Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинематическая ара винтовая

Широко применяются винтовые механизмы (рис. 2.12), в которых с помощью кинематической винтовой пары В осуществляется преобразование вращательного (рис. 2.12, а) или поступательного (рис. 2.12, б) движения входного звена 1 в поступательное (или вращательное) движение выходного звена 2. Комбинируя расположение и количество кинематических пар 5-го класса разных типов, получают разнообразные винтовые механизмы для решения многих частных задач. Их применяют в металлорежущих станках, прессах, приборах,измерительных устройствах и т. п.  [c.18]


Передача винт — гайка представляет собой кинематическую винтовую пару, которую используют для преобразования вращательного движения в поступательное (с большой плавностью и точностью хода) в различных областях маишно-строения, в приборостроении. Винтовые механизмы часто применяют в качестве подъемных (домкраты и др.) и нагружающих устройств (прессы и др,), так как с их помощью можно просто получать большие усилия (500— 1000 кН) при малых перемещениях.  [c.385]

Кинематическая винтовая пара — винт и гайка — находит широкое применение не только в рассмотренных выше резьбовых соединениях, но и в винтовых механизмах, назначение которых состоит в преобразовании вращательного движения в поступательное.  [c.135]

Деталь с резьбовым отверстием называют гайкой (рис. 94). Если винт и гайка имеют резьбу одного профиля с соответственно равными параметрами, то они образуют кинематическую винтовую пару, которая обладает следующими свойствами  [c.134]

Особенности проектирования кинематических винтовых механизмов. Кинематические механизмы предназначены для точного перемещения установки отдельных узлов приборов, регулировки  [c.102]

Если между простейшими движениями звена вокруг и вдоль трех координатных осей х, у z (рис. 1.3) отсутствуют какие-либо функциональные зависимости, то звено в зависимости от характера связей, налагаемых на его движение относительно другого звена кинематической пары, обладает числом простейших движений от I до 5. Число простейших движений может оказаться больше числа степеней свободы, если между простейшими движениями установлены функциональные зависимости, являющиеся дополнительными условиями связи как, например, в винтовой паре.  [c.23]

Рассмотрим некоторые другие виды механизмов фрикционных передач. На рис. 7.5 показана схема механизма лобовой фрикционной передачи. Диск 1 жестко связан с осью О , вращающейся в неподвижном подшипнике А. Диск 1 входит в высшую кинематическую пару М с роликом 2, входящим во вращательную пару В со звеном 3. Ролик 2 с помощью винтовой пары С можно перемещать вдоль оси Oj. Точка М контакта может занимать различные положения, определяемые расстоянием х. Передаточное отношение Uji равно  [c.142]

ТРЕНИЕ В ВИНТОВОЙ КИНЕМАТИЧЕСКОЙ ПАРЕ  [c.225]

Трение в винтовой кинематической паре  [c.225]

Наиболее распространены следующие подвижные соединения, т. е. кинематические пары с относительным вращательным, поступательным и винтовым движением. Эти пары образованы охватывающей и охватываемой поверхностями.  [c.322]


Секущую плоскость проводят через общую ось поверхностей вращения во вращательной паре или через ось винтовых поверхностей в винтовой паре. С целью уменьшения числа изображений выбирают такие секущие плоскости, которые содержат две, три или более осей кинематических пар. Если эти оси параллельны и не лежат в одной плоскости, то выполняют ломаные сечения несколькими плоскостями, каждая из которых проходит через две соседние оси.  [c.322]

К сожалению, в начертательной геометрии невозможно разработать приемлемую для всех возможных случаев систематизацию (классификацию) поверхностей. Внутри каждого способа образования поверхностей существует своя база для систематизации. Например, в кинематическом способе образования поверхностей вполне естественно в основу систематизации положить вид образующей и закон ее перемещения. По виду образующей различают линейчатые (образующая— прямая), циклические (образующая — окружность) и другие поверхности, по закону перемещения образующей — поверхности вращения, параллельного переноса, винтовые и т. д. Очевидно, что при этом некоторые поверхности могут быть отнесены одновременно к различным классам. Например,, цилиндрическая поверхность вращения является линейчатой и поверхностью вращения. Поэтому разработка всевозможных систематизаций представляет собой сложную проблему. При дальнейшем изложении материала мы будем придерживаться принципа систематизации поверхностей, принятого в инженерной практике, в частности в практике проектирования поверхностей агрегатов летательных аппаратов.  [c.79]

