Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Неупруго ядерное рассеяние

Несохранение четности 158, 598 Нестабильные частицы 660 Неупругое рассеяние нейтронов 348 Неупругое ядерное рассеяние 258 Неустойчивость плазмы 482 Нечетно-нечетные ядра 47, 49 Нечетно-четные ядра 47 Носителя метод 29), 414—415 Нуклид 32  [c.717]

Часто упругое (Л + а) и неупругое А - а) ядерные рассеяния рассматриваются как частный случай ядерного взаимодействия, который отличается от других тем, что продукты реакции совпадают с частицами, вступающими в реакцию.  [c.262]


Два последних канала реакции в схеме (25.4) относятся к случаям неупругого А -f а) и упругого (А а) ядерного рассеяния. Это частные случаи ядерного взаимодействия, отличающиеся от других тем, что продукты реакции совпадают с частицами, вступающими в реакцию, причем при упругом рассеянии сохраняется не только тип ядра, но и его внутреннее состояние, а при неупругом рассеянии внутреннее состояние ядра изменяется (ядро переходит в возбужденное состояние).  [c.258]

По мере увеличения энергии нейтрона может возбуждаться или принимать участие в испускании каскадных у-квантов все большее число ядерных уровней. И для энергий нейтронов выше 4 Мэе спектр у-квантов при неупругом рассеянии нейтронов становится почти во всех случаях сплошным (кроме кислорода н углерода).  [c.30]

Однако для практического осуществления цепной реакции знания одной величины v совершенно недостаточно, так как судьба возникших нейтронов деления может быть неодинаковой из-за многообразия видов взаимодействия нейтронов с веществом, Даже если ядерная установка состоит только из одного делящегося вещества — горючего (что невозможно), вторичные нейтроны при взаимодействии с ядрами горючего не обязательно будут приводить к их делению нейтроны могут испытать неупругое рассеяние, радиационный захват или, наконец, они просто могут вылететь за пределы ядерной установки. Такие побочные и вредные процессы могут очень сильно затруднить размножение нейтронов или вообще сделать цепную реакцию невозможной.  [c.374]

При взаимодействии нейтронов тепловых и резонансных энергий с ядрами тяжелых нуклидов наиболее существенны упругое рассеяние и радиационный захват, для некоторых тяжелых нуклидов — деление. Если энергия нейтронов выше 1 МэВ, то возможными становятся другие ядерные реакции, такие как неупругое рассеяние, реакции с испусканием заряженных частиц.  [c.1102]

По вопросу о рассеянии трудно указать какую-либо достаточно полную книгу. Так, например, имеется много книг по атомной или ядерной физике, в которых рассматривается рассеяние, исследованное Резерфордом, однако лишь немногие из них рассматривают рассеяние частиц равной массы. Кроме того, ряд материалов по этому вопросу разбросан по отдельным статьям, относящимся главным образом к ядерным исследованиям. В третьем параграфе пятой части рекомендуемой книги проводится интересное исследование соударений, основанное только на теоремах о сохранении количества движения и энергии. Помимо этого, автор коротко останавливается на неупругих ударах. Особенно ценны упражнения к этому параграфу.  [c.108]


Упругое рассеяние нейтронов (п, п ) происходит на всех ядрах и при любых энергиях с заметной вероятностью. При ниже энергии первого возбуждённого уровня ядра-мишени возможны также неупругие экзо-термич. ядерные реакции радиац. захват нейтрона (п, у), реакции с вылетом протонов (п, р) и а-частиц (п, а), деление ядер (п, / .  [c.276]

Рассеяние нейтронов веществом принято классифицировать по след, признакам по изменению энергии нейтрона при рассеянии (упругое, неупругое) по характеру взаимодействия, ответственного за рассеяние (ядерное, магнитное) по степени когерентности нейтронных волн, рассеянных от множества центров, образующих изучаемое вещество. В общем случае интенсивность нейтронной волны, рассеянной малым объёмом вещества, можно представить в виде двух слагаемых, первое из к-рых пропорц. числу рассеивающих центров N (некогерентная составляющая), второе —  [c.284]

