Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Квантовое число вращательное колебательное

Энергию симметричного волчка можно рассматривать как сумму колебательной и вращательной энергий. Для основной колебательной моды колебательная энергия определяется как е (v) = hv v Vu). где v — колебательное квантовое число. Каждый колебательный уровень состоит из ряда вращательных уровней (рис. 3.1).  [c.131]

Гис. 1. Схема уровней энерпш двух-атомной молекулы а и о — электронные уровни, V и V" — квантовые числа колебательных уровней, и J" — квантовые числа вращательных уровней.  [c.290]


Интенсивность отдельной линии вращательного спектра, излучаемой в условиях оптически тонкого слоя при переходе с верхнего состояния с колебательным и вращательным квантовыми числами ь и ] на нижнее с квантовыми числами и и У", выражается произведением величины энергии кванта с/гг на заселенность верхнего уровня перехода и на вероятность перехода Л  [c.245]

Из рис, 3.3 видно, что уровни колебательной энергии не зависят от квантового числа V (номера), а уровни вращательной энергии зависят от квантового числа J расстояние между уровнями  [c.32]

Энергия, которой может располагать совокупность атомов,в заданном интервале принимает только определенный набор дискретных значений. Для каждого элемента имеется свой набор таких значений энергии. Энергетические состояния атома или совокупности атомов можно характеризовать либо квантовыми числами,-либо значениями энергии. Степени свободы (физические) — вращательная, колебательная, спин и т. д. — характеризуются квантовыми числами. Не существует систем с идентичными квантовыми числами. Это, в частности, означает, что в одном и том же энергетическом состоянии могут находиться только два электрона и только при условии, что их спины имеют противоположную ориентацию.  [c.96]

Рис. 1. Схема уровней энергии двухатомной молекулы о и б — электронные уровни г) и ь" — колебательные квантовые числа J и J — вращательные квантовые числа. Рис. 1. Схема уровней энергии <a href="/info/22546">двухатомной молекулы</a> о и б — электронные уровни г) и ь" — <a href="/info/265468">колебательные квантовые числа</a> J и J — вращательные квантовые числа.
Второй поправкой к простейшей модели молекулы является учет взаимодействие колебания с вращением. При увеличении амплитуды колебаний молекула растягивается, момент инерции ее возрастает. Поэто.му вращательная энергия зависит не только от вращательного квантового числа /, но н от колебательного квантового числа айв следующем приближении выразится так  [c.66]

Частотный спектр генерации СОг-лазера имеет достаточно сложный вид. Причиной этого является наличие тонкой структуры колебательных уровней, обусловленной существованием еще одной степени свободы молекулы СОг-вращения. Из-за вращения молекулы каждый изображенный на рис. 4.1 колебательный уровень распадается на большое число вращательных подуровней, характеризуемых квантовым числом / и отстоящих друг от друга на величину энергии А вр, ооь юо, kT . В результате интенсивного обмена энергий между вращательной и поступательной степенями свободы молекул в СОг устанавливается больцмановское распределение частиц по вращательным состояниям, описываемое урав-  [c.120]


Согласно правилам отбора в молекуле СО2 переходы между различными колебательными уровнями возможны при изменении вращательного квантового числа на А/= — 1 / -ветвь генерации) или А/= + 1 (Я-ветвь генерации)  [c.121]

Выясним теперь, при каких условиях такое приближение допустимо. Пусть энергия частицы газа зависит от квантового числа п, причем смысл этого числа и характер зависимости е(п) определяется конкретно поставленной задачей. Мы увидим в дальнейшем, что для поступательного, вращательного и колебательного движений и физический смысл числа п, и характер зависимости е(п) различны. Очевидно, квантованием энергии можно пренебречь, если расстояния между соседними энергетическими уровнями малы по сравнению с самой энергией.  [c.198]

До сих пор в нашем рассмотрении мы пренебрегали тем, что в действительности каждому колебательному уровню соответствует целый набор близко расположенных вращательных уровней. Если учесть это обстоятельство, то станет ясно, что поглощение происходит с переходом с вращательного уровня нижнего колебательного состояния на некоторый вращательный уровень верхнего колебательного состояния. Правила отбора для двухатомных или линейных трехатомных молекул обычно требуют, чтобы А/ = 1 (Л/ = J" — I, где J w J — вращательные квантовые числа нижнего и верхнего колебательных состояний). Например, в случае вращательно-колебательного перехода данный колебательный переход (скажем, переход v" = 0 v =l на рис. 2.24), который в отсутствие вращения давал бы только одну линию на частоте vo, на самом деле состоит из двух групп линий (рис. 2.28). Первая группа, имеющая более низкие ча стоты, называется Р-ветвью и соответствует переходу с А/ = I Частоты переходов в этой ветви меньше vo, так как вращатель ная энергия на верхнем уровне ниже, чем на нижнем (см рис. 2.26). Вторая группа с более высокими частотами называ  [c.98]