На рис. 11.17, а дана кинематическая схема одного из промышленных роботов с приводами, а на рис. 11.17, б--структурная схема его основного рычажного механизма и упрощенная блок-схема автоматического управления манипулятором. Манипулятор Г1Р (рис. 11.17, а) имеет 5 степеней свободы (W = 5) и соответственно 5 отдельных приводов D, D , Оз, — электродвигатели и Dg — пневмопривод. Двигатель D, через червячную передачу приводит во вращательное движение вокруг вертикальной оси звено / двигатель Dg с помощью винтовой передачи (винт—гайка) перемещает поступательно (вверх-вниз) звено 2 двигатель D3 с помощью такой же передачи сообщает горизонтальное поступательное движение (вправо-влево) звену 3 электропривод О4 посредством червячной передачи осуществляет вращательное движение схвата 4 вокруг горизонтальной оси пневмопривод раскрывает и закрывает губки схвата 5 путем преобразования поступательного движения поршня посредством рычажного механизма.  [c.332]

Основу большинства машин составляют механизмы. Механизмом называют систему тел, предназначенных для преобразования движения одного или нескольких тел в требуемые движения других тел. Простейшей частью механизма является звено. Звено — это твердое тело, входящее в состав механизма. Звено механизма может состоять из нескольких деталей, не изменяющих между собой относительного движения. Соединение двух соприкасающихся звеньев, допускающее их относительное движение, называют кинематической парой. Кинематические пары бывают низшие и высшие. Звенья низших пар соприкасаются по поверхностям (поступательные, вращательные и винтовые пары) звенья высших пар соприкасаются по линиям и точкам (зубчатые пары, подшипники качения).  [c.257]

Если (О О, о и не перпендикулярна к м, то тело совершает мгновенное винтовое движение. В этом случае существует мгновенная винтовая ось — геометрическое место точек, скорости которых равны между собой и направлены вдоль мгновенной оси. Кинематическим винтом называется совокупность угловой скорости и поступательной скорости, направленных по одной прямой.  [c.505]

Длительная практика построения механизмов привела к тому, что были созданы простейшие механизмы, которые можно подразделить на следующие виды рычажные и кулачковые механизмы, зубчатые и червячные передачи, механизмы прерывистого движения, фрикционные передачи, винтовые механизмы, передачи с гибкими связями, механизмы с электрическими, гидравлическими и пневматическими устройствами. Такое разделение может быть названо практической классификацией. Она учитывает функциональное назначение механизмов, их конструктивные особенности и кинематические свойства.  [c.5]


Колеса винтовых зубчатых передач выполняются как цилиндрические косозубые. Касание зубьев происходит в точке, что, учитывая большое скольжение вдоль зубьев, обусловливает возможность передачи лишь небольших усилий. Поэтому винтовые передачи используют как кинематические.  [c.242]

Отсюда следует, что поступательная скорость будет направлена вдоль вектора to. Таким образом, рассматриваемый случай движения твердого тела представляет собой одновременное вращение тела вокруг оси и перемещение его вдоль этой оси. Такое движение называют мгновенно винтовым, а соответствующее ему сочетание векторов со и Vq — кинематическим винтом.  [c.38]

Под кинематической точностью винтовой пары понимают точность воспроизведения парой заданного закона винтового движения при отсутствии сил, его искажающих.  [c.344]

Кинематическая точность характеризуется величиной и закономерностью изменения погрешности поступательного перемещения одной из сопряженных резьбовых деталей винтовой пары в их относительном движении.  [c.344]

Пара винтовая — Допуски 344 Пара кинематическая — Линии действия реакций 34  [c.759]

При этом d = [у, / . Совокупность таких движений (со, Ух) называют винтовым движением (кинематическим винтом).  [c.206]

Рис. 20.13. Трение в винтовой кинематической паре Рис. 20.13. Трение в винтовой кинематической паре
В винтовых кинематических парах с ф > ф поступательное и одновременно вращательное движение звена 1 возможно. Винтовые пары, у которых ф -< ф, называются самотормозящимися движение звена при любом значении силы / невозможно.  [c.253]

Такая пара деталей (впнт и гайка) и даст кинематическую винтовую пару, обладающую следующими свойствами  [c.79]

Резьбу метрическую применяют для крепежных деталей и кинематических винтовых механизмов она, как правило, имеет одну нитку или один заход (рис. 58). Основные параметры метрической резьбы a — наружный диаметр S — шаг резьбы Н — теоретическая высота резьбы, определяется из соотношения (Я = 0,8665) h — рабочая высота резьбы h = 5/8Я = 0,54IS) da — средний диаметр резьбы d = d — Я) dj — внутренний диаметр резьбы (d d — %Я) а — угол профиля (для всех метрических резьб а = 60°).  [c.97]

Оставшиеся возможные движения могут быть или независимыми друг от друга, или же быть одно с другим связаны какими-нибудь дополничельными 1еометрическими условиями, устанавливающими функциональную связь между движениями. Например, в кинематической паре винта и гайки (винтовой паре) вращение винта вокруг оси вызывает его поступательное движение, причем оба эти движения связаны определенной аналитической зависимостью.  [c.23]

