Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нуклон-нуклонные столкновения

Для рождения л-мезона при столкновении нуклона с ядром пороговая энергия меньше, чем при нуклон-нуклонном соударении. Это связано с тем, что нуклоны ядра находятся в движении. Взаимодействие падающего нуклона с нуклоном ядра, движущимся навстречу, происходит при большей энергии, чем с покоящимся.  [c.570]

Существуют различные толкования термина ядерные реакции . В самом широком смысле ядерной реакцией называется любой процесс, начинающийся столкновением двух, редко нескольких, микрочастиц (простых или сложных) и идущий, как правило, с участием сильных взаимодействий (см. гл. VII, 1). С этой точки зрения ядерными реакциями в числе прочих являются и такие процессы, как, например, упругое рассеяние нуклон — нуклон, рождение нового пиона при столкновении пиона с нуклоном и др. Этому довольно всеобъемлющему определению удовлетворяют и ядерные реакции в узком смысле этого слова, под которыми понимаются процессы, начинающиеся столкновением простой или сложной микрочастицы (нуклон, дейтрон, у-квант, пион,...) с ядром. Мы будем в основном придерживаться первого, более широкого понимания термина ядерные реакции , поскольку нас интересуют и ядра, и элементарные частицы.  [c.113]


Отсюда следует, что, скажем, при столкновении нуклон — нуклон могут идти с амплитудами одного и того же порядка как простейший процесс (рис. 7.16), так и более сложные процессы, как, например, приведенный на рис. 7.17, а.  [c.323]

Отсюда прямо следует, что наибольшим радиусом действия будут обладать силы, соответствующие механизму с наименьшими отклонениями масс виртуальных частиц от реальных. С другой стороны, из-за волновых свойств частица с импульсом р при столкновениях может чувствовать расстояния, не меньшие к == hip. Поэтому можно ожидать, что при низких энергиях столкновений основную роль будут играть механизмы с минимальным отклонением виртуальных масс от реальных, а с повышением энергии начнут вступать в игру механизмы, соответствующие более высоким значениям ДМ. Проиллюстрируем все это на примере взаимодействия нуклон — нуклон, которое мы подробно анализировали в гл. V с иных точек зрения. Часто можно встретить утверждение о том, что это взаимодействие осуществляется путем обмена пионом (см. рис. 7.16), подобно тому как взаимодействие электрон — электрон осуществляется путем обмена фотоном (см. рис. 7.12). Однако расчет нук-  [c.384]

Рис. 29. Зависимость средней множественности л-мезо-нов, образованных при нуклон-нуклонных столкновениях от кинетической энергии падающего нуклона. Вычисления проводились по формулам статистической теории с учетом изобарных состояний [23]. Рис. 29. <a href="/info/233993">Зависимость средней</a> множественности л-мезо-нов, образованных при нуклон-нуклонных столкновениях от <a href="/info/6470">кинетической энергии</a> падающего нуклона. Вычисления проводились по формулам <a href="/info/543982">статистической теории</a> с учетом изобарных состояний [23].
Кинематические критерии нуклон-нуклонных столкновений  [c.104]

Нуклон-нуклонные столкновения  [c.88]

Из таблицы видно, что процессы рождения п-мезонов в нуклон-нуклонных столкновениях возможны только В состояниях с суммарным изотопическим спином Т = 1 для случаев столкновения двух протонов или двух нейтронов и в состояниях с Т = 0 и Т=1 при взаимодействиях нейтрона с протоном.  [c.232]

Однако рассеяние заряженных частиц на электронах атомной оболочки часто сопровождается ионизацией атомов, приводит к потерям энергии и торможению частицы. При столкновении нуклонов или я-мезонов с нуклонами, как увидим ниже (гл. IX), возможно рождение новых частиц, изменение структуры и состояния сталкивающихся частиц. Такие процессы называются неупругим рассеянием или неупругими столкновениями.  [c.27]