Механизмы Я. р. Характер взаимодействия налетающей частицы с ядром зависит от её кинетич. энергии, массы, заряда и др. характеристик. Он определяется теми степенями свободы ядра (ядер), к-рые возбуждаются в ходе столкновения. Различие между Я. р. включает и их разл. длительность. Если налетающая частица лишь касается ядра-мишени, а длительность столкновения приблизительно равна времени, необходимому для прохождения налетающей частицей расстояния, равного радиусу ядра-мишени (т. е. составляет 10 с), то такие Я. р. относят к классу прямых Я. р. Общим для всех прямых ядерных реакций является селективное возбуждение небольшого числа опре-дел. состояний (степеней свободы). В прямом процессе после 1-го столкновения налетающая частица имеет достаточную энергию, чтобы преодолеть ядерные силы притяжения, в область действия к-рых она попала. Примерами прямого взаимодействия являются неупругое рассеяние нейтронов (п, п ), реакции обмена зарядом, напр, (р, п). Сюда же относят процессы, когда налетающий нуклон и один из нуклонов ядра связываются, образуя дейтрон, к-рый вылетает, унося почти всю имеющуюся энергию [т. н. р е а к ц и я п о д х в а т а (р, d) ], или когда ядру передаётся нуклон из налетающей частицы (реакция срыва, напр, (d, р)]. Продукты прямых Я. р. летят преим. вперёд.  [c.668]

Осн. ядерно-физ. параметры существенно зависят от Энергии нейтронов, причём зависимости эти различные. Поэтому часто используется многогрупповой подход, в к-ром составляется система ур-ний диффузии для отдельных, примыкающих друг к другу энергетич. интервалов. Для каждого интервала берутся свои параметры, отвечающие соответствующим ср. значениям. Уход нейтронов в др. интервалы за счёт упругого и неупругого рассеяний учитывается как поглощение, приход — как вклад от независимых источников.  [c.682]

Если падающая и вылетающая частицы одной природы, но исходное и образующееся ядра обладают различной энергией, то говорят о неупругом рассеянии частиц. Если частицы отличаются по своей природе, то говорят о ядерном превращении. При ядерных столкновениях оба типа процессов играют существенную роль.  [c.149]

Итак, ядерные столкновения характеризуются сравнительно малым упругим рассеянием существенную роль играют процессы ядерных превращений и неупругого рассеяния, а также процессы излучения.  [c.149]

Взаимодействие заряженных частиц со средой. 1. Основной причиной потерь энергии заряженной частицей при прохождении через вещество являются столкновения ее с атомами этого вещества. Ввиду того что масса ядра всегда велика по сравнению с массой электронов атома, можно достаточно четко провести различие между электронными столкновениями , при которых энергия падающей частицы передается одному из электронов атома, в результате чего происходит возбуждение или ионизация атома (неупругое столкновение), и ядерными столкновениями , при которых импульс и кинетическая энергия частицы частично переходят в поступательное движение атома как целого (упругое столкновение). Повторяясь, эти ядерные столкновения приводят к мно-кратному рассеянию частиц в веществе.  [c.130]


Однако их использование выдвигает несколько требований к поддержанию ядерного кинетического процесса на должном уровне. Прежде всего, необходимо поддерживать высокую среднюю энергию нейтронов порядка нескольких сотен киловольт [161]. Здесь энергетический спектр нейтронов определяется свойствами горючего, сырья и конструкционных материалов по отношению к неупругому рассеянию нейтронов (большое сечение неупругого рассеяния имеет Кроме того, для работы ядерных устройств на быстрых  [c.308]

