Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полимеры эластичные

Линейные полимеры построены из отдельных макромолекул, связанных между собой межмолекулярными силами, величина которых в значительной степени определяет технические свойства вещества. Такие полимеры эластичны, плавятся или размягчаются при нагреве и при охлаждении снова переходят в твердое состояние.  [c.18]

Химическая стойкость полимерных материалов зависит от строения полимеров. Молекулы большинства полимеров имеют линейное строение. Отдельные линейные цепи дополнительно соединены главными связями, при этом они становятся менее подвижными. С ростом числа поперечных связей полимеры теряют ряд характеристик, присущих линейным полимерам, — эластичность, вязкость и т. д. Такие полимеры в большинстве случаев не растворимы и не плавятся. Процессы сшивки молекул происходят за счет разрывов двойных связей. Сила сцепления между отдельными линейными молекулами может быть увеличена, если между ними создавать химическое взаимодействие. Поэтому появляется необходимость создания поперечных химических связей между отдельными цепями высокомолекулярных соединений, т. е. необходимость создания молекул трехмерного строения. На рис. 9 показана схема строения высокомолекулярного вещества.  [c.59]


Резина — эластичный материал — эластомер, получаемый путем вулканизации каучука, являющегося органическим полимером. Эластичность есть свойство материала сильно удлиняться при растяжении без значительного остаточного удлинения при снятии нагрузки за счет большой упругости. Резина получается из особого полимера — каучука, имеющего двойные связи. Наличие двойных связей обеспечивает вулканизацию — поперечную сшивку молекул каучука за счет взаимодействия с серой, вводимой в сырую резиновую смесь.  [c.210]

Старение полимерных материалов. Физико-химические свойства полимеров (предел прочности при растяжении, сопротивление пластической деформации, температура размягчения, эластичность и др.) определяются их химическим составом и структурой. Структура полимеров характеризуется областями кристаллического и аморфного строения, формой и степень подвижности цепей, величиной и характером сил, действующих между цепями, степенью сшивания цепей (образования поперечных связей). Поперечные связи ограничивают движение цепей относительно друг друга и оказывают большое влияние на физические свойства полимеров. С ростом числа поперечных связей уменьшается растворимость полимеров, ухудшаются механические свойства, характерные для линейных полимеров эластичность, вязкость и др. Свойства сшитых полимеров аналогичны свойствам полимеров с трехмерной структурой.  [c.17]

В большинстве случаев реальные полимеры содержат и аморфную, и кристаллическую фазы. Относительное содержание этих фаз зависит от формы цепи, величины межмолекулярных сил и внешних условий. Содержание в полимере (в процентах) веществ в кристаллическом состоянии называется степенью кристалличности. Образование кристаллитов приводит к потере полимером эластичности, увеличению его жесткости и уменьшению способности к деформации. Надмолекулярные структуры могут изменяться при внешнем воздействии.  [c.60]

Деформирование и разрушение полимер-полимерных композиций, состоящих из жесткой матрицы и диспергированных в ней эластичных частиц, обсуждено в гл. 5. Эффект введения в жесткий полимер эластичных частиц часто противоположен эффекту введения жесткого наполнителя. При этом ударная прочность и относительное удлинение при разрыве резко возрастают, а модуль упругости и разрушающее напряжение при растяжении несколько уменьшаются. Если при введении частиц эластичной фазы появляется предел текучести, дальнейшее увеличение концентрации каучука вызывает снижение его [99, 100] при резком уменьшении разрушающего напряжения при растяжении [101 ]. При постоянной концентрации эластичных частиц предел текучести снижается с повышением температуры [102]. Этого следовало ожидать, так как при повышении температуры возрастает подвижность полимерных цепей и требуется меньшее напряжение для проявления пластичности даже для немодифицированного полимера.  [c.241]


