Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент относительный электрический

Коэффициент полезного действия электрического генератора в зависимости от мощности составляет 0,97—0,995. Относительный электрический к.п.д. турбогенератора будет равен  [c.366]

Коэффициент полезного действия турбины относительный электрический  [c.593]

Коэффициент относительной мощности ПГУ пгу заметно влияет на все показатели тепловой экономичности ПГУ-ТЭЦ. На рис. 9.13 показано изменение этого коэффициента в зависимости от КПД производства электроэнергии ГТУ в автономном режиме работы и доли тепловой нагрузки котла-утилизатора и всей ПГУ-ТЭЦ 3 . С увеличением коэффициентов (с ростом доли КУ в покрытии тепловой нагрузки ПГУ-ТЭЦ) и уменьщается электрическая мощность ПТУ и возрастает коэффициент Х ру. Для ГТУ-ТЭЦ этот коэффициент постоянен и равен 1.  [c.394]


Полный диапазон изменения тепловой и электрической мощностей ПГУ-ТЭЦ в относительных единицах приведен на рис. 9.22. Отношение максимальной тепловой мощности к электрической при наибольшей степени дожигания достигает значения 1,61 (при хэц что сравнимо с аналогичным показателем традиционных паросиловых ТЭЦ. Коэффициент относительной мощности ПГУ составляет = 0,8.  [c.410]

При неподвижном положении искателя, характеризующегося определенной толщиной слоя с ж, все эти сложные интерференционные процессы находятся в динамическом равновесии и определяют параметры электроакустического тракта дефектоскопа, частотную характеристику и коэффициент преобразования электрической энергии в механическую. Малейшее нарушение этого равновесия из-за изменения толщины контактного слоя приводит к изменениям параметров тракта и, следовательно, к изменению чувствительности дефектоскопа. Поэтому относительная стабильность чувствительности прямых искателей при сканировании по грубой поверхности весьма мала.  [c.45]

Измерений амплитуды эхо-сигнала в ультразвуковой дефектоскопии производится относительным методом, который заключается в сравнении эхо-сигнала от дефекта с каким-либо опорным сигналом, полученным тем же искателем от отражателя известной величины и геометрической формы. Относительный метод измерений весьма удобен на практике, так как позволяет полностью отказаться от необходимости расчета коэффициента преобразования электрической энергии в механическую, определяемого физическими константами пьезоэлемента, влиянием переходных клеевых слоев, величиной зондирующего импульса,, условиями согласования пьезоэлемента с усилителем и т. п.  [c.60]

Ширина полосы частот такого изолятора не превышает I—2%. Для увеличения широкополосности симметрично относительно опоры включаются четвертьволновые отрезки с пониженным волновым сопротивлением (рис. 17.26, б). Ширина полосы частот такого изолятора по уровню КБВ =0,9 составляет 20% [9]. Размеры широкополосных изоляторов для некоторых воздушных коаксиальных линий приведены в табл. 17.24 [1,201. Коэффициент запаса электрической прочности металлических изоляторов равен 3—4 [111.  [c.635]

Для определения относительного электрического к. п. д. паровой турбины при работе ее без отбора пара необходимо величину г]о.э разделить на поправочный коэффициент, соответствующий степени на-  [c.177]


Коэффициент полезного действия электрического генератора в зависимости от мощности находится в пределах 0,97—0,995. Относительный электрический к. п. д. будет равен  [c.485]

Для быстрого торможения больших маховиков применяется электрический тормоз, состоящий из двух диаметрально расположенных полюсов, несущий на себе обмотку, питаемую постоянным током. Токи, индуцируемые в массе маховика при его движении мимо полюсов, создают тормозящий момент М , пропорциональный скорости V на ободе маховика М = кв, где к — коэффициент, зависящий от магнитного потока и размеров маховика. Момент М2 от трения в подшипниках можно считать постоянным диаметр маховика Л, момент инерции его относительно оси вращения ]. Найти, через какой промежуток времени остановится маховик, вращающийся с угловой скоростью Шо-2У, /1 I к Ои>а  [c.278]

