Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность горных пород

Относительно степенного показателя функции V(l), на основе данных разных авторов для широкой гаммы горных пород в обобщенном виде можно заключить показатель степени всегда ниже кубической, уменьшается с ростом электрической прочности горных пород и степени их неоднородности, с увеличением разрядного промежутка и уменьшением крутизны фронта импульса напряжения. Это отражает объясненное выше отличие реального развития процесса в электродной конструкции от модельного рассмотрения со статической картиной электрического поля в промежутке.  [c.34]


Напряжение пробоя. В отношении электрической прочности горных пород и жидкостей применительно к условиям ЭИ имеются представительные данные /4,6/, полученные в диапазоне изменения экспозиции импульсного напряжения от Ю до 10 с (на импульсах прямоугольной формы в пределах до 10 с), разрядных промежутков до 10 м (в отдельных случаях до 0.3 м), давления до 150 атм, величины сосредоточенной нагрузки на электрод до 2500 кг/см и температуры до 160°С. Исследованный набор горных пород охватывает достаточно широкий диапазон изменения физико-механических свойств горных пород контактной прочности (64-290 кг/мм ), пористости (1-20.4%), прочности на сжатие (150-3900 кг/см ). Вольт-секундные характеристики пробоя некоторых горных пород и жидких сред на косоугольных импульсах напряжения представлены на рис. 1.16.  [c.39]

Полученные данные о пробивных напряжениях для различных промежутков при примерно одинаковых условиях пробоя согласуются с известной закономерностью изменения электрической прочности горных пород - рост в степени 1/2 от изменения величины промежутка.  [c.185]

Причина появления трещин отрыва вблизи выработок не связана, очевидно, с взрывным способом разрушения массива горных пород, ибо развитие подобных трещин наблюдается со временем в первоначально монолитных целиках, если они оказываются в зоне опорного давления. Замечено, что трещины отрыва в сжатой горной породе образуются в том случае, когда наибольшее главное напряжение 01 превосходит прочность горной породы на одноосное сжатие и значительно выше наименьшего главного напряжения (напряжения сжатия положительны).  [c.157]

В таком виде, с явной зависимостью Цсг, в [5] был предложен новый паспорт прочности горных пород.  [c.387]

При исследовании действия взрыва в грунтах и горных породах широко использовалась модель идеальной несжимаемой жидкости (сам взрыв считался мгновенным). При этом распределение импульсов давления и скоростей в пространстве сразу после взрыва определяется из решения некоторой краевой задачи для уравнения Лапласа и может быть построено достаточно эффективно. Такой подход развивали М. А. Лаврентьев, а также О. Е. Власов (1945). Он имеет определенное физическое обоснование, так как давление в камере взрывания от взрыва обычных ВБ достигает десятков и сотен тысяч атмосфер, что намного превышает прочность горных пород. В рамках этого направления О. Е. Власов и С. А. Смирнов (1962) разработали теоретическую схему дробления горных пород взрывом сосредоточенных и удлиненных зарядов, нашли границы и объем зоны дробления, распределение крупности дробления, вероятностный гранулометрический состав раздробленной части горного массива, оценили продолжительность процесса дробления. При этом было существенно использовано введенное О. Е. Власовым представление о критической скорости разрушения. Согласно этому представлению размер кусков породы, образующихся вследствие взрыва, таков, что разность двух соседних кусков равна некоторой критической величине (своей для каждого материала). Эти расчеты позволили получить общее описание характера дробления породы при взрыве. Отметим, что проблема равномерного дробления (чтобы в результате взрыва не оставались куски породы, размер которых превышает некоторый предельный объем, допускаемый из технологических условий) чрезвычайно важна в горнодобывающей промышленности и решению ее было посвящено много экспериментальных и теоретических работ.  [c.450]


Паспорт прочности горных пород следует строить отдельно для типовых условий и для аномальных участков.  [c.28]

Во всех условиях, когда интенсивность указанных процессов высока и прочность горных пород не обеспечивает сохранности выработки, применяют различные средства обеспечения выполнения функций, возлагаемых на данную выработку.  [c.38]

Для оценки прочности горных пороД применяется и теория, учитывающая влияние среднего нормального напряжения. Эта тео рия характеризует зависимость удельной энергии изменения формы  [c.28]

Анализ и исследования, выполненные в этой главе, обобщают достижения теоретического направления исследований деформационного поведения и прочности горных пород в условиях различных объемно-напряженных состояний, типичных для верхних частей земной коры. Они свидетельствуют о том, лто возможности функционального описания процессов деформации й разрушения горных пород еще достаточно Ограничены И Определяются степенью экспериментальной изученности этих процессов.  [c.41]

