Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Переходы излучательные

Если погруженная в слой поверхность обладает высоким коэффициентом отражения, влияние теплопроводности и свойств частиц более существенно. При радиационном обмене функция еэ сильно зависит в этом случае от излучательных свойств частиц (при переходе от сильно отражающих к сильно поглощающим частицам величина еэ изменяется почти в 2 раза при Тст = 0). Сложный теплообмен приводит к ослаблению влияния параметра ер. Кроме того, функция ез практически не отличается от аналогичной зависимости для черной поверхности (гст = 0,1) (рис. 4.14, а).  [c.178]


Переходы последнего типа сопровождаются, как уже отмечалось, испусканием света, и они изменяют показатель преломления в противоположном направлении по сравнению с поглощением. Это обстоятельство найдет отражение в формулах, если силам осцилляторов, связанным с излучательными переходами, приписать противоположный, т. е. отрицательный знак.  [c.561]

Переход квантовой системы из возбужденного состояния в основное может быть осуществлен как самопроизвольно, так и под влиянием внешних воздействий. В первом случае переход называют спонтанным, во втором — индуцированным (или вынужденным). Вынужденные переходы могут происходить, например, под действием фотонов, энергия которых hv—E —Ei (здесь 2 —энергия возбужденного состояния, Е[ — энергия основного состояния). Как спонтанные, так и индуцированные переходы могут быть излучательными. Излучение, возникающее при спонтанных переходах, называют спонтанным, а при вынужденных — индуцированным (или вынужденным).  [c.316]

Нас, естественно, будет интересовать только излучательная рекомбинация, которая в полупроводнике может происходить в результате межзонных переходов (стрелка 1 на рис. 35.22) и переходов из зоны на примесный уровень (стрелка 2) или через оба примесных уровня (стрелка 3).  [c.296]

Первый полупроводниковый лазер был выполнен на арсениде галлия (ОаАз) Ходом в 1962 г. Этот лазер обладал очень большой вероятностью излучательной рекомбинации. Лазер на арсениде галлия (Я = 0,84 мкм) относится к так называемым инжекционным лазерам на р —п-переходе. Обычно плавные р-н-переходы создают путем диффузии акцепторных примесей (цинк, кадмий и др.) в материал, легированный донорными примесями (теллур, селен и др.).  [c.297]

Эту закономерность можно объяснить следующем образом. В результате поглощения возбуждающих квантов различной величины молекулы первоначально оказываются на совершенно различных возбужденных уровнях. Возвращаются же в невозбужденное состояние они с одних и тех же уровней, так как их спектры люминесценции не изменяются. Это означает, что большинство возбужденных состояний, которые могут реализоваться у данной молекулы, являются нестабильными. Лишь одно из этих состояний, характерное для молекулы в данных температурных условиях, является устойчивым. Из этого состояния всегда и осуществляется излучательный переход в невозбужденное состояние. Следовательно, у молекул, которые поглотили большие возбуждающие кванты и перешли на более высокие колебательные уровни данного электронного возбужденного состояния (или на уровни более высоких электронных состояний), должно происходить перераспределение энергии возбуждения. В результате колебательные состояния возбужденных молекул будут определяться их тепловым статистическим равновесием с окружающей средой.  [c.175]


Правило зеркальной симметрии спектров поглощения и люминесценции Левшина. Это правило было установлено В. Л. Левши-ным для многих веществ, обладающих молекулярным свечением. Оно также касается взаимного расположения и формы спектров поглощения и люминесценции и может быть сформулировано следующим образом нормированные спектры поглош ения а(т) и люминесценции I v)/v, изображенные в функции частот зеркально-симметричны относительно прямой, проходящей перпендикулярно к оси частот через точку пересечения кривых обоих спектров, где а и I — показатели поглощения и интенсивности люминесценции в частоте V (рис. 68). Выполнение этого правила тесно связано со строением колебательных уровней возбужденного и невозбужденного состояний молекулы и вероятностями поглощательных и излучательных переходов между ними (подробнее см. в задаче 11).  [c.177]

Должно осуществляться одинаковое распределение молекул по колебательным уровням их невозбужденного и возбужденного электронных состояний. Иными словами, число молекул на исходных колебательных уровнях, с которых начинаются соответствующий поглощательный (пг) и излучательный (Щ ) переходы, должны быть одинаковым  [c.200]