ЗАМЕДЛЕНИЕ НЕЙТРОНОВ — уменьшение кинетич. янергии S нейтронов в результате многократных столкновений их с атомными ядрами среды. Механизм 3. н. зависит от энергии нейтронов. Если S больше порога неупругого рассеяния нейтрона на ядре ( у 0,1 — 10 МэВ), то иейтроны расходуют энергию гл. обр. на возбуждение ядер п ядерные реакции, сопровождающиеся вылетом нейтронов. При одном соударенш нейтрон в среднем теряет значит, долю своей энергии и после небольшого числа столкновений (часто одного) переходят в область энергий Дальне11шее 3. н. происходит только за счёт упругого ядерного рассеяния.  [c.44]

Новый этап в теории ядра связан с развитием в 70— 80-х гг. квантовой хромодинамики (КХД) как теории сильных взаимодействий. Согласно этой теории, нуклоны и мезоны не являются йб гинно элементарными частицами, а состоят из более фундаментальных частиц кварков (фер-мионов) и глюонов (бозонов), взаимодействующих между собой. Последовательная теория КХД нуклона пока не построена. Поэтому рано говорить о теории ядра, основанной на КХД. Однако мн. представления КХД и кварковые модели адронов позволили описать ядерные реакции под воздействием частиц высоких энергий, сопровождающиеся большой передачей энергии и импульса. При этом ожидалось, что ядро должно вести себя как система свободных нуклонов и что трудно найти специфически ядерные эффекты КХД. Но такой эффект был обнаружен в 1982 Европ. мюонной коллаборацией (эффект ЕМС), Он заключается 8 значительном (до 15%) отличии сечения глубоко неупругого процесса рассеяния мюонов с энергиями порядка 100 ГэВ на ядре Fe (в расчёте на нуклон) от сечения на свободном нуклоне. До сих пор нет однозначной интерпретации этого явления, однако во всех существующих объяснениях решающую роль играют чисто ядерные эффекты. Эффект ЕМС оказался важным тестом для КХД моделей нуклона оказалось, что нек-рые модели не. могут описать  [c.659]

Гамма-излучение продуктов ядерных реакций. При поглощении нейтрона ядрами некоторых легких элементов возможно испускание не только у ванта (захватное у злучение) или нейтрона (неупругое рассеяние), но и заряженных частиц [реакции (п, р) и п, а)]. Обычо сечения этих реакций малы, и для защиты практически важны лишь реакции В ( , а) ГГ и Ы (п, а)№.. Для тепловых нейтронов в 94% случаев первая реакция идет С образованием возбужденного состояния Ы с энергией 0,478 Мэе. Это возбуждение снимается высвечиванием укванта такой же энергии.  [c.32]

В источниках больших размеров необходимо учитывать само-поглощение частиц и изменение их энергии в результате упругих и неупругих рассеяний. В связи с этим определение мощности излучения больших источников становится относительно сложным. Наиболее трудоемки расчеты утечек нейтронов и у-квантов из ядерного реактора. К моменту начала расчета тепловыделения в защите должен быть выполнен физический расчет реактора, Результаты его содержат координатные распределения плотностей потоков нейтронов в активной зоне и отражателе реактора. По ним можно найти плотность утечки нейтронов из активной зоны реактора и определить распределение источников у-кваитов в активной зоне. Плотность утечки нейтронов определяется как произведение коэффициента диффузии на производную от плотности потока на границе активной зоны. Распределение источников у-квантов в активной зоне реактора дает  [c.108]

Второй том посвящен физике элементарных частиц и их взаимодействиям. В книге рассмотрены нуклон-нуклонные взаимодействия при низких и высоких энергиях и свойства ядерных сил, изложена теория дейтона и элементы мезонной теории рассмотрены опыты по упругому и неупругому рассеянию электронов на ядрах и нуклонах и обсуждается проблема нуклон-ных форм-факторов подробно изложена физика лептонов, я-мезонов и странных частиц рассмотрена физика антинуклонов и других античастиц, а также антиядер изложены систематика частиц и резонансов на основе унитарной симметрии н цикл вопросов, связанных со свойствами слабых взаимодействий.  [c.6]