Физические (сжимаемость, пористость, проницаемость, удельное электрическое сопротивление, скорости упругих волн и др.) и механические свойства (пределы упругости и прочности) горных пород, как было показано во П главе, при всех видах объемных напряженных состояний зависят от деформационного поведения пород. Исходя из этого, при разработке экспериментальной аппаратуры основное внимание было уделено измерениям объемных деформаций пород.  [c.47]

Изучение влияния указанных трех факторов на прочность горных пород для установления качественных соотношений производилось с помощью дисперсионного анализа [136].  [c.124]

В последние годы широко обсуждается вопрос о необходимости учета влияния, среднего нормального напряжения, не учитываемого теорией Мора [9, 144, 190]. Для оценки прочности горных пород с учетом влияния среднего нормального напряжения применяют теорию касательного октаэдрического напряжения  [c.188]

Прочность горной породы — ее способность в определенны условиях воспринимать те или иные силовые воздействия, н( разрушаясь. Критериями прочности являются временные сопро тивления одноосному сжатию (Осш), растяжению (ор), сдви гу (т).  [c.30]

В теории ползучести изучаются законы связи между напряжениями и деформациями и методы решения соответствующих задач. Ползучесть материалов — это свойство медленного и непрерывного роста упругопластической деформации твердого тела с течением времени под действием постоянной внешней нагрузки. Свойством ползучести в большей или меньшей мере обладают все твердые тела металлы, полимеры, керамика, бетон, битум, лед, снег, горные породы и т. д. При нормальной температуре некоторые материалы (металлы, полимеры, бетон) обладают свойством ограниченной ползучести. С ростом температуры ползучесть материалов увеличивается и их деформация становится неограниченной во времени. Особенно опасно для элементов конструкций и деталей машин проявление свойства ползучести при высоких температурах. Уже при небольших напряжениях материал перестает подчиняться закону Гука. Ползучесть наблюдается при любых напряжениях и указать какой-либо предел ползучести невозможно. В отличие от обычных расчетов на прочность, расчеты на ползучесть ставят своей целью не обеспечение абсолютной прочности, а обеспечение прочности изделия в течение определенного времени. Таким образом, при расчете изделия определяется его долговечность.  [c.289]

Из курса физики известно, что целостность и неизменность размеров твердого тела, т. е. его прочность определятся силами межмолекулярного взаимодействия (внутренними силами). Вместе с этим известно, что при отсутствии внешних сил твердое тело остается прочным неопределенно долго. Известны горные породы, которые, не теряя прочности, просуществовали несколько миллиардов лет.  [c.20]

Механика деформируемого твердого тела включает в себя целый ряд наук, о теория упругости, теория пластичности, теория ползучести, аэрогидроупругость, механика грунтов и сыпучих материалов, механика горных пород и др. В механике деформируемого твердого тела принимается классификация науки по объектам изучения теория стержней и брусьев (основные объекты традиционного курса сопротивления материалов), теория пластин, теория оболочек, прочность машиностроительных конструкций, прочность строительных конструкций и т. д. Классификация по характеру деформированных состояний привела к теории колебаний, теории  [c.6]


Независимо от способа проведения испытания при ударе по абразиву на поверхности образца появляются четкие лунки и выступы, образованные в результате прямого внедрения абразивных частиц в эту поверхность в момент соударения с ней абразива. Глубина внедрения абразивных частиц в поверхность изнашивания образцов, испытанных при ударе по монолитному абразиву (особенно по горным породам высокой прочности, но низкой абразивности), меньше, чем для образцов, испытанных при ударе по незакрепленному абразиву или абразивной массе. В связи с этим шероховатость поверхности изнашивания образцов, испытанных при ударе по незакрепленному абразиву или абразивной массе, всегда больше, чем у образцов, изнашивание которых проходило при ударе по горным породам высокой прочности.  [c.63]

