Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент полезного действия ТЭЦ электрический

Коэффициент полезного действия электрического генератора в зависимости от мощности составляет 0,97—0,995. Относительный электрический к.п.д. турбогенератора будет равен  [c.366]

Фиг. 18. Коэффициент полезного действия электрических генераторов. Фиг. 18. Коэффициент полезного действия электрических генераторов.

Коэффициент Полезного действия электрического генератора равен отношению электрической мощности No, измеренной на зажимах генератора, к эффективной мощности тур бины Noe-  [c.52]

Коэффициенты полезного действия электрических генераторов мощностью 200—1200 МВт изменяются в пределах 97,7—98,8 %.  [c.262]

Коэффициент полезного действия электрической печи представляет собой отношение полезной энергии к общему количеству израсходованной за цикл электроэнергии (для садочной печи) или полезной мощности ко всей потребляемой мощности (для методической печи).  [c.207]

Передача мощности должна обладать высокой надежностью и долговечностью, наименьшими размерами, массой и стоимостью, высоким к. п. д. на всех режимах работы, минимальными затратами на обслуживание и ремонт. На тепловозах применяются три типа передач мощности электрическая, гидравлическая и механическая. Наибольшее распространение получила электрическая передача, которая по многим показателям наиболее эффективна. Для современных электрических передач характерно увеличение мощности при сохранении почти тех же габаритных размеров и уменьшении удельных масс. На тепловозах применяют электрические передачи мощности постоянного, переменно-постоянного и переменного тока. Преимущественное распространение в мировой практике имеет передача на постоянном токе. Коэффициент полезного действия электрической передачи при продолжительном режиме 84—86 %. В связи с увеличением мощности тепловозов получает широкое распространение передача переменно-постоянного тока.  [c.4]

Коэффициент полезного действия электрических нагревательных устройств выше коэффициента полезного действия устройства для нагрева насыщенным водяным паром.  [c.24]

Если механические потери турбины определить механическим к. п. д. турбины 1 , а коэффициент полезного действия электрического генератора обозначить 1 , то мощность, развиваемая турбиной на муфте, составит  [c.304]

Расход электроэнергии на собственные нужды. Коэффициент полезного действия электрической станции нетто. Парадные и рабочие расходы пара и топлива  [c.423]

Коэффициенты полезного действия электрический к. п. д. по формуле (24)  [c.170]

Коэффициент полезного действия электрического генератора в зависимости от мощности находится в пределах 0,97—0,995. Относительный электрический к. п. д. будет равен  [c.485]

Коэффициенты полезного действия электрический — по формуле (5-8)  [c.112]

Коэффициент полезного действия современных ТЭС с паровыми турбинами достигает 40 %, с газовыми турбинами — не превышает 34 %. На ТЭС с паротурбинным приводом возможно использование любого вида топлива газотурбинные станции пока используют только жидкое и газообразное. Однако паровая турбина не столь маневренна, как газовая. Дело в том, что давление пара, подаваемого в турбину, высокое — до 23,5 МПа и корпус турбины для обеспечения прочности очень массивен. Это не позволяет быстро и равномерно прогреть паровую турбину при пуске. Газовые турбины работают при давлениях рабочего тела не более 1 МПа, их корпус много тоньше, прогрев осуш,ествляется быстрее. Поэтому газотурбинные агрегаты на ТЭС рассматриваются в перспективе как пиковые — для обеспечения выработки электроэнергии при кратковременном увеличении в ее потребности — для снятия пиков электрической нагрузки.  [c.185]


Качество работы ТЭС оценивается прежде всего ее коэффициентом полезного действия, затратами топлива на единицу отпускаемой потребителю электрической и тепловой энергии и себестоимостью продукции.  [c.188]

Коэффициенты полезного действия ТЭЦ брутто — по производству электрической т) Р и тепловой т) энергии — находятся по формулам  [c.189]

Величиной, характеризующей тепло, расходуемое на нагрев и плавление основного и электродного металлов, является коэффициент полезного действия дуги г), который представляет собой отношение эффективной тепловой мощности дуги к тепловому эквиваленту ее электрической мощности, т. е.  [c.20]