При этом в одном и том же состоянии (на одном энергетическом уровне) может находиться не более двух протонов, различающихся лишь направлением спина. Это же относится и к нейтронам. Протоны и нейтроны в ядре обладают своим собственным набором воз-можны.ч состояний. Такая система микрочастиц, подчиняющаяся принципу Паули и полностью заполняющая все низшие энергетические уровни, называется вырожденным ферми-газом. В вырожденном ферми-газе, несмотря на сильное ядерное взаимодействие между нуклонами, столкновения нуклонов запрещены, и они ведут себя так, как если бы взаимодействие между ними было слабым. В самом деле, нуклон I мог бы испытать столкновение с некоторым нуклоном 2 и передать последнему часть своей энергии и импульса. При этом нуклон 2 перешел бы на более высокий свободный энергетический уровень, а нуклон У в соответствии с законом сохранении энергии должен был бы перейти на более низкий энергетический уровень (рис. 55). Однако все нижележащие уровни согласно принципу Паули имеют ограниченное число мест, и все они заняты, поэтому нуклон 1 не может перейти на занятые нижние уровни. Это означает, что соударения нуклона / с нуклоном 2 не произойдет, говорят, что оно запрещено принципом Паули. Таким образом, частицы вырожденного ферми-газа будут очень редко испытывать столкновения между собой, т. е. вырожденный ферми-газ в этом отношении напоминает разреженный газ с редким столкновением частиц. Эти соображения и дают основание для аналогии ядра с вырожденным ферми-газом.  [c.179]

Накопление большого нового экспериментального материала привело к более убедительному доказательству существования магических чисел. Капельная модель ядра оказалась не в состоянии объяснить этот новый экспериментальный материал. Поэтому в 1947—1948 гг. снова возобновляется интенсивная разработка модели оболочек. Примерно в эти годы было выдвинуто предположение о том, что учет принципа Паули может привести к резкому уменьшению числа столкновений нуклонов в ядре ( 30), а это дает некоторое основание для того, чтобы рассматривать движение нуклонов как независимое движение каждого нуклона, обладающего большой длиной свободного пробега.  [c.183]

При достаточно большой энергии нейтронов вероятность (сечение) реакции увеличивается. Однако экспериментально измеренные сечения оказываются больше рассчитанных по теории составного ядра. По современным воззрениям это свидетельствует о том, что реакции (п, р) и (п, а) протекают не только путем образования составного ядра. В сравнительно небольшом числе случаев налетающая частица при столкновении с нуклонами ядра выбивает протон из ядра без образования составного ядра.  [c.283]

В соответствии с квантовой механикой нуклоны, двигаясь в поле этого потенциала, могут находиться в различных энергетических состояниях. При этом основному состоянию ядра соответствует полное заполнение всех, нижних уровней. Процесс столкновения двух нуклонов сводится <к перераспределению между ними энергии, в результате чего один из них должен потерять часть своей энергии и перейти в более низкое энергетическое состояние. Но это невозможно, так как все наиболее низкие энергетические уровни уже заняты и на них, согласно принципу Паули, другие нуклоны поместить нельзя. В связи с этим средняя длина свободного пробега нуклона от одного столкновения до другого оказывается значительно больше, чем это следует из формулы (14. 3), и нуклоны в ядре можно считать практически невзаимодействующими .  [c.191]

Из таблицы видно, что процессы рождения я-мезонов в нук-лон-нуклонных столкновениях возможны только в состояниях  [c.586]

Часто, когда говорят об отличии антипротона от протона или антинейтрона от нейтрона, этим и ограничиваются. Это неверно. Главное свойство, отличающее нуклоны от антинуклонов, — это способность их к взаимной аннигиляции, т. е. к превращению в другие частицы при столкновении между собой,  [c.621]

Если время взаимодействия налетающей частицы с ядром не превышает характерного ядерного времени, то механизм реакции существенно меняется. Важнейшую роль здесь играют прямые процессы, в которых налетающая частица эффективно сталкивается с одним-двумя нуклонами ядра, не затрагивая остальных. Например, реакция (р, п) может произойти в результате столкновения протона с одним нейтроном ядра.  [c.133]