Пример 162. Для быстрого торможения больших маховиков применяется электрический тормоз, состоящий пз двух полюсов, расположенных диаметрально противоположно и несущих на себе обмотку, питаемую постоянным током. Токи Фуко, индуцируемые в массе маховика, при его движении около полюсов создают тормозящий момент Л ,, пропорциональный скорости о на ободе маховика M = kv, где — коэффициент, зависящий от магнитного потока н размеров маховика. Момент от трения в подшипниках можно считать постоянным радиус маховика г момент инерции его относительно оси вращения J. Найти, через какой промежуток времени остановится маховик, вращающийся с угловой скоростью со,,.  [c.343]

Датчики манометров сопротивления. Эти датчики основаны на изменении электрического сопротивления некоторых веществ (полупроводников, манганина, платины, вольфрама, константана и др.) под действием приложенного к ним давления. Из числа перечисленных материалов манганин в наибольшей степени удовлетворяет требованиям датчика давления он имеет практически нулевой температурный коэффициент и линейную зависимость между относительным сопротивлением AR/R и давлением р  [c.161]

Что касается коэффициента с.,, то с возрастанием его в пределах от 0,5 до 1,5 полный КПД печи повышается, хотя и незначительно. Поэтому коэффициент Сд следует принимать равным 1,1—1,3, располагая индуктор симметрично относительно загрузки, для всех печей, кроме тех, у которых верхний торец индуктора приходится опускать ниже зеркала ванны для ослабления циркуляции металла в верхней части тигля и уменьшения высоты мениска. В последнем случае в электрическом расчете печи под величиной следует понимать расстояние от дна тигля до верхнего торца индуктора.  [c.254]

В динамографах с электрическими датчиками регистрируют изменение одного из параметров электрического контура—индуктивного сопротивления, омического сопротивления или емкости. Например, в индуктивном датчике (рис. 14.14, а) изменение нагрузки приводит к перемене величины воздушного зазора б, который меняет коэффициент самоиндукции в датчике с угольным сопротивлением (рис. 14.14,6) при изменении нагрузки Р меняется сопротивление Р угольного столбика, состоящего из ряда пластин если на испытуемую деталь наклеить проволочное сопротивление (рис. 14.14, в), то относительное изменение деформации е проволоки изменит величину омического сопротивления датчика если действующее усилие будет изменять воздушный зазор б между  [c.438]

Для определения результирующих потоков излучения необходимо располагать данными по коэффициентам излучения. Коэффициент излучения является сложной функцией, зависящей от природы излучающего тела, его температуры, состояния поверхности, а для металлов — от степени окисления этой поверхности. Для чистых металлов с полированными поверхностями коэффициент излучения имеет низкие значения. Так, при температуре 100 °С коэффициент излучения по отношению к его величине для абсолютно черного тела не превышает 0,1. Металлы характеризуются высокой отражательной способностью, так как из-за большой электропроводности луч проникает лишь на небольшую глубину. Для чистых металлов коэффициент излучения может быть найден теоретическим путем. Относительный коэффициент (степень черноты) полного нормального излучения для них связан с удельным электрическим сопротивлением рэ зависимостью  [c.385]


Установив тензометр на поверхности испытываемой детали (образца) и прижав его к последней с помощью струбцины 21 , создают начальную нагрузку и, вращая диск лимба, вывинчивают микрометрический винт до его соприкосновения с контактом пера. При этом электрическая цепь замыкается, что узнается по электрическому сигналу. В момент появления сигнала по шкале лимба снимается отсчет Ль после чего вращением лимба в обратную сторону электрическая цепь прерывается и прекращает действие сигнала. Затем нагрузка увеличивается. Под действием повышенной нагрузки исследуемый элемент деформируется, вследствие чего участок I (база прибора) изменяет свою длину на величину А1, а призма с пером поворачивается в ту или другую сторону, что вызывает изменение расстояния между контактами. Вращая снова лимб, доводят контакты винта и пера до соприкосновения, определяемого по электросигналу, и снимают по лимбу следующий отсчет Лг. Разность показаний прибора Аг—А = АА пропорциональна величине абсолютной деформации Д/, т. е. Д/ = /С-ДЛ, где К—коэффициент пропорциональности, равный цене одного деления шкалы лимба. Значение коэффициента К определяется из следующих соображений. Так как шаг. микрометрического винта равен 0,5 мм. а шкала лимба имеет 100 делений, то его поворот относительно указателя на одно деление соответствует поступательному перемещению винта на величину 0,5/100 = 0,005 дз . Следовательно, разность отсчетов АЛ является мерой перемещения 5 конца пера, т. е. 5 = 0,005 АЛ. Так как призма с пером образует двуплечий рычаг с отношением плеч ------= 5, то перемещению  [c.58]

