° С, что особенно важно для пропитки материалов (при определении химического строения), высокие электроизоляционные свойства, относительно невысокая стоимость, нетоксичность. Полимеры на основе полиэфирных олигомеров отличаются хорошими механическими свойствами и эксплуатационной надежностью. Мате-г риалы на основе полиэфирных олигомеров, в большинстве случаев, относятся к классу нагревостойкости В .  [c.93]

Сравнительно дешевый отечественный материал (октол) представляет собой смесь полимеров изсбутилена и его изомеров, имеющих общий состав Hj и получаемых из газообразных продуктов крекин.га нефти. Откол имеет молекулярную массу от 400 до 1500 и плотность 0,850—0,875 Мг/м его вязкость при плюс 70 °С составляет 1,3—3,0 мПа-е.  [c.101]

Применяя такой механизм повышения вязкости к хрупким полимерам, Мак-Герри с соавторами [41] показал, что энергия разрушения полиэфирной и эпоксидной матриц может быть увеличена в 10 раз. Они вводили эластомерную фазу (до 10 вес.%) методом осаждения. В их исследованиях были получены два основных результата. Во-первых, эластомерная фаза эффективна только в том случае, когда размеры дисперсных частиц больше 0,1 мкм. Вбльший размер частиц оказывает больший эффект. Во-вторых, увеличение энергии разрушения получено только при существовании прочных связей по поверхностям раздела между жесткой полимерной и эластомерной фазами.  [c.28]

Хотя, по-видимому, увеличенная энергия разрушения в полимерах, содержащих дисперсный эластомер, и связана с увеличенной степенью молекулярной ориентации внутри полимерной матрицы, окружающей частицы эластомера, приведенные объяснения этого явления не очевидны. В других исследованиях по развитию трещины показано, что уровень возникающей молекулярной ориентации зависит от времени, в течение которого материал находится под влиянием поля напряжений около фронта трещины [2]. В одной из первых работ по полимерам с введенными для повышения вязкости частицами эластомера предполагалось, что частицы эластомера просто уменьшают скорость роста трещины. Это заключение было основано на наблюдениях Мерца и др. [43], которые показали, что частицы эластомера допускают значительное упругое удлинение и поэтому удерживают разрушенные поверхности полимера вместе до разрушения частиц. Таким образом, полимер в окрестности частиц эластомера находится под действием высоких напряжений вследствие влияния как поля напряжений в окрестности фронта трещины, так и неразрушенных частиц эластомера более долгое время, чем поверхности разрушения, не содержащие частиц. Этим может быть объяснена большая степень ориентации молекул в композитах полимер — эластомер.  [c.28]

Хотя результаты первых попыток исследования распространения погранияной трещины были не вполне понятны, они позволили обнаружить наиболее простой способ непосредственного экспериментального определения энергии адгезии Дальнейшее развитие этих методов могло бы дать способ независимого определения затраченной энергии и механизма диссипации в композитах. Помимо этого существуют другие оценки прочности при разрушении адгезионных слоев, основанные на измерении вязкости распространения трепщны в полимерном клее между двумя твердыми телами. Чтобы обеспечить распространение трещины по центру связующего слоя на конечном расстоянии от границы раздела, особое внимание в таких исследованиях (например, в работах [44, 53, 63]) было уделено частным видам геометрии, толщине связующего слоя, условиям отверждения и скорости распространения трещины. Ясно, что при таких условиях происходит разрушение связующего слоя, а не границы раздела, поэтому разрушение композита следует рассматривать как разрушение полимера при наложенных механических ограничениях.  [c.260]

Линейный полимер анилиноформальдегида, который является термопластичным, имеет по всем свойствам, кроме ударной вязкости, более высокую радиационную стойкость, чем два указанных типа пластиков. Его ударная вязкость не меняется при дозе 7,4-10 эрг/г, а ее изменение на 25% достигается при дозе 1,4-10 эрз/г. Из-за плохой стабильности  [c.63]

Радиационная стойкость полисилоксанов (силиконов), по-видимому, зависит от молекулярного веса полимера и от природы замеш аюш их углеводородных групп. Высокомолекулярные полисилоксаны склонны к гелеобразованию при облучении, что, по-видимому, является следствием образования относительно небольшого числа поперечных связей. Как и в случае сложных эфиров и углеводородов, соединения ароматического типа (метилфенил) в отношении уменьшения радиационных повреждений, определяемых по увеличению вязкости, оказались более эффективными, чем алифатические соединения (диметил). Метилхлорфенилполисилоксан (GE 81406) обладает низкой радиационной стойкостью, и помимо гелеобра-зования происходит его разложение с выделении хлористого водорода.  [c.123]


Смотреть страницы где упоминается термин Полимеры вязкость : [c.88]    [c.356]    [c.290]    [c.313]    [c.322]    [c.324]    [c.115]    [c.60]    [c.36]    [c.40]   
Конструкционные материалы Энциклопедия (1965) -- [ c.213 ]



ПОИСК



Влияние пластификаторов на вязкость расплавов полимеров

Вязкость жидкостей полимера

Полимерия

Полимеры



© 2025 Mash-xxl.info Реклама на сайте