Результаты столкновения частицы с ядром могут быть различными поглощетгае частицы ядром с вылетом из него каких-нибудь ядерных частиц, упругое или неупругое рассеяние частицы и т. п. Иначе говоря, в результате взаимодействия может произойти переход системы двух взаимодействующих частиц в определенное конечное состояние. Каждому из таких конечных состояний соответствуют своя вероятность и свое парциальное значение сечения. Сечение, характеризующее вероятность перехода в одно из всех возможных переходов, равно сумме Е парциальных переходов.  [c.248]

Начиная с порога рождения пионов (Е ар 140 МэВ), восстановление ядерных сил по данным об упругом рассеянии осложняется неупругими каналами. С дальнейшим увеличением энергии роль неупругих каналов возрастает. При энергии 2—3 ГэВ полное сечение взаимодействия выходит примерно на константу, а сечение упругого рассеяния, оставаясь большим по величине, становится чисто дифракционным (см. гл. И, 6 и гл. IV, 9). В этой области энергии понятие ядерные силы теряет физический смысл нуклоны ведут себя как черные шары , поглощающие все падающие на них дебройлевские волны. Физика нуклон-нуклонных столкновений при таких энергиях рассмотрена в гл. VII, 7.  [c.170]


Опытное доказательство партонной структуры адронов в своей основе такое же, как резерфордовское доказательство ядерной структуры атома (см. гл. II, 1, п. 2). В опытах Резерфорда а-час-тицы с энергией 5 МэВ с заметной вероятностью отклоняются на большие углы, т. е. приобретают большие поперечные импульсы рт-Количественно это означает, что сечение daldpr убывает с ростом рт не по экспоненциальному, а по степенному закону (рис. 7.38, а). На этом рисунке показано, что точно такое же медленное спадание da/dpt с ростом рт происходит в инклюзивной реакции р + Р я + X с энергией сци = 52,7 ГэВ. В отличие от рассеяния а-час-тиц на ядрах, реакция р + р -> п + X (рис. 7.38, б) является глубоко неупругой. Это указывает на то, что протон состоит не из одного, а из нескольких партонов. Действительно, при передаче большого импульса одному из партонов протон в целом должен сильно возбуждаться, т. е. отбирать у другого протона большую энергию. Подчеркнем, что оборот состоит из здесь понимается не в смысле выполнения условий а), б) из 1, п. 4.  [c.344]

В предшествующем пункте мы видели, что для частиц, вылетающих из узлов решетки, направления вдоль кристаллографических осей и плос костей являются закрытыми. Поэтому если узлы монокристалла в резуль тате ядерных процессов (а-распад упругое и неупругое рассеяние про тонов) станут излучателями частиц то в направлениях осей и плоскостей должны наблюдаться своеобразные тени. Это явление было предсказано и обнаружено А. Ф. Тулиновым (1965) и названо им эффектом теней . На рис. 8.16 приведена система теней, которая создана на фотопластинке протонами, упруго рассеянными в монокристалле вольфрама. Фотографическая пластинка располагалась перпендикулярно оси [ПО]. Пятно в центре представляет собой тень от цепочек, выстроенных вдоль этой оси. Остальные точечные тени образованы цепочками других направлений. Наконец, темные линии представляют собой тени от кристаллических плоскостей.  [c.462]

Укажем, какого рода реакции взаимодействия с ядрами характерны для нейтронов разных энергий. Начнем с медленных нейтронов. Энергия этих нейтронов в ядерной шкале близка к нулю. Поэтому они не могут вызывать неупругого рассеяния и других эндотермических процессов. Действительно, например, первый возбужденный уровень у ядер обычно имеет энергию порядка десятка кэВ, а часто и больше. Ясно, что нейтрон с энергией меньше 10 кэВ рассеиваться с возбуждением ядра не может. Таким образом, для медленных нейтронов возможны только упругое рассеяние на ядрах и экзотермические реакции. Наиболее универсальной (идуш ей на всех ядрах, кроме аНе и гНе ) экзотермической нейтронно-ядерной реакцией является радиационный захват (п, у)  [c.534]