В течение одиннадцатой пятилетки повышается годовой коэффициент использования среднегодовой мощности АЭС, рассчитанный с учетом графика ввода в действие новых энергоблоков и их вывода на проектную мощность с 71% в 1980 г. до 78 /о в 1985 г. Это может быть достигнуто при достаточно высокой эксплуатационной надежности АЭС, уже фактически имевшей место в десятой пятилетке, а также при условии продолжения работы АЭС и в одиннадцатой пятилетке, в основном в базисной части графика электрических нагрузок. На уровне 1985 г. суммарное годовое потребление электроэнергии в европейских районах СССР определяется примерно в 870 млрд. кВт-ч при совмещенном максимуме электрических нагрузок 146 млн. кВт и соответственно годовом числе часов использования максимума около 6000 (68%). В этих условиях участие АЭС в покрытии максимума будет на уровне 23% максимума нагрузок, что подтверждает реальность высокого годового использования мощности АЭС. В отдельных энергосистемах, например ОЭС Северо-Запада, число часов использования максимума нагрузок относительно низкое, а удельный вес АЭС более высокий, что, однако, не может ограничивать использование АЭС в силу наличия мощных электрических линий, которыми АЭС /присоединяются к ЕЭС СССР АЭС Северо-Запада (кроме Кольской), Центра и Юга — на напряжении 750 кВ, АЭС — Нововоронежская, Ростовская и Балаковская — на напряжении 500 кВ и АЭС — Армянская, Крымская и Кольская — на напряжении 330 кВ.  [c.143]

Механизм предназначен для отбраковки искривленных швейных иголок. Из бункера а иголки d попадают в пазы барабана /, а из них —в радиальные пазы й горизонтально вращающегося диска 2 и увлекаются им, скользя по неподвижному стальному диску 3. Сверху иголки прижимаются резиновым сектором 4. Вследствие большого коэффициента трения между иглой d и резиновым сектором 4 и относительно малого коэффициента трения между стальным диском 3 и иглой d последняя, проходя иод изолированной губкой е, повертывается. Если игла искривлена, она касается губки е, замыкая цепь электрического тока, включая тем самым механизм, открывающий заслонку люка / на пути следования иглы, и последняя сбрасывается.  [c.222]

ЗАКОН [периодический Менделеева свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов Планка описывает мощность излучения черного тела как функцию температуры и длины волны подобия Рейнольдса коэффициенты, необходимые для вычисления гидравлического сопротивления геометрически подобных тел, равны, если равны соответствующие числа Рейнольдса в этом случае оба потока подобны полного тока <для токов проводимости циркуляция вектора напряженности магнитного поля постоянного электрического тока вдоль замкнутого контура пропорциональна алгебраической сумме токов, охватываемых этим контуром для магнетиков циркуляция вектора магнитной индукции вдоль замкнутого контура пропорциональна алгебраической сумме токов, охватываемых этим контуром обобщенный циркуляция вектора напряженности магнитного поля постоянного электрического тока вдоль замкнутого контура пропорциональна алгебраической сумме токов, охватываемых этим контуром и током смещения ) постоянства <гранных углов в кристаллографии по величине двугранных углов в кристалле можно установить, к какой кристаллической системе и к какому классу относится данный кристалл состава каждое химическое соединение, независимо от способа его получения, имеет определенный состав ) преломления (света отношение синусов углов падения и преломления на границе двух сред равно отношению скоростей света в этих средах Снеллиуса отношение синусов углов падения и преломления луча электромагнитных волн на границе раздела двух диэлектрических сред равно относительному показателю преломления двух сред (второй среды по отношению к первой) )  [c.235]