Рис. 2.25. Схемы распространенных кинематических пар а) изображение нращателыюй пары со схематизированными конструктивными формами а ) схематическое изображение вращательной пары, применяемое на кинематических схемах 6) я б ) то же для поступательной пары в) и в ) то же для винтовой пары г) и г ) то же для цилиндрической пары д) ид ) то же для шаровой пары е) и в ) то же для шаровой с пальцем пары Рис. 2.25. Схемы распространенных кинематических пар а) изображение нращателыюй пары со схематизированными <a href="/info/428316">конструктивными формами</a> а ) <a href="/info/286611">схематическое изображение</a> <a href="/info/61685">вращательной пары</a>, применяемое на <a href="/info/2012">кинематических схемах</a> 6) я б ) то же для <a href="/info/61692">поступательной пары</a> в) и в ) то же для <a href="/info/2284">винтовой пары</a> г) и г ) то же для <a href="/info/444971">цилиндрической пары</a> д) ид ) то же для <a href="/info/85322">шаровой пары</a> е) и в ) то же для шаровой с пальцем пары
Г. При рассмотрении трения в винтовой кинематической паре обычно делают целый ряд допущений. Во-первых, так как закон распределения давлений по винтовой резьбе неизвестен, то условно считают, что сила давле11ия гайки на винт или, наоборот, винта на гайку приложена по средней линии резьбы. Средняя линия резьбы расположена на расстоянии г от оси винта (рис. 11.18, а). Во-вторых, предполагается, что действие сил в винтовой паре может быть сведено к действию сил на ползун, находящийся на наклонной плоскости. Развертывая среднюю линию винтовой резьбы на плоскость, сводят пространственную задачу к плоской, для чего поступают следующим образом (рис. 11.18, б).  [c.225]

При рассмотрении явления сухого трения во вращательной кинематической паре пользуются различными гипотезами о законах распределения нагрузки на поверхностях элементов этой пары. С помощью этих гипотез могут быть выведены соответствующие формулы для определения сил трения и мощности, затрачиваемой на преодоление этих сил. Такие гипотезы были предложены некоторыми учеными (Рейе, Вейсбах и др.). Недостатком всех этих гипотез, так же как это имело место и для винтовой пары, является отсутствие достаточного экспериментального материала по вопросам распределения давлений во вращательных парах, работающих без смазки. Поэтому мы не будем останавливаться на всех различных формулах определения сил трения во вращательных парах, ограничившись выводом простейших из них, сделанным на основе элементарнейших предположений, схематизирующих явление.  [c.227]

Соприкасающимся эталоном кинематической поверхности основного вида в заданной ее точке называют предельное положение винтовою тора, который с заданной кинемагической поверхностью основного ви-да имеет три общих бесконечно близких хода.  [c.411]


Конструктивные присоединительные элементы с подвижным контактом образуют подвижные соединения, иапри-мер зубья зацеплений, элементы деталей подшипников каче-Г1ИЯ, элементы направляющих прямолинейного движения, поверхности кулачков и толкателей и т. п. Все такие элементы составляют кинематические пары поступательные, вращательные, винтовые и др. В подвижных соединениях сопряженные элементы обеспечивают взаимную ориентацию сопря-гаемых деталей и передачу усилий при их относительном движении по заданному закону. Изображения таких пар см. 17 Изображения соединений деталей . Размеры формы таких ). 1е ептов выгюлняются, как правило, с высокой точностью, поэтому па рабочих чертежах эти размеры имеют малые допуски.  [c.135]

При вергикальном перемеидении фрезы на величину подачи s зубья фре-зы образуют винтовые зубья колеса. Для обеспечения этого условия необходимо, чтобы за один оборот однозаходной червячной фрезы заготовка повернулась не только на z часть окружности, но II совершила еще дополнительную часть оборота, что достигается настройкой дифференциальной кинематической цепи.  [c.354]

Многообразие поверхностей требует их систематизации. При рассмотрении кинематического способа образования поверхностей в основе ситематизации лежат два признака вид образующей и закон ее перемещения. По виду образующей принято различать линейчатые (образующая — прямая), циклические (образующая — окружность) и поверхности зависимых сечений (образующая — плоская кривая), по закону перемещения образующей — поверхности параллельного переноса, вращения и винтовые.  [c.53]

Винтовая передача (рис. 8.56) осуществляется цилиндрическими косозубыми колесами. При перекрестном расположении осей валов начальные цилиндры колес соприкасаются в точке, поэтому зубья имеют точечный контакт. Векторы окружных скоростей колес направлены под углом перекрещивания, поэтому в зацеплении наблюдается больиюе скольжение. Точечный контакт и скольжение приводят к быстрому износу и заеданию даже при сравнительно небольших нагрузках. Поэтому винтовые передачи применяют главным образом в кинематических цепях приборов. В силовых передачах их заменяют червячными передачами с многозаходными червяками. Во многих случаях такая замена целесообразна и в передачах приборов. Проч-  [c.171]