Не исключено, что ядерные силы сильно зависят от скоростей, т. е. от кинетических энергий сталкивающихся частиц. Как мы уже говорили, для опытного изучения этой зависимости необходимо использовать данные о столкновении более чем двух нуклонов.  [c.200]

Значительно более глубокой и содержательной является мезонная теория ядерных сил (Г. Юкава, 1935). Если феноменологический подход можно сравнивать с открытием закона Кулона, то историческим образом для мезонной теории ядерных сил может служить система уравнений Максвелла, из которой можно получить не только закон взаимодействия двух зарядов, но и излучение радиоволн, интерференцию света, действие электрического тока на магниты. Точно так же к мезонной теории относится не только получение закона взаимодействия двух нуклонов, но и такие вопросы, как рождение пи-мезонов, или, как их теперь чаще называют, пионов при нуклонных столкновениях, а также законы взаимодействия пионов с нуклонами и друг с другом.  [c.201]

Процессы образования аити-нуклонов в нуклон-нуклонных столкновениях мож ем записать  [c.374]

Начиная с порога рождения пионов (Е ар 140 МэВ), восстановление ядерных сил по данным об упругом рассеянии осложняется неупругими каналами. С дальнейшим увеличением энергии роль неупругих каналов возрастает. При энергии 2—3 ГэВ полное сечение взаимодействия выходит примерно на константу, а сечение упругого рассеяния, оставаясь большим по величине, становится чисто дифракционным (см. гл. И, 6 и гл. IV, 9). В этой области энергии понятие ядерные силы теряет физический смысл нуклоны ведут себя как черные шары , поглощающие все падающие на них дебройлевские волны. Физика нуклон-нуклонных столкновений при таких энергиях рассмотрена в гл. VII, 7.  [c.170]

Ядерные силы, по крайней мере частично, носят обменный характер. Обменность является существенно квантовым свойством, благодаря которому нуклоны при столкновении могут передавать друг другу свои заряды, проекции спинов и даже координаты. Существование обменных сил прямо следует из опытов по рассеянию нейтронов высоких энергий на протонах ( 5).  [c.199]

В заключение этого параграфа рассмотрим с помощью только что изложенных правил генеалогическое дерево i -гиперона. Эта частица имеет странность 5 = —3. Поэтому ее удобнее получать в реакции с участием хотя бы одной частицы отрицательной странности. Но все странные частицы нестабильны, так что под рукой их нет. И начинать приходится с бомбардировки мишени из обычного (т. е. содержащего протоны и нейтроны) вещества пучком протонов высокой энергии. При столкновении нуклон — нуклон могут рождаться пары каон — антикаон. Например,  [c.313]

Например, то же взаимодействие нуклон — нуклон, если оно происходит на сравнительно больших расстояниях (так называемые периферические столкновения), будет в основном идти через одно-пионный обмен (см. рис. 7.16), так как для узла рис. 7.15 Дт = т , а для всех других возможных виртуальных узлов величина Дш равна или больше 2т . Экспериментально периферические столкновения можно изучать, наблюдая нуклон-нуклонное рассеяние на малые углы. Таким образом, можно утверждать, что при рассеянии нуклон — нуклон на малые углы основную роль играет последовательность виртуальных процессов, изображаемая диаграммой рис. 7.16. По тем же причинам фоторождение пионов вблизи порога в основном идет в соответствии с диаграммой рис. 7.7. Кстати, именно в экспериментах по фоторождению пионов была впервые измерена константа связи снльн-  [c.325]