При сравнении тепловых двигателей, использующих теплоту различных температурных потенциалов, термический КПД цикла отражает лииш внешние условия, но не совершенство самой машины, так как в выражения вида т]( = 1 — входят температуры источника и приемника Тг теплоты, но не характеристики рабочего тела в цикле. Для учета конкретных потерь в практику были введены дополнительные показатели эффективности преобразования, такие, как индикаторный, относительный, электрический, эффективный и другие КПД машин и отдельных их элементов. Разнородность этих коэффициентов затрудняет сравнительный анализ эффективности тепловых двигателей.  [c.366]


Здесь I — электрический ток R,/Rq — относительное электрическое сопротивление трубы при температуре стенки t,. в расчетном сечении Rq Iq — ее сопротивление на единицу длины при комнатной температуре t(,, dQ — внутренний диаметр трубы при /q Р — средний коэффициент линейного расширения материала трубы в интервале температур между и Iq. Значения R IRg, RqIIа nd(j находят по результатам предварительной калибровки трубы.  [c.393]

Задача 3.50. Определить относительный электрический коэффициент полезного действия турбогенератора, если параметры пара перед турбиной ро=4 МПа, 4= = 390° С и за турбиной р2=1 МПа и 4 = 240° С, механн-  [c.136]

В системах газ—жидкость может также возникать дополнительный поток вещества вдоль межфазной границы, обусловленный локальными изменениями поверхностного натяжения во время процесса массопероноса (эффект Марангони). Изменения поверхностного натяжения могут быть вызваны локальными изменениями любой величины, влияющей на поверхностное натяжение, например концентрации вещества на межфазной границе, температуры или электрических величин. Характер движения вещества по межфазной поверхности различен в случае движущихся друг относительно друга или покоящихся (невозмущенных) фаз. В последнем случае могут происходить слабые пульсации коэффициента поверхностного натяжения. Тогда, если движущая сила массопереноса и градиент поверхностного натяжения малы, а естественная конвекция отсутствует, происходит медленный дрейф элементов жидкой фазы с растворенным в ней целевым компонентом вдоль границы раздела, вызванный последовательными сжатиями и растяжениями поверхности раздела фаз. При этом наблюдают образование пространственных долгоживущих ячеек с различной концентрацией целевого компонента. Такой вид поверхностной конвекции часто называют ячеистым поверхностным движением.  [c.8]

Для чувствительного элемента тензодатчика желательно использовать материалы, которые имели бы большие коэффициенты чувствительности, достаточно большое удельное электрическое сопротивление, небольшой температурный коэффициент электрического сопротивления и достаточно большой диапазон линейной зависимости между относительной деформацией и изменением сопротивления. Наиболее полно этим требованиям удовлетворяет константан (сплав меди и никеля), для которого в широком диапазоне деформаций /i= onst. Возможно применение и других материалов. Для проволочных и фольговых датчиков используют -одни и те же материалы.  [c.314]