В приложениях теории замедления нейтронов к задачам, связанным с изучением состава вещества (например, в ядерной геофизике), сохраняется актуальность аналитического решения уравнения переноса нейтронов в однородной безграничной среде. К методике решения предъявляются жесткие требования много-компонентность среды и широкий диапазон изменения водородо-содержания, корректный учет неупругого рассеяния при высокой энергии нейтронов (до 14 МэВ), резонансной структуры сечений, угловой анизотропии, поглош.ения нейтронов в реакциях с вылетом заряженных частиц.  [c.292]

Для проведения массовых расчетов нейтронных параметров (4), (5), (7), времени замедления и его дисперсии, энергетических, пространственных и временных распределений составлена программа на основе использующейся в ядерной геофизике библиотеки нейтронных констант Б-2. При расчетах учитывают неупругое рассеяние и анизотропию упругого рассеяния в системе центра масс до 4-го порядка. Соответствующими ключами задается тип спектрального приближения (обобщения приближений Вигнера, Грюлинга — Гертцеля или Вайнберга — Вигнера). Тип спектрального приближения влияет на результаты расчетов тем заметнее, чем меньше водородосодержание среды. Разработанная программа предназначена для использования при составлении атласа нейтронных характеристик минералов и горных пород.  [c.295]

Из-за несжимаемости ядерного вещества измеиепия плотности при колебаниях формы сосредоточены в осковном па поверхности ядра. Равновесную плотность р(г) экспериментально можно определить по сечению упругого рассеяния электронов или протонов ядром. Сечение неупругого рассеяния с потерей частицей энергии, равной энергии фоноеа Д< —даёт вероятность возбуждения в ядре данной моды. Измерение угл. распределения неупруго рассеянных частиц позволяет определить амплитуду бр/.(г) (рис. 3).  [c.408]

Быстрые нейтроны способны испытывать на ядрах неупругое рассеяние, отдавая часть своей энергии на возбуждение ядра, и вызывать эндотермич. ядерные реакции, наир, (в, 2п), (п, пр), (п, а). Сечения этих реакций сравнительно плавно зависят от (выше характерного для них энергетич. порога), и их исследование позволяет изучать механизм распределения энергии возбуждения между составляющими ядро нуклонами (см. Ядерные реакции).  [c.278]

Лит. Шкловский В. И., Эфрос А. Л., Электрон-лыс свойства легированных полупроводников, М., 1979 Л и ф-шиц И. М., Г р е д е с к у л С. А., Пас тур Л. А., Введение в теорию неупорядоченных систем, М., 1982 Мотт Н., Дэвис а.. Электронные процессы в некристаллических веществах, пер, с англ., 2 изд., т. 1—2, М., 1982 3 а й м а н Д ж., Модели беспорядка, пер, с англ., М., 1982. А. Л. Эфрос. НБУПРУГИЕ ПРОЦЕССЫ (неупругое рассеяние) — столкновение частиц, сопровождающееся изменением их внутр. состояния, превращением в др. частицы или дополнит, рождением новых частиц. Н. п. являются, напр., возбуждение или ионизация атомов при их столкновении, ядерные реакции, превращения элементарных частиц при соударениях или множеств, рождение частиц. Для каждого типа (канала) Н. п. существует своя наименьшая (пороговая) энергия столкновения, начиная с к-рой возможно протекание данного процесса. Полная вероятность рассеяния при столкновении частиц (характеризуемая полным эфф. сечением рассеяния) складывается из вероятностей упругого рассеяния и Н. п. при этом между упругими и неупругими процессами существует связь, определяемая оптической теоремой. Герштейн.  [c.343]