На рис. 7.41 приведена только половина известных барионов. Имеется еще точно такое количество антибарионов — частиц с такими же массами и спинами, но с противоположными зарядами всех видов. Антибарионы получаются при столкновениях нуклон — нуклон достаточно высоких энергий. К настоящему времени получены антипротон, антинейтрон и несколько антигиперонов. Однако существование всех остальных антибарионов не вызывает сомнений. Времена жизни барионов и соответствующих антибарионов совпадают. Поэтому, в частности, антипротон сам по себе стабилен. Однако, сталкиваясь с атомом какого-либо вещества, антипротон притягивается ядром (его электрический заряд отрицательный ) и аннигилирует в нем. При аннигиляции нуклона с антинуклоном рождается несколько пионов (в среднем около пяти).  [c.371]

К. л. были предсказаны А. М. Балдиным и открыты окснерлмснтально на синхрофазотроне в Дубне в 1971. Было обнаружено, что ядро дейтерия с энергией 5 ГэВ на нуклон при столкновении с ядром углерода с вероятностью песк. процентов порождает пионы с энергией до 8 ГэВ (в лабораторной системе координат).  [c.535]

Составная природа нуклонов проявляется лишь в столкновениях с большой передачей импульса и энергии. При небольших энергиях возбуждения такие столкновения в ядре редки. Поэтому при описании Я. а. и ядерных реакций, происходящих при не слишком больших энергиях ( 1 ГэВ на нуклон), в первом приближении можно считать, что ядра состоят из вполне определённого числа нуклонов, движущихся с нерелятивистскими скоростями ( /с 0,1). Кварки заперты каждый в своём нуклоне. Нуклоны не теряют своей индивидуальности и обладают примерно такими же свойствами, как и в свободном состоянии (за нек-рыми исключениями, см. ниже). Протонно-нейтронная картина строения Я. а. является приближённой и нарушается при высоких энергиях возбуждения и в процессах с большой передачей импульса и энергии.  [c.685]

Столкновение первичных протонов и ядер более высокой энергии ( 10 -4-10 2 эв) с ядрами N и О, входящими в состав воздуха, сопровождается множественным рождением новых частиц высокой энергии. При этом образуются преимущественно я-мезоны, а также нуклоны, нуклон-антинуклонные пары, гипероны и К-мезоны.  [c.285]

Рис. 25. Зависимость максимального угла тах нуклона отдачи в нуклон-нуклонных столкновениях больших энергий с образованием N л-мезонов от полной энергии падающего нуклона. Кривые вычислены Н. Г. Бригер. Рис. 25. Зависимость максимального угла тах нуклона отдачи в нуклон-нуклонных столкновениях больших энергий с образованием N л-мезонов от <a href="/info/16096">полной энергии</a> падающего нуклона. Кривые вычислены Н. Г. Бригер.

Другой важный метод создания систем в нестабильных состояниях состоит в возбуждении при столкновении. Примерами, иллюстрирующими этот метод, являются возбуждения атомов в газах и образование нестабильных частиц при нуклон-нуклонных столкновениях. Рассмотрим последний пример более подробно. Для простоты будем считать, что воображаемый эксперимент проводится на встречных протонных пучках в системе центра масс, и будем игнорировать степени свободы, связанные со спином. Если протоны образуются при одинаковых условиях и являются моноэнергетическими, то образующиеся нестабильные фрагменты, рассматриваемые не как пары, триплеты и т. д., а по отдельности, будут находиться в смешанных состояниях, состоящих из люноэнергетических состояний с весами, соответствующими энергетическому спектру распада. При этом для странных частиц экспоненциальный закон распада наблюдаться не будет. Действительно, поддающимися наблюдению являются здесь только стабильные частицы. Любое нестабильное состояние должно быть когерентной суперпозицией состояний с различной энергией. Нестабильные частицы могут образоваться только в том случае, когда когерентная ширина исходного пучка по энергии отлична от нуля. Конечно, любой пучок частиц, созданный в ускорителе, имеет такую ширину. Это следует уже из того, что пучок является импульсным. Однако из приведенного выше рассмотрения видно, что нестабильные состояния, ширина которых больше когерентной ширины исходного пучка, образоваться не могут если все же они получены, то для них не будет наблюдаться четкий экспоненциальный закон распада.  [c.553]