Диэлектрики, в силу того, что свободных носителей заряда в них мало, состоят по сути из связанных заряженных частиц положительно заряженных ядер и обращающихся вокруг них электронов в атомах, молекулах и ионах, а также упруго связанных разноименных ионов, )асположенных в узлах решетки ионных кристаллов. Толяризация диэлектриков — упорядоченное смещение связанных зарядов под действием внешнего электрического поля (положительные заряды смещаются по направлению вектора напряженности поля , а отрицательные— против него). Смещение / невелико и прекращается, когда сила электрического поля, вызывающая движение зарядов относительно друг друга, уравновешивается силой взаимодействия между ними. В результате поляризации каждая молекула или иная частица диэлектрика становится электрическим диполем — системой двух связанных одинаковых по значению и противоположных по знаку зарядов q, Кл, расположенных на расстоянии I, м, друг от друга, причем q — это либо заряд иона в узле кристаллической решетки, либо эквивалентный заряд системы всех положительных или системы всех отрицательных зарядов поляризующейся частицы. Считают, что в результате процесса поляризации в частице индуцируется электрический момент p=ql, Кл-м. У линейных диэлектриков (их большинство) между индуцируемым моментом и напряженностью электрического поля , действующей на частицу, существует прямая пропорциональность р = аЕ. Коэффициент пропорциональности а, Ф-м , называют поляризуемостью данной частицы. Количественно интенсивность поляризации определяется поляризованно-стью Р диэлектрика, которая равна сумме индуцированных электрических моментов всех N поляризованных частиц, находящихся в единице объема вещества  [c.543]

Силитовые стержни изготовляются на основе карбида кремния, кристаллического кремния и углерода. Плотность силита составляет 3,2 Мг/м , температурный коэффициент линейного расширения силитовых стержней очень мал, удельное электрическое сопротивление может колебаться в значительных пределах, но для наиболее часто применяющихся нагревателей оно составляет 0,001—0,1 ОМ М. Силитовые нагреватели применяются в электрических печах различной мощности, рассчитанных на максимальные температуры до 1500°С. Кривая относительного изменения электрического сопротивления силитового стержня от температуры показана на рис. 8-25. Срок службы нагревателей в электрической печи может колебаться в пределах от сотен до тысяч часов.  [c.260]

Отношение UJU = О. .. 1, и оно, как правило, тем меньше, чем больше дефект. Выявляемость дефеитов при теневом методе не зависит от номинального значения амплитуды сигнала L и от коэффициентов преобразования L л М, поэтому вместо относительной амплитуды электрических сигналов будем пользоваться относительной амплитудой акустических сигналов Ut IIJ =  [c.113]

Другой пример того, как приносят экономичность в жертву удобствам из-за дешевизны электроэнергии,—это электроотопление. (Безусловно, дороже отапливать помещение при помощи электричества, хотя местная энергокомпания заверяет Вас в обратном ) Преобразование электрической энергии в тепловую— весьма эффективный процесс например, КПД электрического водонагревателя равен 100%. Однако преобразование топлива в электроэнергию—процесс довольно неэффективный (КПД равен 30—40%). Таким образом, общий коэффициент полезного использования химической энергии топлива при ее преобразовании в теплоту через электроэнергию относительно невелик. Если бы топливо использовалось непосредственно для отопления помещений с КПД, равным 60—70%, можно было бы сэкономить значительное количество топлива и уменьшить потери энергии.  [c.113]

Историческое введение. Еще со времен появления фарадеевой концепции силовых лннпй обсуждался такой вопрос что происходит с силовыми линиями, когда тела приведены в движение Перемещается ли электрическое поле, создаваемое материальными телами, жестким образом при перемещении этих тел Г. Герц, первый демонстратор электромагнитных волн, отвечал на этот вопрос утвердительно. Однако эксперименты Физо с движущейся водой показали, что скорость распространения света в воде равна не с - - i а лишь с + (1— ln )v, где п — коэффициент преломления воды. Лоренц объяснил коэффициент увлечения 1—Ми-на основе гипотезы о неподвижном эфире , не увлекаемом движущимися сквозь него электрическими зарядами. С другой стороны, из гипотезы о неподвижном эфире следовало, что на Земле (движущейся относительно неподвижного эфира вследствие своего вращения вокруг Солнца с периодом в год) должны были бы наблюдаться определенные оптические эффекты порядка где v — линейная скорость вращения Земли вокруг Солнца, а с — скорость света. Экспериментальное доказательство отсутствия этих эффектов поставило теоретическую физику в тупик, выход из которого был указан в 1905 г. в статье Эйнштейна Об электродинамике движущихся тел .  [c.331]