Создание термоэлектрических полупроводниковых преобразователей позволит непосредственно превращать тепло в электрическую энергию с высоким (до 40- 50%) коэффициентом полезного действия (к. п. д.). Предполагается создание установок, где химическая энергия топлива будет непосредственно превращаться в электрическую энергию с высоким к. п. д. без применения турбогенераторов и котлов.  [c.6]

Электрические печи сопротивления (тигельные и отражательные) находят широкое применение для плавки алюминиевых, магниевых и цинковых сплавов. Тигельные печи применяют в цехах с небольшим выпуском, а также в тех случаях, когда производят отливки из большого числа сплавов, разнообразных по химическому составу (рис. 117). Однако эти печи имеют низкую производительность и невысокий тепловой коэффициент полезного действия. Температура нагрева в печи находится в пределах 900 - 1100°С.  [c.242]

По указанию пре подавателя регулирующим вентилем К устанавливается определенный расход жидкости через насос. При этом расходе (который в данном случае удобнее замерять по водомеру Вентури) определяются показания манометра М и вакуумметра В, электрическая мощность на зажимах электродвигателя, приводящего в действие насос (см. 7.6). Затем вычисляются напор насоса по формулам (6.2) — (6.5), потребляемая насосом мощность -Ы и коэффициент полезного действия насоса т] по формуле (7.16). По данным испытаний строятся графики, характер которых должен соответствовать графикам, изображенным на рис. 7.5.  [c.314]

Коэффициент полезного действия ФЭП малой площади (до 0,1 см ) составляет 8—12 %, а большой (более 100 см ) равен 4—8 %. При разомкнутой электрической цепи напряжение одной элементарной ячейки (напряжение холостого хода) составляет 0,7—0,8 В. Последовательное соединение элементарных ячеек в интегральных ФЭП позволяет получать напряжение холостого хода до 7—8 В. Максимальная плотность тока (ток короткого замыкания) ФЭП при освещенности 100 мВт/см- составляет 10—18 мА/см .  [c.20]

Экономичность работы электрической станции оценивается коэффициентами полезного действия, удельным расходом условного топлива, удельным расходом теплоты на выработку электроэнергии и себестоимостью энергии.  [c.201]

Коэффициент полезного действия ТЭЦ нетто — по отпуску электрической и тепловой энергии—должен учитывать расходы топлива на производство электроэнергии и теп-218  [c.218]

Коэффициент полезного действия при таком методе нагрева ниже, чем при двух первых, так как здесь к потерям в понижающем трансформаторе добавляются потери в индукторе. Однако надежность и долговечность индуктора гораздо выше, чем надежность скользящих контактов или вращающегося трансформатора. Поэтому последний способ вытеснил другие способы почти на всех установках, где вначале были использованы контактные способы подвода тока из-за их более высокого электрического к. п. д.  [c.155]

Сдерживающим фактором для внедрения постоянного тока долгое время было и то, что процесс превращения переменного тока в постоянный осуществлялся нерациональным способом по схеме двигатель переменного тока вращал генератор постоянного тока, который питал все устройства, потребляющие постоянный ток. Коэффициент полезного действия такой схемы крайне низок, учитывая электрические потери в электродвига-  [c.239]


Тепловые электростанции могут вырабатывать не только электрическую, но и тепловую энергию (горячая вода для отопления и водоснабжения и пар для технологических нужд производства). Коэффициент полезного действия современных теплоэлектростанций (ТЭЦ) еще выше и достигает 60—70%.  [c.104]

Большое распространение электрических систем для механизации технологических процессов обусловливается тем, что они имеют компактную конструкцию и обладают быстротой срабатывания. Эти системы могут передавать энергию на неограниченно большие расстояния, вследствие чего источники питания обычно располагаются вне машины. В таких системах удобно и легко распределяется энергия в нужных направлениях. Кроме того, электрическим системам свойственна легкость превращения электроэнергии в тепловую и другие виды энергии при высоком коэффициенте полезного действия.  [c.27]

В механическую энергию ее превращает обычный электрический мотор. Коэффициент полезного действия его нередко превосходит 96 процентов.  [c.12]

Как видите, ни громоздких тяжелых котлов, ни гигантских турбин... А знаете, каков коэффициент полезного действия этой установки Почти 90 процентов энергии, заключенной в топливе, превращается в электрический ток А сейчас мы боремся и за еще более высокие показатели. Тем более, что теоретически они могут быть рай-ны и 100 процентам...  [c.85]