Разрушающее действие разрядов атмосферного электричества известно давно. В литературе описаны многочисленные случаи наблюдавшегося в природе разрушения естественных объектов и сооружений (деревья, скалы, башни, железобетонные опоры и т.п.) при ударе в них молнии. Электрический пробой твердой изоляции в электрических аппаратах и в системах передачи импульсного высокого напряжения тоже, как правило, сопровождается ее механическим разрушением. Это явление обращает на себя особое внимание в исследованиях электрической прочности твердых диэлектриков, когда зримо проявляются определенные закономерности характера разрушения материалов. Поэтому вполне естественно, что появилась идея полезного использования наблюдавшегося эффекта. Согласно предложению А.А.Воробьева /1/, способ разрушения горных пород и руд за счет их электрического пробоя с использованием импульсного высокого напряжения от емкостного накопителя энергии реализуется следующим образом. На кусок породы, породный массив устанавливают электроды (металлические контакты) и подают на них импульс высокого напряжения с уровнем напряжения, достаточным для электрического пробоя. Энергия, выделяющаяся в канале разряда, действует на материал подобно взрывчатому веществу и приводит к его разрушению. При достаточном количестве энергии в разряде способ позволяет разрушать отдельные куски породы, отделять порции материала с поверхности массива.  [c.9]

Создать технологию с непрерывным процессом разрушения массива затруднительно, поэтому дальнейшие исследования были направлены на то, чтобы снять указанные выше ограничения в условиях осуществления электрического пробоя. Требовалось создать условия, при которых пробой породы мог бы быть осуществим даже при наложении электродов только с одной свободной поверхности. В исследованиях электрической прочности жидких и твердых диэлектриков на косоугольной волне импульсного напряжения было установлено, что их вольт-временные зависимости пробоя (далее вольт-секундные характеристики - в.с.х.) характеризуются различным коэффициентом импульса ki. Данный коэффициент определяет степень роста напряжения пробоя на импульсном напряжении по отношению к напряжению пробоя на статическом напряжении (напряжении постоянного тока, тока промышленной частоты). С уменьшением времени экспозиции импульсного напряжения прочность жидких диэлектриков растет быстрее, чем для твердых диэлектриков, что приводит к инверсии соотношения электрических прочностей сред /2/. На статическом напряжении электрическая прочность твердых диэлектриков, как правило, превышает прочность жидких диэлектриков в одинаковых разрядных промежутках. Однако на импульсном напряжении при экспозиции напряжения менее 10- с электрическая прочность диэлектрических жидкостей и даже технической воды возрастает настолько, что становится выше прочности твердых диэлектриков и горных пород.  [c.10]

Показана /12/ возможность оценки электрической прочности и описания в.с.х. жидких сред и горных пород в условиях электроимпульсного разрушения с использованием предложенной в /5/ методики аналитического расчетно-экспериментального определения напряжения пробоя жидких диэлектриков по соотношению  [c.39]

Импульсная электрическая прочность горных пород повышается с ростом коэффициента крепости, модуля упругости и временного сопротивления на разрыв. Как механическая, так и электрическая прочность горных пород растет с увеличением степени метаморфизма. Важнейшее значение для ЭИ-технологии имеет то, что горные породы по электрической прочности различаются не так сильно, как различаются их физико-механические свойства. При семикратном отличии кварцита и песчаника по прочности на сжатие их электрическая прочность отличается менее чем в 2 раза. Характерно также, что наиболее электрически прочные породы в меньшей степени повышают ее при уменьшении времени экспозиции напряжения. Относительный рост напряжения пробоя h в интервале времени от 10- до 10 с для изверженных и метаморфических горных пород (кварцит, порфир, мрамор) составляет к = 1.5-1.7, а осадочных пород (сланец, уголь, песчаник) ki- 22-2.5. Эти обстоятельства  [c.40]

Использование данных об электрической прочности горных пород для оценки уровня рабочего напряжения в технологическом процессе ЭИ с реальным породоразрушающим устройством требует учета следующих обстоятельств. Прежде всего для многоэлектродной конструкции величина разрядного промежутка становится условным параметром (вводится понятие эквивалентного разрядного промежутка) и напряжение пробоя в соответствии с описанным выше механизмом автоматического распределения разрядов по забою и цикличности процесса разрушения изменяется от импульса к импульсу. Диапазон вариации напряжения пробоя зависит от конструктивных особенностей устройства, и главная задача при конструировании состоит в том, чтобы при прочих равных условиях (проектной производительности) обеспечить минимальный уровень рабочего  [c.41]


Это соотношение по структуре напоминает полученное в [11] соотношение, определяющее рост открытой магистральной трещины в пористой среде. В левую часть этих соотношений подобным образом входят задаваемые нагрузки, характерный размер дефекта (поры) и длина открытого участка трещины. Используя (12), можно произвести некоторые количественные оценки параметров рассмотренной модели. Если имеются данные о критической величине коэффищ1ента интенсивности напряжений, полученные в опытах по раскалыванию горной породы, то величину р можно оценить по данным испытаний горных пород на одноосное сжатие. Обозначим значение прочности горной породы на одноосное сжатие а р. Тогда из (11) следует р =2К с1па р.  [c.163]