Импульсная электрическая прочность горных пород повышается с ростом коэффициента крепости, модуля упругости и временного сопротивления на разрыв. Как механическая, так и электрическая прочность горных пород растет с увеличением степени метаморфизма. Важнейшее значение для ЭИ-технологии имеет то, что горные породы по электрической прочности различаются не так сильно, как различаются их физико-механические свойства. При семикратном отличии кварцита и песчаника по прочности на сжатие их электрическая прочность отличается менее чем в 2 раза. Характерно также, что наиболее электрически прочные породы в меньшей степени повышают ее при уменьшении времени экспозиции напряжения. Относительный рост напряжения пробоя h в интервале времени от 10- до 10 с для изверженных и метаморфических горных пород (кварцит, порфир, мрамор) составляет к = 1.5-1.7, а осадочных пород (сланец, уголь, песчаник) ki- 22-2.5. Эти обстоятельства  [c.40]

Проволоку изготовляют твердой из манганина марки МНМцЗ—12 всех диаметров. Проволоку изготовляют мягкой из манганина марок МНМц 3—12 и МНМцАЖЗ—12—0,3—0,3 диаметром 0,5 мм и более. Проволока диаметром менее 0,5 мм в мягком состоянии изготовляется по соглашению изготовителя с потребителем. Диаметр, допускаемое отклонение по диаметру и омическое сопротивление одного метра манганиновой проволоки показаны в табл. 7 удельное электрическое сопротивление, температурные коэффициенты электрического сопротивления а и Р отожженных образцов и относительное удлинение б — в табл. 8—10.  [c.249]

Как видно из рассмотренной схемы тепловой модели, несомненными достоинствами теплового моделирования являются относительная простота и физичность. На граничных поверхностях, кроме того, имеется полная возможность задавать граничные условия первого, второго или третьего. рода. При задании граничных условий первого рода тем1пература пове1рхяос71и, поддерживается на определенном уровне в соответствии с требованиями выполнения условий подобия. Для реализации граничных условий второго рода задается определенная мощность электрического нагревателя поверхности, а при задании граничных условий третьего рода между поверхностью и нагревателем или охлаждающим теплоносителем вводится слой дополнительного термического сопротивления, моделирующий коэффициент внеш ней теплоотдачи. Довольно удобным метод теплового моделирования является и для экспериментального исследования процессов нестационарной теплопроводности с радиационными граничными условиями.  [c.279]

Из уравнения (159) видно, что разность результирующих потоков у поверхности нагрева и у ограждающей поверхности будет тем больше, чем больше коэффициент отражения (рк) ограждающей поверхности. Чем больше рк, тем меньше расход тепла с охлаждающей водой, поэтому для рефлекторных печей состояние отражающей поверхности имеет решающее значение. Относительно низкая температура отражающей поверхности нужна для сохранения высокого коэффициента отражения (рис. 144). Хотя в принципе возможны и пламенные рефлекторные печи, если окажется возможным тем или иным способом (например, с помощью магнитного поля) не допускать непосредственного контакта пламени с отражающей поверхностью, но практически пока нашли применение только рефлекторные электрические печи сопротивления (см. рис. 143). Пользуясь тем, что в безокисли-тельной среде уменьшение коэффициента отражения Рк Для некоторых сплавов происходит медленно, рефлекторные печи можно делать с малым внешним охлаждением при условии, если ограждающая поверхность будет состоять из поставленных друг за другом отражающих экранов (см. рис. 143, б). Так, существуют вакуумные печи [159] для термообработки, экраны которых выполнены из стали, легированной молибденом и танталом. Вполне пог ятно, что чем больше вакуум, тем лучше работают указанные печи, если только не происходит испарения легирующих элементов в вакууме.  [c.258]