С точки зрения сохранения энергии и импульса я°-мезон был создан в этом акте столкновения до этого столкновения он не существовал. Энергия для катализации создания л°-мезона была доставлена нейтроном и протоном. я -мезон может рассматриваться как созданный из вакуума — соверщенно аналогично тому, как электронно-позитронная пара создается гамма-лучом. Подробное описание механизма такого рода процессов возможно только на языке релятивистской квантовой теории. Взаимодействие между пионами (я-мезонами) и нуклонами (протонами и нейтронами) таково, что, если бы, пользуясь идеальным  [c.428]

В 1947 г. английские ученые С. Поуэлл, Г. Оккиалини и другие в составе космических лучей открыли я-мезоны (я-мезон — первичный мезон, который, распадаясь, дает мюоны 10). я-мезоны имеют заряд + е и — е, а массы 273,2 т,,, нулевой спин и время жизни 2,55-10 сек.. Несколько позднее (1950) был открыт нейтральный я-мезон (яо), с массой 264,2 т , нулевым спином и временем жизни <2,1-10 сек. В настоящее время известно три сорта я-мезонов я , я ,, они интенсивно взаимодействуют с нуклонами, легко рождаются при столкновении нуклонов с ядрами, т. е. являются ядерно-активными. В наше время считается общепринятым, что я-мезоны являются квантами ядерного поля, которые предсказал X. Юкава, и что они ответственны за основную часть ядерных сил ( 27).  [c.339]

Сильные взаимодействия имеют место между нуклонами, антинуклонами, гиперонами, антигиперонами, между л"--, я -, / -мезонами. Сильные взаимодействия не имеют места для леп-тонов. Сильными взаимодействиями обусловлены связи нуклонов в ядре (почему они и называются ядерными взаимодействиями) и процессы образования гиперонов и мезонов при ядерных столкновениях. Основная часть ядерного взаимодействия (ядерных сил), по-видимому, обусловлена л-мезонным обменом между нуклонами в ядре. Поэтому сильное взаимодействие называется также я-ме-зонным взаимодействием. Эти взаимодействия характеризуются следующими законами сохранения электрического заряда, барион-ного заряда, энергии, импульса, спина (момента количества движения), изотопического спина Т и его проекции странности (вытекает из законов сохранения Т , электрического и барионного зарядов), четности.  [c.360]

Это рассуждение справедливо только по отношению к нуклонам, находящимся в невозбужденном ядре. Для нуклона, летевшего в ядро извне и возбудившего ядро на энергию, равную или большую (ew —энергия связи нуклона), столкновения стаиовятся возможными из-за наличия свободных вышерасположенных уровней. Здесь формула (14.3) верна, а модель ядерных оболочек неприменима.  [c.191]

Из этого ура1внения следует, что образование антинуклона может происходить только вместе с нуклоном, подобно тому как при рождении (е+—е )-пары позитрон образуется только вместе с электроном. При этом по отношению к процессам рождения и аннигиляции оба типа нуклонов (р и п) и антинуклонов р и Я) выступают симметричным образом. Это означает, что процесс аннигиляции наблюдается при столкновении любого нуклона (р или п) с любым антинуклоном р или п). То же относится и к процессу их совместного образования. (Разумеется, при составлении соответствующих уравнений надо учитывать закон сохранения электрического заряда.)  [c.217]


Смотреть страницы где упоминается термин Нуклон-нуклонные столкновения : [c.201]    [c.306]    [c.261]    [c.619]    [c.242]    [c.242]    [c.185]    [c.198]    [c.695]    [c.623]    [c.153]    [c.153]    [c.155]    [c.202]   
Смотреть главы в:

Введение в экспериментальную физику частиц Изд2  -> Нуклон-нуклонные столкновения



ПОИСК



Нуклон

Пион-нуклонные столкновения. Резонансы

Столкновения



© 2025 Mash-xxl.info Реклама на сайте