Вероятности соответствующих поглощательных iWk i ) и излучательных переходов должны быть пропорциональны  [c.200]

Существенное значение имеет частота линий зеркальной симметрии vo. Из рис. 75 видно, что частоте vo соответствуют поглощательные и излучательные переходы, происходящие между самыми нижними колебательными уровнями невозбужденного и возбужденного электронных состояний исследуемых молекул (переход 0"->0 в поглощении и переход О - О" в излучении). Значения частот этих прямых и обратных переходов одинаковы и равны частоте vo. Следовательно, представляет собой частоту чисто электронного перехода, определяющую расстояние между самыми нижними колебательными уровнями невозбужденного и возбужденного состояний молекулы. Таким образом, при строгом выполнении правила зеркальной симметрии спектров поглощения и люминесценции частота чисто электронного перехода определяется автоматически, по частоте линии симметрии (точки пересечения) обоих спектров. Однако существенно, в каких координатах следует строить исследуемые спектры поглощения и люминесценции.  [c.201]

Из соотношений (4.34) и (4.35) видно, что при различных внешних воздействиях на исследуемые молекулы (замена растворителя, нагревание и т. д.) зеркальная симметрия спектров будет сохраняться лишь в тех случаях, когда это внешнее воздействие оказывает одинаковое влияние как на поглощательную, так и на излучательную способность вещества. В подавляющем большинстве случаев этого не происходит. Иногда это воздействие оказывается лишь примерно одинаковым. Тогда зеркальная симметрия качественно сохраняется при заметном изменении величины частоты чисто электронного перехода vo. Чаще же, когда внешние воздействия по-разному влияют на поглощение и излучение вещества, зеркальная симметрия спектров перестает существовать.  [c.202]

Из всего сказанного видно, что как строгое выполнение правила зеркальной симметрии спектров, так и отступления от него дают ценную информацию об оптических свойствах сложных молекул. Эти данные позволяют судить о строении колебательных уровней невозбужденного и возбужденного состояний молекул, делать заключение о их относительной заселенности и относительных значениях вероятностей поглощательных и излучательных переходов, а также определить значения частот электронных переходов в молекулах. Вместе с тем установление правила зеркальной симметрии и изучение условий его выполнимости заложили основы для создания общей теории связи между спектрами поглощения и люминесценции в молекулярных системах.  [c.202]

Переход атома в невозбужденное состояние может сопровождаться испусканием не фотона, а электрона. Этот переход называют вторичным фотоэффектом или оже-эффектом, а соответствующие электроны — оже-электронами. Так как энергетический спектр этнх электронов определяется разностью энергий разных энергетических состояний атомов, он также является паспортом данного сорта атомов, как н характеристическое рентгеновское излучение. Вероятность испускания оже-электронов для атомов с Z<33 дах<е выше, чем вероятность излучательных переходов.  [c.968]


Переходы могут быть излучательными и безызлучательными. При излучательном переходе энергия излучаемого кванта зависит от энергий уровней, между которыми совершается прямой переход, и практически лежит в любом месте диапазона длин волн электромагнитного излучения от у-излучения до частот радиодиапазона. При безызлучательных переходах энергия превращается в тепловую энергию колебаний кристаллической решетки.  [c.60]

Высокая вероятность индуцированных излучательных переходов по отношению к общему числу переходов, что отвечает малой ширине спектральной линии излучения. При этом получается большой квантовый выход — отношение числа излученных на частоте рабочего перехода фотонов к числу поглощенных фотонов источника накачки.  [c.218]

Нагрев образцов осуществлялся электронной бомбардировкой. Температура измерялась микропирометром ОМП-065. Коэффициент монохроматической излучательной способности принимался равным 0.4. За температуру хрупко-пластичного перехода принималась минимальная температура, при которой не менее трех образцов из пяти, испытанных на изгиб по трехточечной схеме нагружения, выдерживали заданную деформацию без разрушения и образования трещин. Величина деформации задавалась отношением величины радиуса оправки к толщине испытываемого образца. Отношение было выбрано равным 12. В этом случае величина остаточной деформации в наружном волокне испытываемых образцов была даЗ %.  [c.60]