Рис. 2.28. Переходы между двумя колебательными уровнями с учетом вращательной структуры. В отсутствие вращательной энергии этот переход должен был бы давать одну линию с центром в точке Vo. На самом деле он состоит из двух групп линий одной, называемой Р-ветвью и соответствующей переходам с изменением вращательного квантового числа на Д/ = +1. и другой, называемой / -ветвью, соответствующей изменению вращательного квантового числа на Д/ = —1. Рис. 2.28. Переходы между двумя колебательными уровнями с учетом вращательной структуры. В отсутствие <a href="/info/144611">вращательной энергии</a> этот переход должен был бы давать одну линию с центром в точке Vo. На самом деле он состоит из двух групп линий одной, называемой Р-ветвью и соответствующей переходам с изменением <a href="/info/127382">вращательного квантового числа</a> на Д/ = +1. и другой, называемой / -ветвью, соответствующей изменению вращательного квантового числа на Д/ = —1.
Каждый из колебательных уровней молекулы СО2 расщеплен на вращательные подуровни, которые на рис. 4.9 не показаны. Вращательная энергия молекулы определяется вращательным квантовым числом /. Согласно правилу отбора, излучательные переходы между вращательными подуровнями различных колебательных уровней возможны только с изменением / на единицу. Переходы типа обозначаются Р(/), а переходы j- j—1 имеют обозна-  [c.174]

Правила отбора по колебательным и вращательным квантовым числам для разрешенных кориолисовых взаимодействий можно получить аналогичным образом из формул, приведенных в табл. 8.1—8.3. Из (11.77) видно, что один из ненулевых членов  [c.330]

В случае молекул с низким барьером торсионная структура колебательных состояний выглядит как дополнительная вращательная структура. Поэтому для интерпретации вращательно-торсионной структуры колебательных переходов требуется знание правил отбора по квантовым числам Ка, Кс и Ki. В инфракрасном спектре разрешены переходы, удовлетворяющие условию симметрии  [c.400]

Численные значения поступательных, вращательных, колебательных и электронных энергетических уровней, определенных по спектроскопическим данным или вычисленных с помощью квантовой механики, обычно выражают относительно самого низкого или основного уровня молекулы. Если такие значения используют для вычисления внутренней энергии, полученная внутренняя энергия представляет собой избыточную энергию относительно основного состояния системы, когда все частицы находятся на самом низком энергетическом уровне при температуое абсолютного нуля. Для процессов, в которых общее число частиц данных молекулярных объектов остается постоянным, изменения внутренней энергии могут быть вычислены без сведений об основном состоянии. Однако если число частиц данных молекулярных объектов изменяется, как в химической реакции, то для вычисления изменения внутренней энергии процесса должна быть известна разность между основными состояниями различных соединений.  [c.115]


В табл. 34.2 используется стандартная система обозначений молекулярной спектроскопии. Колебательновращательная полоса — совокупность переходов из верхнего колебательного состояния (vi, V2,. .., и )ворзс на нижнее (У[, 2,. ... г>п)нижн, где v,, vi,. .., Уп — квантовые числа для п нормальных колебаний молекулы. Квантовые числа У , V2, из для трехатомной молекулы относятся соответственно к симметричному валентному, деформационному и асимметричному валентному колебаниям. Чисто вращательные переходы — переходы между уровнями одного н того же электронного и колебательного состояния, различающиеся вращательным квантовым числом.  [c.896]

Полные электронно-колебательно-вращательные (рови-бронные) уровни энергии М. классифицируют по неприводимым представлениям (типам симметрии) группы симметрии молекулы. Разделение полного движения на отд. виды даёт возможность ввести приближённые квантовые числа для классификации уровней М. В большинстве случаев эти числа связаны с собств. значениями квадратов и г-ггроекцин соответствующих угл. моментов, В спектроскопии двухатомных М. используются угл. моменты и их квантовые числа, приведённые в табл.  [c.186]