При изменении состава смесей полимеров или блок-сополимеров во всем интервале соотношений компонентов происходит ряд морфологических превращений в смесях [38, 39, 41, 152, 158— 161]. При введении небольшого количества эластомера в стеклообразный полимер эластичная фаза является дисперсной. При увеличении содержания эластомера обе фазы могут быть непрерывными в области инверсии фаз. При еще большем содержании эластомера жесткая фаза становится дисперсной. На рис. 7.7 показано, как при этом изменяется модуль упругости композиции на основе блок-сополимера стирола и бутадиена [39]. Эксперимен-  [c.249]

Горит с трудом, при удалении пламени гаснут. По месту горения полимер эластичный с налетом копоти. Запах прокаленного асбеста  [c.184]

Линейные и разветвленные полимеры построены из отдельных макромолекул, связанных между собой меж-молекулярными силами, величина которых в значительной степени определяет технические свойства вещества. Такие полимеры эластичны, плавятся или размягчаются при нагреве и при охлаждении снова переходят в твердое состояние. Линейные и разветвленные полимеры являются основой термопластичных пластмасс (термопластов).  [c.813]

Пленки на основе полимеров и сополимеров винипласта являются термопластичными. Применяют их как изоляционный (ДБИ-45 и ММ) и упаковочный (В-118) материал. Эти пленки обладают высокими электроизоляционными и антикоррозионными свойствами, достаточной прочностью и эластичностью = 2,5—35,0 Мн м , 8 = 100— 180% морозостойкость до—50° С. Изготовляют их горячим вальцеванием.  [c.370]

Сшивание уменьшает растворимость и текучесть, улучшает эластичные свойства. При достаточно большом количестве сшивок весь полимер становится как бы одной разветвленной молекулой, т. е. образует гель. Свойства геля сильно отличаются от свойств обычного несшитого полимера. Гель крайне эластичен, стоек к действию растворителей и высоких температур. Например, обычный полиэтилен течет уже при 100 °С. Сшитый же полиэтилен при 150 °С и давлении 200 атм выстаивает 10 ООО часов и является прекрасным изоляционным материалом.  [c.665]

Вследствие названных причин абразивная износостойкость эластичных полимеров (резин) в несколько раз выше износостойкости твердых полимеров (пластмасс). В среднем износостойкость полимерных материалов в условиях абразивного изнашивания в 5-10 раз ниже износостойкости сталей и сплавов.  [c.130]

В данном составе соли щелочного металла содержат высокомолекулярный акриловый полимер органическое вещество выделяет аммиак или амин при температуре 121 °С и выше, само вещество действует как ингибитор коррозии при температуре и давлении в нижней части скважины образует смолоподобную эластичную пленку, которая защищает от эрозии.  [c.115]

Резины (эластомеры). Резина получается из смесей, основой которых является натуральный или синтетический каучук. Некоторые синтетические полимеры и материалы на их основе, например кремнийорга-нические, поливинилхлоридный пластикат и др., обладают гибкостью и эластичностью подобно резине, вследствие чего могут применяться так же, как резина, для изоляции различных проводов и кабелей, в виде различных гибких и уплотняющих прокладок.  [c.106]

В стеклообразном состоянии полимеры обладают хрупкостью. Температура, при которой в процессе нагревания полимер приобретает эластичность, называют температурой стеклования (Тс). При более высоких температурах материалы обладают большой упругой деформацией и находятся в высокоэластичном состоянии. Полимеры, находящиеся в высокоэластичном состоянии в широком интервале температур, называются эластомерами или каучуками. Если нагревать полимер, находящийся в высокоэластичном состоянии, до температуры текучести Т.г, то материал переходит в вязкотекучее состояние.  [c.203]

Кремнийорганические полимеры могут быть получены в виде эластичных смол, твердых тел и жидких диэлектриков. Благодаря тому что кремнийорганические соединения практически не смачиваются водой, они находят применение для придания водоотталкивающих свойств пластическим массам, керамике и другим материалам.  [c.214]

Нейтронное облучение в атомном реакторе с той же дозой, что и при гамма облучении, вызывает, в полимерах резкое снижение эластичности до хрупкого состояния, изменение внешнего вида и, в некоторых случаях, остаточную радиацию.  [c.46]