Передачу винт—гайка служит для преобразования вращательного движения в иоступачельное. Основы теории винтовой пары (тииьг резьб, силовые и кинематические зависимости, к. п. д. и др.) изложены fs гл. 1 Резьбовые соединения . Ниже излагаются только некоторые доиоли1ГРельные сведения.  [c.257]

В процессе движения звеньев механизма между их геометричес-ки.ми элементами необходим постоянный контакт. Замыкание кинематических пар может быть либо геометрическим, либо силовым. Первое достигается за счет формы геометрических элементов звеньев. Такие пары называют закрытыми (например, винтовая пара). Второе обеспечивается силами тяжести звеньев, упругостью пружин и т. д. Пары с таким замыканием называют открытыми (например, шар на плоскости).  [c.11]

Особенно тесная связь между указанными процессами суш,ествует при книематическом копировании, например при получении эволь-вентных, спиральных и винтовых поверхностей методом обкатки, контроле зубчатого колеса в однопрофильном зацеплении с точным образцовым колесом, контроле копира 1 сравнением его g профилем образцового копира 2 (рис. 6.4) и т. д. Так, при контроле крепежных резьб важным и обоснованным показателем является их свинчивае-мость с контрдеталью, а при контроле кинематических резьб важно обеспечить одностороннее силовое замыкание. Для рассортировки шариков подшипников по диаметру используют клиновой калибр (рис. 6.5), выполненный в виде двух расходяш ихся под углом 2а линеек. Существует два метода его настройки по образцовым шарам (расположенным в сечениях —А и Л,—с заданными диаметрами d и D) и по блокам концевых мер длины. При настройке необходимо вводить поправки на размеры блоков, так как геометрия и материал этих образцов отличны от геометрии и материала контролируемых деталей, а следовательно, различны положение точек соприкосновения С G линейками и смятие соприкасающихся поверхностей.  [c.141]

Кинематические резьбы, применяемые для винтовых пар, имеют гарантированные зазоры по сопрягаемым поверхностям. Зазоры необходимы для размещения смазочного материала и уменьшения трения, компенсации температурных деформаций и создания однопрофильного контакта по боковым сторонам профиля резьбы. Основным показателем точности винтовых пар является разность действительного и теоретического перемещений одной из деталей пары в осевом нанравленпи.  [c.293]

Задача № 101, Точка массы т кг двУ1жется по винтовой линии согласно кинематическим уравнениям движения х г os Ь1, y= rsinht, где х, у, г и г выражены в метрах, а /--в секундах известно, что г, к и и постоянны. Определить величину и направление силы в функции расстояния.  [c.263]

Если поверхности и 2 элементов кинематической пары выполнить в виде аксоидных гиперболоидов, то контакт звеньев по винтовой оси будет линейчатым. Так как нормаль к поверхности гиперболоидов пройдет через оси их вращения, то силовое взаимодействие звеньев не вызовет передачи движения. Передать движение с помощью такой кинематической пары можно только силами трения между звеньями 1 н 2, возникающими за счет прижимающих их сил. Для обеспечения передачи движения непосредственным соприкосновением звеньев необходимо придать им форму, при которой нормаль к поверхностям звеньев не проходила бы через их оси вращения. Тогда касательная плоскость к звеньям пройдет согласно условию (9.1) перпендикулярно п — п через векторы со,2 и Ща-  [c.91]


Смотреть страницы где упоминается термин Кинематическая ара винтовая : [c.606]    [c.198]    [c.29]    [c.292]    [c.271]    [c.19]    [c.89]    [c.91]   
Словарь-справочник по механизмам (1981) -- [ c.39 ]



ПОИСК



Винтовые механизмы с соосным расположением кинематических пар

Кинематическая погрешность винтовой пары

Кинематическая структура винтового водного потока

Кинематические и силовые зависимости в винтовой паре

Кинематические и силовые соотношения в винтовом механизме

Кинематические пары винтовые Указатель

Кинематический способ разложения конечного винтового перемещения тела по трем осям

Механизмы винтовые с с соосным расположением кинематических пар 488 — Перемещение скоростей и касательных уско

Механизмы винтовые с с соосным расположением кинематических пар 505 — Построение

Пара винтовая кинематическая — Определени

Пара кинематическая винтовая

Пара кинематическая винтовая одноподвижная

Трение в винтовой кинематической паре

Трение в винтовой кинематической паре момент



© 2025 Mash-xxl.info Реклама на сайте