Множитель (2/+1) перед экспонентой возникает вследствие вырождения уровня, поскольку вращательный уровень с квантовым числом / имеет (2/+ 1)-кратное вырождение. Рассматривая в качестве примера В = 0,5 см- и полагая кТ — 209 см (комнатная температура), можно показать, что распределение населенности между различными вращательными подуровнями данного колебательного уровня (скажем, основного состояния) соответствует рис. 2.27. Заметим, что благодаря наличию в выражении (2.177) множителя (2/+1) более всего заселен не основной уровень (7 = 0), а тот, вращательное квантовое число / которого, как нетрудно показать из выражения (2.177), удовлетворяет условию 2/ + 1 = 2kTIB) / .  [c.96]

В соответствии с вышеизложенным переходы между энергетическими уровнями можно разделить на три типа 1) Переходы между двумя вращательно-колебательными уровнями различных электронных состояний, которые называются виб-ронными переходами от сокращения английских слов vibrational (колебательный) и ele troni (электронный). В целом все они попадают в ближний УФ диапазон спектра. 2) Переходы между двумя вращательно-колебательными уровнями одного и того же электронного состояния (вращательно-колебательные переходы)—в большинстве своем они попадают в ближний и средний ИК диапазоны спектра. 3) Переходы между двумя вращательными уровнями одного колебательного состояния [например, состояния с квантовым колебательным числом у = О, основного электронного состояния (чисто вращательные переходы)], которые приходятся на дальнюю ИК-область спектра. В дальнейшем мы рассмотрим колебательные и вращательно-колебательные переходы, поскольку в наиболее широко применяемых молекулярных газовых лазерах генерация осуществляется именно на этих двух типах переходов. Существуют также лазеры, работающие на чисто вращательных переходах и при этом генерирующие в дальнем ИК диапазоне спектра, но область их использования относительно ограничена (спектроскопическими приложениями).  [c.96]

Здесь 7П > обозначает полный набор квантовых чисел, характеризующих состояние (или уровень ) одной молекулы . Обычно / > содержит кошюненты импульса центра масс, колебательные и вращательные квантовые числа, спин и т. д. В выражении (5.2.2) имеется N независимых суммирований по всем состояниям каждой частицы. Это выражение, однако, неправильно, так как в нем завышено число состояний. Действительно, заданное распределение частиц по различным одночастичным состояниям тп , характеризуемое числами заполнения га , может быть получено JV /raft rai . . . способами путём перестановок частиц между собой. В силу квантовомеханического принципа неразличимости частиц (см. разд. 1.4) все эти конфигурации эквивалентны и должны рассматриваться как одна-единственная конфигурация. Следовательно, правильное выражение для статистической суммы имеет вид  [c.171]

Рассмотрена классификация ровиброниых волновых функций молекулы по типам симметрии группы МС с использованием приближений жесткого волчка, гармонического осциллятора, ЛКАОМО для вращательно-колебательных и электронных орбитальных состояний. Определены также типы симметрии электронных спиновых функций для случаев Гунда (а) и (б) и введено понятие спиновых двойных групп для групп МС. Дано объяснение, почему классификация вращательных волновых функций с полуцелыми вращательными квантовыми числами требует использования спиновой двойной группы. С использованием группы МС определены типы симметрии ядерных спиновых функций, полной внутренней волновой функции Ф, а также ядерные спиновые статистические веса энергетических уровней.  [c.293]

Для вращательных состояний молекулы типа жесткого симметричного волчка число К является точным квантовым числом, однако для колебательно-вращательных или ровибронных состояний оно является приближенным квантовым числом. Это квантовое число теряет смысл за счет эффектов центробежного искажения и кориолисова взаимодействия. Так как гамильтониан молекулы коммутирует с операцией обращения времени (которая переводит любую волновую функцию в ее комплексносопряженную см. гл. 6), каждая собственная функция всегда содержит суммы или разность собственных функций с k = К н k == —К. Поэтому энергетические уровни могут быть классифицированы по значениям положительного квантового числа К, а не квантового числа k, получающего положительные и отрицательные значения. Квантовое число J является приближенным для полных внутренних состояний Е и теряет смысл, например, при учете взаимодействия Япзг, зависящего от ядерного спина. Однако число F является точным квантовым числом для изолированной молекулы в свободном пространстве.  [c.309]