Депре М. О коэффициенте полезного действия электрических двигателей и об измерении количества энергии в электрической цепи.— В кн. Электродвигатель в его историческом развитии Док. и материалы/Под ред. акад. В. Ф. Миткевича. М. Л. Изд-во АН СССР, 1936, с. 608-610.  [c.467]

Коэффициент полезного действия электрических печей более высок, чем обычных, и составляет 40—60%, т. е. в 3—5 раз выше, чем у пламенных печей вследствие лучшего использования тепла и уменьшения тепловых потерь. В электрических печах могут быть достигнуты очень высокие температуры до 3000° С. Условия работы на электропечи лучше, чем на пламенной печи, так как здесь чисто и не так жарко. Стоимость стекла значительно меньше, поскольку при электроварке затраты тепла на 1 кг сваренного стекла в 2—3 раза ниже, чем при варке на газе или на жидком топливе. Удельный съем стекломассы в электрических печах 1200— 3000 кг/м2 в сут. Расход электроэнергии на варку стекла в зависимости от его состава равен 0,8—2 кВт-ч на 1 кг стекломассы. Производительность печей от 5 до 100 т/сут. К преимуществам электрических печей необходимо отнести простоту управления технологическим процессом и более продолжительный поэтому срок их службы по сравнению с газовыми.  [c.521]

При варке в электропечи не происходит улетучивания и уноса щихтных компонентов, а также не попадают загрязнения от сжигания топлива. Стекло получается весьма однородным. Коэффициент полезного действия электрических печей более высок, чем обычных и составляет 40—60 %, т.е. в 3—5 раз выще пламенных, вследствие лучшего нспользовання тепла и уменьшения тепловых потерь.  [c.480]

Анализ эквивалентной акустической и электрической схем закрытой системы позволяет, кроме того, рассчитать такие важные карактеристики, как зависимость от частоты амплитуды смещения подвижной системы громкоговорителя, коэффициент полезного действия, электрическую мощность, ограниченную допустимой амплитудой смещения подвижной системы, максимальную акустическую мощность и характеристику смещения подвижной системы [4.9]  [c.112]

При питании электровозов от теплофикационных электрических станций, тепло отработавшего пара которых используется для бытовых и промышленных целей, общий коэффициент полезного действия электрической тяги увеличивается до 25—35%, т. е. 1 кг топлива, сожжённого на теплофикационной станции, производит при электрической тяге в семь-восемь раз больше полезной работы, чем 1 кг тсго же топлива, сожжённого в топке паровоза.  [c.7]

В этих формулах значение механического КПД достаточно надежно может быть оценено по рис. 5.5. Здесь же приведены потдзи мощности в редукторе для случая, когда турбина малой мощности связана с электрическим генератором через редуктор. На рисунке даны пределы механических потерь энергии, учитывающие разное число подшипников, разные типы масляных насосов и их приводов и т.п. Коэффициент полезного действия электрических генераторов Г] 3 можно принять по табл. 5.3.  [c.146]

Турбоэнергетические системы. Использование солнечной радиации находит применение и в традиционной двухступенчатой схеме преобразования энергии тепловая— -механическая— -электрическая. В частности, NASA разрабатывает солнечные турбоэлектрические генераторы, известные под названием Санфлауэр (подсолнечник) [169]. Одной из наиболее сложных проблем является создание системы охлаждения. Применение покрытий позволяет поддерживать оптимальные температурные параметры цикла, уменьшать площадь и массу радиатора. На рис. 8-24 представлена схема солнечной энергетической системы с турбогенератором [170]. Теплота, полученная от выхлопных газов, и скрытая теплота конденсации излучаются с поверхности радиатора. Коэффициент полезного действия установки зависит от температуры котла, которая ограничивается жаропрочностью материалов, и от температуры радиатора. Без 204  [c.204]

Современная электрическая лампа накаливания является наиболее массовым и хорошо освоенным в производстве и эксплуатации источннко.м света. Однако осветительные лампы накаливания, имеющие световую отдачу 10—20 лм/Вт, обладают крайне низким коэффициентом полезного действия преобразования электрической энергии в световую, который не превосходит 3—4 % подводимой мощности. Практические возможности дальнейшего повышения коэффициента полезного действия ламп накаливания с вольфрамовой нитью весьма ограничены.  [c.154]