А. К. Бондарева [Л. 728] определяла Ост центрального электрического нагревателя (стержня диаметром 10 мм), погруженного в псевдоожиженный воздухом слой речного песка в трубе диаметром 82 мм., одновременно с измерением эффективной теплопроводности слоя. Численные значения полученных ею ст много выик, чем у других исследователей, поскольку последние, как уже отмечалось, отождествляли Нст с коэффициентами теплопередачи от стенки до ядра слоя, а Бондарева расчленила суммарное термическое сопротивление теплопередаче на 1/аст.пл и 6/ .эф. Здесь мы обозначили Ост.пл — пленочный коэффициент теплообмена стенки при отдельном учете сопротивления эффективной теплопроводности д — расстояние от стенки до места измерения температуры слоя. Численные значения Ост.пл нуждаются в уточнении, поскольку требуется уточнить профили температур слоя. Коэффициенты аст.пл, полученные Бондаревой, показаны на рис. 10-15. Максимум Ост.пл лежит в области невысоких относительных расширений слоя (порядка 1,2). Нет данных об определении подобных коэффициентов другими исследователями. Какая-то доля расхождений между численными значениями Чст у различных исследователей может объяс-  [c.374]

ЗАКОН [Бера для разбавленных растворов поглощающего вещества в непоглощающем растворителе коэффициент поглощения света веществом зависит от свойств растворенного вещества, длины волны света и концентрации раствора Био для вращательной дисперсии в области достаточно длинных волн, удаленной от полос поглощения света веществом, угол вращения плоскости поляризации обратно пропорционален квадрату длины волны Био — Савара — Лапласа элементарная магнитная индукция в любой точке магнитного поля, создаваемого элементом проводника с проходящим по нему постоянным электрическим током, прямо пропорциональна силе тока в проводнике, абсолютной магнитной проницаемости, векторному произведению вектора-элемента длины проводника на модуль радиуса-вектора, проведенного из элемента проводника в данную точку и обратно пропорциональна кубу модуля-вектора Бойля — Мариотта при неизменных температуре и массе произведение численных значений давления на занимаемый объем идеальным газом постоянно Брюстера отраженный свет полностью линейно поляризован при угле падения, равному углу Брюстера, тангенс которого должен быть равен относительному показателю преломления отражающей свет среды Бугера — Ламберта интенсивность J плоской волны монохроматического света уменьшается по мере прохождения через поглощающую среду по экспоненциальному закону J=Joe , где Jo — интенсивность света на выходе из слоя среды толщиной / а — показатель поглощения среды, который зависит от химической природы и состояния поглощающей среды и от волны света Бунзеиа — Роско количество вещества, прореагировавшего в фотохимической реакции, пропорционально мощности излучения и времени освещения Бернулли в стационарном потоке сумма статического и динамического давлений остается постоянной ]  [c.231]

Вибрации осциллографируются с четырьмя различными коэффициентами увеличения порядка 500 200 80 и 30. Комплект приборов К001 предназначен для работы при температуре окружающего воздуха 10. .. 35 °С и относительной влажности воздуха до 80% при 30°С. Наводки от внешнего магнитного поля с частотой 50 Гц любого направления и напряженностью до 1000 А/м практически не влияют на работу датчиков. Чувствительность гальванометров к постоянному току не менее 8-10 мм/мА при индукции 0,4 Тл в зазоре магнитного блока светолучевого осциллографа. Для преобразования механических колебаний в электрические применены индукционные датчики (преобразователи) сейсмического типа. Для крепления преобразователя в основании имеются четыре стальные втулки с внутренней резьбой Мб. К боковым стойкам основания с помощью плоских пружин подвешен балансир. На свободном конце балансира укреплены две цилиндрические катушки. Каждая из них находится в своей магнитной системе, состоящей из магни-топровода и постоянного магнита с полюсным наконечником.  [c.128]


Смотреть страницы где упоминается термин Коэффициент относительный электрический : [c.408]    [c.503]    [c.126]    [c.230]    [c.155]    [c.305]    [c.649]    [c.278]    [c.205]    [c.148]    [c.138]    [c.355]    [c.65]   
Теплофикационные паровые турбины и турбоустановки (2002) -- [ c.26 ]



ПОИСК



4 000—6 000 квт электрический, относительный

Коэффициент быстроходности турбогенератора относительный электрический

Коэффициент выработки мощности паром отбора турбоагрегата относительный электрический

Коэффициент относительный

Коэффициент электрический



© 2025 Mash-xxl.info Реклама на сайте