При переходе же к режиму генерации практически все излучение концентрируется в плоскости р — ft-перехода, распространяясь перпендикулярно отражающим граням. Кроме того, при / > /дор вследствие роста вероятности вынужденных оптических переходов увеличивается отношение вероятностей излучательной и безызлучательной рекомбинации. Все это приводит к резкому росту мощности излучения и излому кривой зависимости от тока I при / = /пор (рис, 12.22).  [c.343]

Приведенные кривые спектральных коэффициентов ослабления описывают радиационные свойства частиц углерода в пламенах жидких и твердых топлив, по которым могут быть определены их излучательная, рассеивающая и поглощательная способности. Для перехода от приведенных спектральных величин к интегральным достаточно произвести графическое или численное интегрирование полученных зависимостей по длине волны А и параметру р. При этом для определения локальных эффективных сечений рассеяния и поглощения необходимо знать также фракционный состав частиц углерода в рассматриваемой зоне пламени на заданном расстоянии от горелки.  [c.115]

Вопрос об излучательной способности твердого тела можно свести к исследованию его колебательного спектра, так как, с одной стороны, разрещенные переходы между дискретными, колебательными уровнями соответствуют интересующим нас частотам, т. е. частотам, лежащим в инфракрасной области, с другой стороны, излучение, обусловленное колебаниями решетки, также лежит в инфракрасной области [27—28].  [c.43]

Получение эмалевого покрытия включает в себя следующий ряд последовательных технологических операций смешивание, варка, фриттование сырьевых -материалов, гранулирование, и по.мол сплавленной смеси, заправка эмалевого шликера. Все дальнейшие работы направлены на непосредственное наплавление эмали на металл, в частности нанесение и сушка эмалевого шликера, а затем обжиг. Здесь нет необходимости останавливаться на каждом переходе подробно, так как вопросы технологии эмалирования разбираются досконально в целом ряде монографий [62, 63]. Поэтому мы приведем типовую технологию и отметим важнейшие моменты, специфичные для получения эмалевых покрытий на металлах с целью увеличения излучательной способности последних.  [c.101]

Рис. 35.22. Энергетический спектр и излучательные переходы в по-лупроводнике Рис. 35.22. <a href="/info/32454">Энергетический спектр</a> и излучательные переходы в по-лупроводнике
VooOTe(Al2 — Afi)/Af,Af2 характеризует нормальное массовое смещение, наиболее важное для легких элементов (Z<30), причем Voo — частота излучательного перехода при бесконечной массе ядер тпс — масса электрона Af,. Mi — массы ядер 5vs s специфическое мае-  [c.846]

Здесь Ne — плотность электронов, см- г — расстояние от центра солнца, RQ. Свечение короны в непрерывном спектре обусловлено рассеянием света Солнца на электронах. Наблюдаются сильные запрещенные линии высокоионизованных тяжелых элементов (табл. 45.3). Соответствующие переходы запрещены правилами отбора в дипольиом приближении, поэтому их верхние состояния являются метастабильными. В обычных условиях они девозбуждаются столкновениями, но в среде малой плотности столкновения редки и девозбуждение происходит с излучением запрещенного кванта. Излучательная способность короны характеризуется ее мерой эмиссии ME = N dV стандартное значение меры эмиссии короны равно 4,4 10 см . Полный световой поток от короны за пределами 1,3 / при максимуме пятен составляет 1,3-10 полного потока от Солнца, при минимуме пятен — 0,8-10- солнечного потока [1].  [c.1199]

Рассмотрим характер излучательных переходов, основываясь на классической работе Эйнштейна, который еще в 1917 г. ввел понятие о спонтанных и индуцированных переходах. Система, состоящая из двух уровней, показана на рис. 29. Если Е > Е , энергетический уровень 2 лежит выше уровня / и частица находится на уровне 2, то она может перейти на уровень /, испустив квант электромагнитного излучения Лv2l = Е — Е . При этом возможно как спонтанное, так и вынужденное излучение. Вероятность спонтанного излучения, т. е. того, что процесс произойдет за промежуток времени (И, составляет Л 21 При облучении происходит взаимодействие кванта излучения с частицами, составляющими систему, что приводит к одному из двух процессов переходу частицы с уровня / на уровень 2 (поглощение) или, если частица была возбуждена, к обратному переходу (испускание). Вероятность, что какой-то из процессов произойдет за время сИ, пропорциональна плотности излучения и (у) и поэтому может быть записана соответственно В12 и (V) (И и 21 и (V) си.  [c.60]