Термопластичные полимеры имеют линейное строение молекул. Обладают весьма высокой механической прочностью и эластичностью растворимы в ограниченном количестве растворителей (крезоле, расплавленном феноле). Широко применяются для изготовления искусственных волокон, гибких пленок и пластмасс. Обладают относительно высокой гигроскопичностью.  [c.89]

Отечественная промышленность выпускает олигомер МБ К трех марок МБК-1, МБК-2, МБК-3, отличающихся между собой по величине эластичности полимера. В качестве основы герметизирующего материала применялся олигомер МБК-1, сорта В , вязкостью 3 мии по ВЗ-4 (ТУ-СТУ-1056—62).  [c.94]

Полимер ЭКС обладает аналогичными электрическими характеристиками, но имеет более высокую эластичность (удлинение 170—180%) и пониженную прочность при разрыве (80—150 кГ/см ).  [c.124]

Прессопание порошка полимера эластичной камерой с последующим спеканием й печи  [c.58]

К неорганическим полимерам относят многие минералы, силикатные стекла и Д])., которые, несмотря на структурную идентичность, не обладают ценным спопстпом неорганических и элементоорганических полимеров — эластичностью и поэтому в данном разделе не рассматриваются.  [c.231]

По характеру строения макромолекул полимерных цепей различают полимеры линейного, разветвленного и сетчатого (пространственного) строения. Макромолекулы лин й ь xиoлилгepoв представляют собой длинные или закрученные в спираль цепочки (рис. 9.1, а). Макромолекулы разветвленных полимеров имеют основную молекулярную цепь и побочные ответвления — боковые цепи (рис. 9.1, б). Макромолекулы линейных и разветвленных полимеров имеют слабые межмолекулярные связи, что обеспечивает полимеру эластичность и делает его способным размягчаться и плавиться при нагревании, а при охлаждении вновь затвердевать. Такие полимеры называют термопластичными. К ним относятся полиэтилен, полиамид, поливинилхлорид и т. д.  [c.145]

На основе кремния изготовляются различные полимеры эластичные — типа каучука, жидкие и твердые. На базе модифицированной кремнийорганической смолы КП-9 пзготовляется стеклотекстолит СКП-9 и стекловолокнит В КП-9. Детали из стеклотекстолита изготовляются методом контактного прессования и методом формования в вакуумных мешках  [c.326]

Макромолекулы лпг1енных полимеров представляют собой цепп, имеющие длину, в сотпи и тысячи раз превышающую размеры поперечного сечения. Прн разветвленной структуре полимера макромолекулы и.меют боковые ответвления, длина и число которых могут быть различными. Линейные и разветвленные полимеры построены из отдельных макромолекул, связанных между собой межмолекуляр-ными силами, величина которых в значительной степени определяет технические свойства вещества. Такие полимеры эластичны, плавятся или размягчаются при нагреве и при охлаждении снова переходят в твердое состояние. Линейные и разветвленные полимеры служат основой термопластических пластмасс (термопластов).  [c.318]

Многие полимер изационные смолы в процессе переработки могут быть получены либо в виде эластомеров, либо в виде пластиков. Так, вулканизированный каучук, содержащий в своем составе 5—8% 5, близок к эластомерам. При повышении же содержания в нем серы до 30—50% образуется твердая масса — эбонит. Из виниловых смол можно получить эластичный материал — пластикат и твердый — винипласт и т. д.  [c.389]

В частности, хлорсульфироваиные полиэтилены (гипалоны), применяемые для обкладок химической аппаратуры и в виде покрытий, наносимых кистью, методом погружения и распылением. Предел прочности этих полимеров при разрыве достигает 25,0 Мн/м при удлинении 200—600%. Вулканизаты гипалона применяются для футеровки химической аппаратуры. Лаковые покрытия из гипалона эластичны и обладают хорошей адгезией к металлам и неметаллам.  [c.424]

Полиформальдегид — новая пластическая масса, осваивае-.мая производством. Полиформальдегид представляет собой полимер с линейной структурой, состоящей из разветвленных цепей большой длины. Это строение полиформальдегида обусловливает высокую степень кристалличности полимера и его высокие прочностные показатели, в частности сопротивление изгибу. Сочетание в полиформальдегиде эластичности и высокой химической стойкости определяет широкие возможности применения этого материала в антикоррозионной технике. Имеются указания, что изменение температуры в широком интервале, от —40 до 4-120 С, практически не влияет на ударную прочность полиформальдегида.  [c.435]