Значительно большие возможности повышения коэффициента полезного действия дают газоразрядные источники света. Например, ртутные лампы высокого давления имеют в 3—4 раза более высокую экономичность, чем лампы накаливания, и более длительный срок службы. Коэффициент полезного действия натриевого разряда низкого давления достигает при определенных условиях высоких значений, составляющих 60—70 % подводимой электрической мощности. Однако, несмотря на значительно более высокий коэффициент полезного действия, эти лампы обладают существенным недостатком, связагг-ным с линейчатым характером спектра излучения, сильно искажающим цветопередачу.  [c.154]

Коэффициент полезного действия ТЭЦ брутто—по производству электрической П Рэл и тепловой цбРт энергии находятся по формулам  [c.218]

Под коэффициентом полезного действия (к. п. д.) машины понимают параметр, при помощи которого оценивается полезный эффект использования энергии в машине. Величина к. п. д. определяется как отношение затраты энергии на преодоление сил полезных сопротивлений за некоторый промежуток времени к общей затрате энергии в машине за тот же промежуток времени. В зависимости от вида преобразуемой или используемой в машине энергии, например механической, электрической, тепловой и др., различают к. п. д. соответственно механический, электрический, термический и др. В этом параграфе ограничимся рассмотрением механического к. п. д., который учитывает затрату энергии только на преодоление сил вредных сопротивлений сил трения звеньев, сопротивления окружающей среды (воздуха, смазывающей жидкости). Величина к. п. д. механизма или машины для периода установившегося движения определяется по равенству  [c.147]

Электрическое освещение и его интенсивноеть оказывают большое влияние на производительность труда во всех сферах производственной деятельности человека. Расход электрической энергии для освещения непрерывно увеличивается и вместе е этим возрастают требования к улучшению экономичности света. Задача состоит в том, чтобы, с одной стороны, повысить коэффициент полезного действия осветительных устройств,  [c.37]

В ващем электрическом чайнике, плитке, утюге происходит превращение электричества в тепло. Коэффициент полезного действия этого превращения достигает почти ста процентов.  [c.12]

Тепловые аккумуляторы — третий вид аккумуляторов, предложенный Ветчинкиным и Уфимцевым,— представляют собой большие цистерны с прочными и хорошо теплоизолированными стенками. В них находится вода, нагреваемая злектроподогревателями до высокой температуры. Тепловая энергия, запасенная в этих цистернах, может использоваться и для отопительных и для энергетических целей снижая давление, превращая воду в пар, можно потом заставлять ее работать в паровых машинах или турбинах. По расчетам авторов предложения, тепловые аккумуляторы могут оказаться в некоторых случаях в 300—500 раз экономичнее, чем электрические той же емкости. Общим недостатком всех этих проектов аккумуляторов является, кроме их громоздкости, необходимости держать в резерве крупные мощности дублирующих двигателей другого типа, которые простаивают во время работы ветродвигателя, и их сравнительно невысокий коэффициент полезного действия. Поднятая в водохранилище вода будет испаряться, не говоря уж о том, что часть энергии потеряется при работе насосной и гидротурбинной установок. Коэффициент полезного действия гидроаккумулятора составляет всего 40—50 процентов, а резервной станции с двигателем внутреннего сгорания, работающим на водороде в качестве горючего, вряд ли превзойдет 35 процентов. Еще ниже будет коэффициент полезного действия станции с паровой машиной или турбиной, не говоря уже о потерях тепла при хранении горячей воды в цистернах— теплоаккумуляторах. Ни одно из рассмотренных устройств при практическом исполнении не сможет, видимо, превратить в электрическую энергию свыше 50 процентов от затраченной.  [c.213]


Смотреть страницы где упоминается термин Коэффициент полезного действия ТЭЦ электрический : [c.104]    [c.8]    [c.649]    [c.96]    [c.111]    [c.89]   
Теплотехнический справочник том 1 издание 2 (1975) -- [ c.559 ]



ПОИСК



ATM полезности

Коэффициент полезного действия

Коэффициент электрический

Ток электрический — Действие

Ц икл коэффициент полезного



© 2025 Mash-xxl.info Реклама на сайте