Механизм появления характеристических рентгеновских квантов был изложен ранее, при объяснении природы образования оже-элек-тронов (излучательный переход). Поскольку вероятность радиационного перехода с повышением Z увеличивается пропорционально Z , вероягность выхода оже-электрона уменьшается. Так, для легких элементов она составляет порядка 95%, а для элементов с Z > 70 не превышает 10%. Соответственно РСМА лучп1е подходит для тяжелых элементов, а ЭОС - для легких.  [c.156]

Двухуровневая система. Выясним некоторые особенности активированного диэлектрика, допустив вначале, что он обладает двумя уровнями энергии 1 2 и Wi, эти уровни будем считать простыми, невырожденными в отличие от них энергетические уровни, которым может соответствовать несколько различных волновых функций, называют вырожденными. Переход 2 1 сопровождается выделением, а / - 2 — поглощением энергии. Излучение энергии будет преобладать над поглощением, если населенность > iVj (для простых невырожденных уровней), т. е. если на верхнем уровне излучательного перехода находится большее число частиц, чем на нижнем. Переходы с поглощением (/ - 2) и с выделением (2 /) энергии наблюдаются непрерывно возбужденные состояния не являются устойчивыми. Средняя продолжительность пребывания частиц в возбужденном состоянии называется временем жизни т метастаб ильного состояния. Такое состояние, когда > N , достигается особыми методами — инверсией населенности. Под этим понимают процесс образования избыточной концентрации частиц (населенности) на высоких уровнях с возможностью переходов на низшие уровни. Энергии квантов на высших уровнях, например, на уровне IFj распределены в некотором интервале значений F. Плотность распределения частиц по энергии  [c.215]

Твердые вещества имеют широкие полосы поглощения и для накачки целесообразно использовать газоразрядные лампы с широким спектром излучения. Газообразные вещества имеют относительно узкие и весьма интенсивные линии поглощения и возбуждаются нередко с помощью газового разряда в самой активной среде, — т. е. в газе. Для газовой смеси удается получить высокую инверсию населенности при определенном режиме газового разряда. К таким средам относятся смеси гелия и неона, гелия и ксенона, неона и кислорода, аргона и кислорода и др. Обычно газовая среда состоит из двух газов, в которой активным является один из газов, а второй лишь используется для не-, редачи энергии накачки к частицам активного газа например, в ге-лийнеоновом ОКГ в состав смеси входит гелий Не и неон Ne в соотношении 10 I давление составляет 1 мм рт. ст. Источником стимулированного излучения служат атомы неона. Возбуждение достигается либо с помощью высокочастотного генератора, либо с помощью тлеющего разряда в трубке при высоком постоянном напряжении. Возбужденные атомы гелия с большим временем жизни, 1000 мксек, передают при столкновениях свою энергию атомам неона. В смеси азота с углекислым газом излучательные переходы совершаются между уровнями молекул СОз, а возбужденные атомы азота лишь передают свою энергию углекислому газу. В генераторах на аргоне генерация возникает при дуговом разряде в аргоне. Возможно использование и других газов. —  [c.223]

Как известно, е полупроводпиках непрерывно совершаются перебросы электронов в зону проводимости и обратные процессы рекомбинации. Прн рекомбинация электрон либо получает энергию, либо передает ее решетке. В некоторых полупроводниковых материалах удается получить а) неравновесные состояния с преобладанием носителей в зоне проводимости и б) излучательные прямые переходы из зоны проводимости в валентную зону. Эти два условия являются необходимыми для установления режима излучения, Исследования показывают, что указанные условия возникают в некоторых полупроводниках вблизи границы р-п-перехода, смещенного в прямом направлении. По обе  [c.224]