Особенно важна Р. з. в случае проникающего нейтронного излучения. Прохождение нейтронов через защитный слой анализируют в осн. методом моментов, лю-тодом Монте-Карло и численного интегрирования ур-ния Больцмана. Ослабление потока быстрых нейтронов в защитном слое происходит из-за упругого (особенно в водородсодержащих веществах Н2О, парафин, Полиэтилен, гидриды металлов, бетон) и неупругого рассеяния нейтронов. На достаточно больших расстояниях от плоского источника ослабление пучка с расстоянием происходит экспоненциально. Р. э. ядер-ного реактора отличается те.ч, что поглощение в защитном слое одного вида частиц, напр. тепловых нейтронов, как правило, сопровождается возникновением у-излучения (ядерная реакция (п, у)]. Так, при поглощении теплового нейтрона ядром водорода образуется фотон с энергией 2,2 МэВ, а в случае более эфф. поглотителя (напр., d) на один захваченный нейтрон приходится более 10 фотонов. Оптимальная Р. з. реактора содержит водородсодержащяе вещества или графит, замедляющие быстрые нейтроны до тепловых энергий (см. Замедление нейтронов), и ядра, захватывающие тепловые нейтроны (В, Сс1, Gtl). На АЭС обычно используют бетон с добавками металлич. скрапа и дроби, эффективно ослабляющий как нейтронное, так и у-излу-чение.  [c.201]


С помощью Э. в. осуществляется взаимодействие положительно заряженных ядер и отрицательно заряженных электронов в атомах и молекулах. Тем самым Э. в. определяет (на основе законов квантовой механики) возможность устойчивого состояния таких микроскопич. систем. Размеры и существ, образом определяются величиной электрич. заряда электрона (так, Бора радиус равен где —масса электрона). Эл.-магн. природу имеют фотоэффект, явления ионизации и возбуждения атомов среды быстро движущимися заряж. частицами, процессы расщепления ядер фотонами, реакции фоторождеиия мезонов, радиационные (с испусканием фотонов) распады элементарных частиц и возбуждённых состояний ядер, упругое и неупругое рассеяние электронов и мюонов на ядерных мишенях и т. п.  [c.540]

Кроме упругого и неупругого рассеяний важный тип Я. р. представляют квазиупругие процессы (р, р ), ( Не, t) и др., когда вылетевшая частица по своим характеристикам (в т. ч. и энергии) мало отличается от падающей. Если настающая и вылетающая частицы обмениваются заря-д<йй, то в квазиупругих реакциях при энергиях 100 МэВ на нуклон наблюдаются т. н. зарядово-обменные резонансы. Исследования этих процессов дают информацию о взаимодействии нуклонов в ядрах и свойствах ядерных мезонных полей (см. Мезоны). При теоретич. описании квазиупругих процессов часто используют понятия оптики. В этом случае рассеяние частицы на ядре, состоящем из мн. нуклонов, трактуют как прохождение падающей волны через среду, оптич. свойства к-рой определяются потенциалом, параметры к-рого подбираются из условия соответствия расчётных и эксперим. данных. Аналоги таких оптич. явлений, как дифракция, также обнару-  [c.668]

В зависимости от величины прицельного параметра Ь (расстояния, на к-ром частица прошла бы мимо центра ядра-мишени, если бы взаимодействие отсутствовало) осуществляются Я. р. разного типа. При больших значениях прицельного параметра сталкивающиеся ядра А,, А 2 оказываются вне области действия ядерных сил—взаимодействие чисто кулоновское либо упругое рассеяние, либо кулоновское возбуждение ядра. При касательных столкновениях ядер А,, А2 Ь Ь ) идут только прямые реакции (рис. а). При ещё меньших значениях Ь b b b ) наблюдаются глубоко неупругие столкновения (рис. б). Для них характерны большая величина потерь кинетич. энергии, к-рая переходит во внутр. энергию возбуждения ядер, большие ширины массовых и зарядовых распределений. Кинетич. энергия ядер в выходном канале приближённо равна их энергии кулоновского отталкивания, Максимумы проинтегрированных по энергии и углу зарядовых распределений продуктов реакции располагаются около значений зарядов сталкивающихся ядер. Различным парциальным волнам, к-рые дают вклад в глубоко неупругие столкновения, отвечают разные времена взаимодействия и вследствие этого разные  [c.669]