Такие возмущения в пределах одного электронного состоя-пия возникают за счет членов, входящих в выражения (11.20) — (11.22). В базисе волновых функций жесткого волчка и гармонического осциллятора члены возмущения сменшвают состояния в соответствии с определенными правилами отбора по колебательным квантовым числам Vi, U (для дважды вырожденных колебаний), п,- (для трижды вырожденных колебаний) и по вра-нштсльным квантовым числам К (для симметричных волчков) или Ка и Кс (для асимметричных волчков). Мы рассмотрим здесь эти правила отбора, а также возмущения, при учете которых приближенные квантовые числа теряют смысл. Отметим, что при учете этих возмущений сохраняются только колебательно-вращательные типы симметрии Trv  [c.329]

Операторы центробежного искажения (11.21) смешивают состояния одинакового, колебательно-вращательного типа симметрии Frv, но с различными значениями колебательных и вращательных квантовых чисел. Правила отбора по колебательным и вращательным квантовым числам могут быть получены из формул, приведенных в табл. 8.1—8.3. Например, один из членов в операторе центробежного искажения молекулы H3F [см. (11.68) ] имеет вид  [c.330]

В отсутствие резонансов вычисление поправок на центробежное искажение и кориолисово взаимодействие методом возмущений приводит к эффективному вращательному гамильтониану или уотсониану [113, 118, 133, 134, 136 ], в котором последовательные члены содержат вторую, четвертую, шестую и т. д. степени компонент оператора углового момента. Эффективный вращательный гамильтоииан коммутирует с операциями молекулярной группы вращений и в отсутствие резонансов между состояниями, вызываемых центробежным искажением или корнолисовым взаимодействием, число К остается приближенным квантовым числом для симметричного волчка, а неприводимые представления группы D2 дают хорошую классификацию уровней асимметричного волчка. Для молекул типа сферического волчка центробежное искажение и кориолисово взаимодействие приводят к важному явлеиию частичного расщепления (2/+ 1)-кратного вырождения по k каждого уровня. Максимальное число расщепленных компонентов равно полному числу неприводимых представлений группы МС, входящих в приводимое представление Frv. Например, вращательный уровень с / = 18 основного колебательного состояния молекулы метана состоит из уровней с различными типами симметрии группы МС (см. табл. 10.14)  [c.331]

Приближенные квантовые число G и ( 1). Центробежное искажение и кориолисово взаимодействие в симметричном волчке могут смешивать состояния с различными значениями К [см., например, правила отбора (11.105), (11.108)]. Если эти взаимодействия сильные, то число /С теряет смысл даже как приближенное квантовое число. Однако па основании принципов симметрии можно ввести другие квантовые числа G и Gv для классификации колебательно-вращательных состояний молекулы типа симл етричного волчка [54]. Введем эти квантовые числа для частного случая молекулы СНзР. Полную колебательно-вращательную волновую функцию в нулевом приближении можно записать в виде  [c.332]

Vi = 2 уровню с /4 = О не приписывается символ ( /), та как этот уровень расщепляется кориолисовым взаимодействием первого порядка. В произвольном колебательном состоянии типа Е молекулы H3F колебательно-вращательные типы симметрии (+/)- и (—/)-уровией зависят от значения К, как это показано в табл. 11.8. Следует отметить, что отнесение чисел ( 0 к уровням определяется именно типами симметрии МС, а не относительными знаками квантовых чисел k м h (см. примеры U4 = 1 и У4 = 2 для H3F, рассмотренные выше). Для классификации вырожденных вибронных состояний мы используем квантовое число gev вместо gw. Тогда выражение (11.125), записанное в более общем виде [62]  [c.335]

Колебательно-вращательные взаимодействия, обусловленные центробежным искажением и кориолисовым взаимодействием, приводят к тому, что для симметричного волчка число К нельзя считать квантовым числом, и, следовательно, запреиденные переходы, не удовлетворяющие правилам отбора (11.171) и  [c.352]

Тензор поляризуемости в (11.190) симметричен и шесть независимых компонент этого тензора преобразуются как симметричная часть квадрата представления группы МС, по которому преобразуются компоненты Мх, Му, Мг оператора электрического дипольного момента. Поэтому правила отбора, следующие из условия отличия от нуля выражения (11.190), более ограничены, чем правила отбора, следующие из условия отличия от нуля выражения (11,189) (см., например, [78]). Выражение (11.190) отлично от нуля, если выполняется условие (ф I IФ ) =7 О (которое дает правила отбора по вращательным квантовым числам) и если произведение типов симметрии колебательных состояний содержит симметричную часть квадрата типа симметрии компонент (Мх, Му, Мг) оператора дипольного момента. Колебательная часть выражения (11.189) отлична от нуля, если произведение типов симметрии колебательных состояний содержит полный квадрат типа симметрии Мх, Му, Мг. Например, для молекулы с симметрией Сзу компоненты Мх, Му, Мг преобразуются по представлению i0 , квадрат которого равен 2 i0/l2 3 , а симметричная часть квадрата равна 2Л10 3 . В рамках теории поляризуемости колебательный переход Ai- A2 в комбинационном рассеянии запрещен, тогда как в рамках более точной теории, основанной на отличии от нуля выражения (11.189), этот переход разрешен (переходы i->42-> дипольно-разрешенные). На практике приближение поляризуемости оказывается очень полезным,  [c.358]