Из (12.26) следует, что для получения максимальной внутренней эффективности светодиода следует по возможности увеличить отношение вероятности излучательной рекомбинации к безызлуча-тельной. Безызлучательная рекомбинация, как правило, определяется в основном глубокими рекомбинационными центрами, излу-чательная же идет обычно в результате межзонных переходов (рис. 12.11, а), переходов из зоны проводимости на мелкие акцепторные уровни (рис. 12.11, 6) или с мелких донорных уровней в валентную зону (рис. 12.11, б). Вероятность безызлучательной рекомбинации можно уменьшить, очистив полупроводник от глубоких рекомбинационных центров. Сделать это очень трудно, так как сечение захвата носителей некоторыми примесными центрами, например медью, велико и требуется очень высокая степень очистки оттаких примесей. Поэтому качество светодиодов в значительной мере зависит от степени очистки исходных материалов и совершенства технологии изготовления диодов.  [c.332]

Вероятность межзоиной рекомбинации и излучательных переходов зона — примесь растет с увеличением (до определенного предела) степени легирования полупроводника, что также используется при изготовлении светодиодов. Рис. 12.12. Схема оптронной Спектральный состав рекомбинацион- ного излучения определяется распреде-  [c.332]

Стимулированное излучение. Рассматривая процессы возбунаде-ния электронов в полупроводниках под действием света и свечение, которое возникает при излучательной рекомбинации электроннодырочных пар, мы оставили без внимания важный вопрос о влиянии самого излучения на переходы возбужденных электронов в нормальные состояния, на особенность излучения, возникающего в этих условиях при таких переходах, и возможность их практического использования для усиления и генерации электромагнитных колебаний.  [c.333]

Здесь опущен член, соответствующий излучательному и без-ызлучательному переходам между уровнями 1 и 3.  [c.37]

АТОМНЫЕ СПЁКТРЫ — спектры поглощения и испускания свободных или слабо взаимодействующих атомов, возникающие при излучательных квантовых переходах между их уровнями энергии. А. с. наблюдаются для разреженных газов или паров и для плазмы. А. с. линейчатые, т. е. состоят из отд. спектральных линий, каждая из к-рых соот.ветствует переходу между двумя электронными уровнями энергии атома S и Sfi и характеризуется значением частоты v поглощаемого и испускаемого ал.-магн. излучения согласно условию частот Бора (см. Атомная физика) hv= —Si—Наряду с частотой, спектральная линия характеризуется волновым числом v/ (с — скорость света) и длиной волны к— h. Частоты спектральных линий выражают в с , волновые числа — в. m i, длины волн — в нм и мкм, а также в ангстремах (А). В спектроскопии волновые числа также обозначают буквой л=.  [c.153]

Оптические квантовые генераторы (ОКГ, лазеры). Колебат. системами ОКГ являются открытые резонаторы с размерами 1 >Х, образованные двумя или более отражающими поверхностями. Семейство газовых лазеров многочисленно, они перекрывают диапазон длин волн от УФ области спектра до субмиллиметровых волн. В твердотельных лазерах активной средой являются диэлектрич. кристаллы и стёкла. Особый класс твердотельных ОКГ составляют полупроводниковые лазеры, в к-рых используются излучательные квантовые переходы между разрегпёнными энергетич, зоиами, а не дискретными уровнями энергии. Жидкостные лазеры работают на неорганических активных жидкостях, а также на растворах органич. красителей (см. Лазеры на красителях).  [c.434]


В процессе релаксации возможны излучательные переходы с квазиуровней, и в спектре люминесценции наблюдаются максимумы, разделённые интервалами nh i Q. Поскольку процессы LO-релаксации идут весьма быстро (т 10 11—10 с), интенсивность Г. л. обычно очень мала. Самый низкий уровень акситона, достигаемый при LO-релаксации, имеет значительно большее время жизни, т, к. дальнейшая релаксация возможна лишь с участием акустич. фопонов и идёт значительно медленнее. Поэтому Г. л. с нижнего уровня существенно интенсивнее, чем с более высоких (горячих) уровней экситона.  [c.517]


Смотреть страницы где упоминается термин Переходы излучательные : [c.32]    [c.213]    [c.785]    [c.315]    [c.296]    [c.192]    [c.399]    [c.214]    [c.218]    [c.435]    [c.342]    [c.212]    [c.373]    [c.196]    [c.333]    [c.556]   
Оптика (1976) -- [ c.785 ]



ПОИСК



Излучательное время лилш люммиго перехода

Излучательность

Излучательные и безызлучательные переходы

Излучательные переходы хвантовомеханнческнй расчет

Квантовомеханический расчет вероятностей излучательного перехода



© 2025 Mash-xxl.info Реклама на сайте