Для характеристики прочности горных пород при их разрушении широкое распространение получила шкала М. М. Протодьяконова. Согласно этой шкале, породы делятся на 10 категорий (в высшей степени крепкие, очень крепкие, крепкие, довольно крепкие, средние и т. д.). Основанием для отнесения данной породы к той или иной категории служит коэффициент относительной крепости /, который представляет собой отношение временного сопротивления при сжатии данной породы к сопротивлению условной породы, принятой за эталон. В качестве последнего принята порода, разрушающаяся при действии статической нагрузки в 10 МПа. Таким образом, если какая-либо порода по этой шкале характеризуется коэффициентом относительной крепости / = 6, то это значит, что она разрушается при напряжении в 60 МПа.  [c.259]

Для процессов разрушения наиболее важными характеристик.ами горных пород являются их прочность (крепость), дробимость, измельчаемость и абразивность [2, 11, 66]. Прочностью горных пород называется способность твердого тела противостоять разрушению от действия внешних сил. Она характеризуется предельными напряжениями, которые могут быть созданы в опасном сечении тела при разных видах разрушающих воздействий. В табл. 11.1 приведены сведения  [c.82]

Отиосителъная прочность горных пород при разных видах напряжений, %  [c.82]

При выводе условий (2) и (3) мы заменили небольшой участок огибающей прямой линией, касающейся предельных кругов Мора для растяжения и сжатия. Для некоторых материалов такая замена является хорошей аппроксимацией эксиериментальных данных для более широкого диапазона напряженных состояний. Для сталей и некоторых магниевых сплавов коэффициент k близок к 1, Для серого чугуна k = 0,25. (Для большинства горных пород йредел прочности при сжатии в 10—50 раз превышает значение предела прочности при растяжении и поэтому для них k мало—от 1/10 до 1/50.  [c.70]

Для точения и фрезерования чугуна, отбеленного чугуна, ковких литых заготовок, дающих короткую стружку, а TaKiiie закаленной стали с пределом прочности на разрыв свыше 180 kI Imm K Для механической обработки сплавов легких металлов, медных сплавов, пластмасс, твердой (жесткой) бумаги, стекла, фарфора, кирпича, горных пород. Для изготовления сверл, зенковок, разверток Для точения п фрезерования чугуна твердостью до // = 200. Для строгания чугуна (см. также марку ТТЗ). Для механической обработки сплавов легких металлов, меди, медных сплавов. Для всякого рода изнашивающихся частей, например направляющих кулис, скользящих втулок, центров токарных станков, частей для измерения и испытания инструментов для протяжки буровых коронок Для механической обработки твердых пород дерева, спрессованного и пропитанного смолами листового материала на деревянной основе и тому подобных материалов. Для прессформ для керамических материалов. Для инструментов для волочения (протяжки) буров для ударно-перфораторного бурения и дру1их горных инструментов, испытывающих сильное напряжение  [c.558]

Изнашивание деталей и инструментов землеройных и строительных машин. Известны различные землеройные и строительные машины, детали которых непосредственно взаимодействуют с породой или искусственным камнем разной прочности. Это детали машин малой механизации (молотки, трамбовки, перфораторы, бетоно-ломы), которые изнашиваются очень интенсивно детали режущих органов и органов перемещения землеройных и дорожных машин, также интенсивно изнашивающиеся в результате высокой абразивности почв или горных пород и высокой динамичности процесса взаимодействия. Быстроизнашивающимися деталями являются звенья гусениц, рейки, цепи, катки, оси катков, подшипники, зубчатые колеса, зубья и ножи скреперов, грейдеров и бульдозеров.  [c.28]

Столь значительное облегчение механического разрушения минерала в присутствии растворов кислот (химически активных сред) позволяет рекомендовать практически использовать хемомеханический эффект в различных технологических процессах, связанных с измельчением и разрушением минералов при помоле в шаровых мельницах, бурении горных пород (в частности, карбонатных) и т. п. При этом следует учитывать возможность коррозии (растворения) металлов и минералов кислотами — понизителями прочности. Для заш,иты технологического оборудования и инструмента от коррозии необходимо добавлять в растворы кислот ингибиторы кислотной коррозии металлов на основе непредельных органических соединений ароматического ряда. Эти ингибиторы сильно хемосорбируются на переходных металлах (железо) за счет донорно-акцеп-торного взаимодействия электронов непредельных связей органической молекулы с незавершенными электронными уровнями металла и лишены этой способности относительно минералов, взаимодействуя с ними по механизму физической адсорбции. Как показали исследования, добавка ингибитора КПИ-3 даже при повышенной его концентрации (0,3 г/л) существенно не отразилась на величине эффекта (кривая 6). Испытание этого раствора на буровом стенде показало снижение величины усилия при резании мрамора в два раза.  [c.131]