Свойства нуклонов, связанных в ядре, могут отличаться от свойств свободных нуклонов. Как показывают эксперименты по глубоко неупругому рассеянию (см. Глубоко неупругие процессы) лептонов на ядрах, структурные ф-ции нуклонов в ядре, характеризующие распределение кварков по импульсам в нуклоне, отличаются от структурных ф-ций свободных нуклонов (эффект ЕМС—Европейской Мюонной Коялаборащш, ЦЕРН, 1982). Одно из возможных объяснений эффекта ЕМС основано на гипотезе об увеличении радиуса нуклона в ядре по сравнению со свободным нуклоном. 4) В ядрах периодически на время 10 —с появляются (виртуальные) мезоны, в т. ч. пи-мезоны. Исследование ненуклонных степеней свободы ядра—осн. предмет совр. исследований в релятивистской ядерной физике.  [c.685]

Чистый ковкий ванадий лишь сравнительно недавно стали получать в количествах нескольких сот килограммов в сутки, и возможности его применения в различных областях ен ,е недостаточно изучены. Ванадий представляет интерес как материал для ядерных реакторов на быстрых нейтронах, так как он обладает малым поперечным сечением захвата нейтронов, малым поперечным сечением неупругого рассеяния нейтронов, большой прочностью при повышенных температурах и высокой теплопроводностью. Ванадиевая фольга применяется в качестве подслоя между стальными и титановыми листами при упаковке чистого титана в стальную обаючку. Применение ванадия благодаря его уникальным свойствам в специальных областях вместо других металлов ограничивается его высокой стоимостью, и он применяется лишь в тех случаях, когда его нечем  [c.120]

Описанные эффекты можно объяснить повышением растворимости водорода, обусловленным увеличением количества возможных мест для размещения водорода в решетке (включая дефекты), либо повышенной абсорбцией водорода в приграничных областях возможна также комбинация этих эффектов. Исследование неупругого рассеяния нейтронов в образцах PdHo o4s и изучение спектров ядерного магнитного резонанса (ЯМР), PdHoj привели к выводу о том, что повышенная растворимость водорода в на-нокристаллическом палладии обусловлена абсорбционными свойствами границ [64].  [c.56]

В начальной стадии прохождения высокоэнергетического иона через вещество преобладает рассеяние на электронных оболочках атомов мишени. С уменьшением энергии иона доминируютдим оказывается вклад ядерного торможения. При использовании легких ионов потери энергии в упругих и неупругих взаимодействиях сопоставимы при энергии иона 10 —10 эВ. На рис. 3.2 приведены результаты расчета на ЭВМ энергетических потерь в ядерных и электронных взаимодействиях при бомбардировке титана ионами с энергией 40 кэВ. До тех пор пока энергия иона составляет несколько килоэлектронвольт и выше, расстояние между отдельными ядерными процессами достаточно велико, чтобы анализ взаимодействий можно было вести в рамках теории изолированных бинарных столкновений, т. е. серии случайных событий. При дальнейшем уменьшении энергии иона расстояние между отдельными столкновениями уменьшается настолько, что приближение бинарных столкновений становится неприменимым. Необ одим анализ соударений многих тел, развиваемый в рамках теории молекулярной динамики. Рассеяние энергии в неупругих взаимодействиях обычно рассматривается как непрерывный процесс, для описания которого используются аналитические зависимости ссчския от энергии иона.  [c.78]


Смотреть страницы где упоминается термин Неупруго ядерное рассеяние : [c.155]    [c.284]    [c.319]    [c.239]    [c.128]    [c.261]    [c.656]    [c.434]    [c.436]    [c.7]    [c.667]    [c.78]    [c.167]   
Основы ядерной физики (1969) -- [ c.88 , c.262 ]



ПОИСК



Неупругость

Рассеяние ядерное



© 2025 Mash-xxl.info Реклама на сайте