Гибкие макромолекулы линейных полимеров с высокой прочностью вдоль цени и слабыми межмолекулярными связями обеспечивают эластичность материала. Шогие такие полимеры растворяются в растворителях. На физико-механические и химические свойства линейного полимера влияет плотность упаковки молекул в единице объема. При 17лотиой упаковке возникает более сильное межмолекулярное притяжение, что приво,цит к повышению плотности, прочности, температуры размягчения и уменьшению растворимости. Линейные полимеры являются наиболее подходящими ДЛЯ получения волокон и пленок (например, полиэтилен, полиамиды и др.).  [c.21]

Существует большое разнообразие конструкционных клеев, отличающихся физико-механическими свойствами и технологией их применения. Наибольшее применение в машиностроении и приборостроении имеют органические клеи на основе синтетических полимеров, например универсальные клеи БФ, технические условия на которые стандартизованы, и эпоксидные клеи с наполнителем и без наполнителя. При необходимости повышенной теплостойкости (до 1000 С) применяют элемеи-тоорганические клеи, обладающие сравнительно меньшей эластичностью. Клеи не являются проводниками, поэтому при необходимости обеспечить электропроводность в них добавляют порошкообразное серебро.  [c.26]

В тонкопланочной технологии из 96 %-ной керамики из оксида алюминия изготовляют однослойные и многослойные коммутационные платы, в которых количество уровней разводки достигает шести. В этом случае на эластичные платы, выполненные из смеси исходной керамической массы и связующего полимера и имеющие отверстия для межуровневых переходов, наносят соответствующие рисунки. Затем платы собирают в пакет и спекают.  [c.51]


Отвердитель - для структурирования полимера (амины) пластификатор - для повь1шения эластичности (стеарин, олеиновая кислота) стабили- атор - для предо.хранения полимера от деструкции под действием тепла, света и Оз воздуха, смазывающее вещество - для снижения внутреннего  [c.127]

Детали тяжелонагруженных узлов трения изготовляют из композиционных материалов на основе ароматического полиамида типа фени-лона. При этом для эксплуатации в условиях малых скоростей и больших давлений предпочтительны полиамиды с высокой молекулярной массой, в условиях повышенных скоростей и малых контактных давлений - полиамиды с малой молекулярной массой. Одной из причин невысокого коэффициента трения фенилона является наличие широкого температурного интервала вынужденной эластичности, обусловленной достаточно большой рыхлостью структуры полимера. Минимальное значение/наблюдается при температуре 50-70°С независимо от ско-  [c.30]

Изнаишвание более жестких и хрупких полимерных материалов происходит в основном в результате микрорезания. На интенсивность изнашивания сильно влияет характер надмолекулярной структуры материала. При трении с фаничной смазкой преобладание кристаллических областей в структуре полимера над аморфными обеспечивает его более высокую твердосп, и износостойкость. Между тем увеличение степени кристалличности снижает износостойкость полимера при абразивном изнашивании. Это объясняется тем, что даже при повышении твердости полимера за счет увеличения кристаллических областей она остается в несколько раз ниже твердости абразива, поэтому повышение твердости оказывается неэффективным. Уменьшение эластичности гюлимера создает более благоприятные условия для начала срезания абразивными частицами микрообъемов материала при срезе опреде-  [c.129]

Высокая эластичность и сравнительно низкое кисло-родопоглощение (относительно других полимеров, в частности полиолефинов) является основной причиной значительной устойчивости полиэтилена высокого давления к старению. Исходя из этого для защиты морских свай в качестве базового материала был взят именно этот представитель полиолефинов.  [c.87]