Итак, мы показали, что энергетические уровни молекул можно классифицировать по типам точной симметрии, базисной симметрии и приближенной симметрии, а также по точным и приближенным квантовым числам. Наиболее полезными символами для классификации уровней являются Г (или четность), F, Frve, /, /, S, N, колебательные квантовые числа Vt и вращательные квантовые числа К, ( /) для симметричного волчка, Ка, Кс ДЛЯ асимметричного волчка и R для сферического волчка. Для определенных целей можно использовать также базисные типы симметрии Гг, Fv, Ге, Frv и Fve группы МС. Эти типы симметрии могут быть использованы для выявления смешивания уровней различными возмущениями и при определении правил отбора для электрических дипольных переходов. Среди наиболее важных правил отбора для возмущений особое место занимают правила, согласно которым ангармонические возмущения связывают уровни одинакового типа Fv, центробежное искажение и кориолисово взаимодействие связывают уровни одинакового типа Frv, а вибронное взаимодействие связывает состояния одинакового типа симметрии Fve. Получены также правила отбора по колебательным и вращательным квантовым числам. Выведены правила отбора для электрических дипольных переходов по колебательным, вращательным и электронным квантовым числам и по типам симметрии переходы, не подчиняющиеся этим правилам отбора, называются запрещен  [c.362]


Строгие правила отбора (11.146) — (11.149) и правила отбора (11.159 )и (11.160) по спиновому квантовому числу в отсутствие сильных спиновых взаимодействий применимы ко всем молекулам — жестким, нежестким и линейным. Однако правила отбора для вращательных, колебательных и электронных переходов следует пересмотреть, так как разделение переменных в волновой функции нулевого порядка для нежесткой молекулы выполняется несколько иначе. Если отделить вращение от  [c.386]

Молекула аммиака в ее равновесной конфигурации изображена на рис. 12.7, где показана также инверсия между двумя конфигурациями, приводящая к наблюдаемому расщеплению энергетических уровней. Инверсионный потенциал и инверсионное расщепление уровней изображены на рис. 12.8 (см. [91, 20] и ссылки в работе [91, 20]). Если бы инверсионное туннелирование не наблюдалось, то схема уровней имела бы вид, пока ванный на рис. 12.9. Примером такого случая является молекула NF3. для которой состояния инверсионного колебания классифицируются по числу 02 =0, 1, 2,. ... Группой МС молекулы NF3 является Сзу(М), а группой МС инвертирующей молекулы NH3 —Dsh(M) характеры неприводимых представлений группы Ьзь(М) приведены в табл. А.9. На рис.. 12.8 инверсионные состояния пронумерованы по значениям числа 02, кор релирующего с квантовым числом иг жесткой молекулы, а также инверсионным квантовым числом о,. Квантовое число Vt дает полное число узлов инверсионной волновой функции, и поэтому для молекулы NH3 имеет преимущество перед 02, осо бенно для высоких колебательных состояний оно позволяет рас-сматривать NH3 как плоскую молекулу с сильно ангармоническим неплоским колебанием. Правила отбора для разрешенных колебательных и вращательных переходов и допустимых воз-  [c.389]


Смотреть страницы где упоминается термин Квантовое число вращательное колебательное : [c.234]    [c.849]    [c.58]    [c.627]    [c.94]    [c.56]    [c.106]    [c.127]    [c.297]    [c.323]    [c.330]    [c.332]    [c.334]    [c.351]    [c.357]    [c.387]    [c.649]    [c.649]   
Теплоэнергетика и теплотехника Общие вопросы Книга1 (2000) -- [ c.253 ]



ПОИСК



Квантовое число колебательное

Квантовые числа

Колебательные

Шум квантовый



© 2025 Mash-xxl.info Реклама на сайте