Молекулы поливинилхлорида — винипласта обладают дипольным моментом. Вследствие этого он обладает сравнительно большим углом диэлектрических потерь. Поливинилхлорид — твердый полимер, сравнительно хрупкий, с низкой холодостойкостью (до —10° С), но высокой водо-и влагостойкостью, низкой газопроницаемостью. Наряду с самим поливинилхлоридом в электроизоляционной технике широко применяется пластифицированный поливинилхлорид — пластикат, представляющий собой смесь полимера с пластификаторами, например трикрезилфосфатом, диоктилфталатом, дибутилфталатом и др. Пластикат обладает большим удлинением при разрыве, т. е. большой эластичностью, более высокой холодостойкостью (некоторые сорта до минус 50° С), чем непластифицированный винипласт.  [c.122]

В качестве эластичных материалов в производстве проводов и кабелей и в других случаях находят применение следующие полимеры поливинилхлоридные пластикаты (в качестве основной изоляции и защитных оболочек взамен дефицитного свинца и шланговых резин), полиэтилен (в качестве основной изоляции и защитных оболочек), полиизобутилен (в качестве доба1юк к полиэтилену и каучуку), политетрафторэтилен (в качестве основной изоляции),, полиуретаны. Свойства изоляции проводов и кабелей из этих полимеров находятся в соответствии со свойствами самих полимеров.  [c.214]

Гамма-облучение лаковых пленок иолиэтилентерефталатпых, эпоксидных, кремнийорганических на кобальтовой установке Со-60, с энергией излучения — 1,2 Л4эв, дозой — 10 рентген, вызывает увеличение их разрывной прочности на 26—53% и снижение эластичности на 50—60% от исходных значений. Гамма облучение органических и кремнийорганических полимеров в атомном реакторе с энергией частиц— 1,2 Мэе, дозой облучения — 10 гамма-квант/сж вызывает также, увеличение разрывной прочности и снижение эластичности.  [c.46]

Линейные полимеры гибки, эластичны, термопластичны. Пространственные полимеры обладают большей жесткостью, хрупкостью, термореактивиостью.  [c.62]

По химической стойкости и рабочему диапазону температур фторопласт-3 несколько уступает политетрафторэтилену, но все же обладает высокой химостойкостью. Он стоек к действию серной, соляной и азотной кислот, щелочей и многих других химикатов. Р1зделия из него могут работать при температуре жидкого азота (—196,4 °С), при температуре Л ИДКого гелия (—269,3 °С). Он может применяться с ограничением механической нагрузки. Обладает более высокой механической прочностью, чем фторопласт-4 и отсутствием хладотекучести. Он также является кристаллическим полимером (до 90% кристаллической фазы). В отличие от Ф-4 он представляет собой жесткий полимер, так как эластичность и удлинение его при разрыве примерно в 10 раз меньше (это зависит от степени его кристалличности). При кристалличности порядка 40%, Ф-3 имеет высокую ударную вязкость до 60 кГ-сек/см .  [c.70]

Полиизобутилен сохраняет эластичность при температуре до —70° С. Совмещенные полимеры с бутадиеном (3%) и изопреном (3%) — называются бутил-каучукамн. Резина (3% серы) имеет разрывную прочность 90—200 кПсм , удлинение при разрыве — 400 ч- 850%, исклю-  [c.78]

Между свойствами линейных и пространственных полимеров имеются весьма существенные различия. Как правило, линейные полимеры сравнительно гибки и эластичны многие из них при уме ренном повышении температуры размягчаются, а затем расплав ляются. Пространственные полимеры обладают большей жест костью размягчение их происходит лишь при весьма высоких тем пературах, а многие из них еще до достижения температуры размяг чения химически разрушаются (сгорают, обугливаются и т. п.) Линейные полимеры обычно способны растворяться в растворите лях пространственные полимеры —труднорастворимы многие из них практически нерастворимы.  [c.106]


Смотреть страницы где упоминается термин Полимеры эластичные : [c.268]    [c.82]    [c.356]    [c.134]    [c.129]    [c.84]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.2 , c.644 ]



ПОИСК



433 (фиг. 9.2). 464 (фиг эластичные

Полимерия

Полимеры

Полимеры предел вынужденной эластичности

Эластичность



© 2025 Mash-xxl.info Реклама на сайте