С кубиками из горных пород, загруженными по двум или четырем граням и ДОВОДИМЫМИ до разрушения результат этих опытов показал практическую независимость предела прочности от среднего главного напряжения. Другие опыты А. Фёппль выполнял со свинцовыми шариками, подвергнутыми высокому гидростатическому давлению было установлено, что нет никаких признаков разрушения при напряжениях, во много раз превос-ходяш,их предел прочности, обнаруженный при одноосном сжатии. Большую известность приобрели опыты Т. Кармана ) (1911)  [c.547]

На рисунке 1.1 схематично дано сопоставление вольт-секундных характеристик пробоя в одинаковом разрядном промежутке твердого тела (горной породы) и жидкой среды. Точка пересечения вольт-секундных характеристик Ak соответствует равенству прочностей и вероятности электрического пробоя фавниваемых сред, и при экспозиции импульсного напряжения менее 10- с горная порода становится электрически слабее такого жидкого диэлектрика, как трансформаторное масло, а при экспозиции менее 2-3-Ю" с - слабее технической воды. В области диаграммы левее преобладает электрический пробой твердого тела. В диэлектрических жидкостях условия для реализации процесса более благоприятные, пробой в недиэлектрической жидкости требует импульсов напряжения с длительностью фронта на порядок меньше (10 с) и более высокого уровня напряжения (подробнее см. разд. 1.2). Так как в этом случае система электродов представляет для источника импульсов низкоомную нагрузку, то формирование на породоразрушающем инструменте импульсов напряжения с требуемыми параметрами представляет определенную техническую проблему /11/.  [c.10]


Реализация отмеченного эффекта инверсии электрической прочности диэлектриков в применении к разрушению пород поясняется на щсЛЛб,в. Когда к электродам, установленным на поверхность твердого тела (горной породы), прикладывается импульс напряжения U(l) с параметрами, соответствующими левой части графика от точки равнопрочности, пробой в промежутке с вероятностью более чем 50% происходит внутри твердого тела, а не по кратчайшему пути по поверхности твердого тела. (Далее это явление мы будем называть как внедрение разряда в твердое тело.) Послепробивная стадия процесса характеризуется протеканием в канале разряда импульса тока I(t) и выделением энергии W(t). При этом если в канале разряда достаточно быстро будет выделено необходимое количество энергии, то воздействие канала разряда на твердое тело по внешним признакам будет аналогично микровзрыву в твердом теле с образованием откольной воронки и отрывом части материала от массива или крупного блока (рис. 1.1 б), с разрушением куска материала на отдельные фрагменты (рис. 1.1в). Среда, окружающая разрушаемый массив материала с токоподводящими электродами, выполняет в процессе роль агента, способствующего электрическому пробою твердого тела и обеспечивающего технологическую функцию удаления продукта разрушения из зоны  [c.11]

В первых экспериментальных наблюдениях явления внедрения разряда в поверхностный слой твердого диэлектрика (А.Т.Чепиков) при использовании в качестве модельного материала пластичного фторопласта при пробое в толще материала (в поле продольного среза образца) отчетливо фиксировался обугливающийся след от канала разряда, а на образцах горных пород - воронка откола материала. Этими опытами были начаты систематические исследования физических основ способа и многообразных технологических его применений. Данная разновидность способа разрушения твердых тел электрическим пробоем, использующая эффект инверсии электрической прочности сред на импульсном напряжении, получила название электроимпульсного способа разрушения материалов (ЭИ). Работы многих исследователей свидетельствуют, что гамма пород и материалов, склонных к ЭИ-разрушению, достаточно обширна. Главными предпосылками для разрушения материалов таким способом является их склонность к электрическому пробою и хрупкому разрушению в условиях импульсного силового нагружения. Электрическому пробою подвержено большинство горных пород и руд, различные искусственные материалы -продукты пффаботки или синтеза минерального сырья, а именно те, которые по электрическим свойствам могут быть отнесены к диэлектрикам и слабопроводящим материалам. За пределами возможностей способа остаются лишь руды со сплошными массивными включениями электропроводящих минералов. По условиям разрушения к трудно разрушаемым из диэлектрических материалов относятся лишь не склонные к хрупкому разрушению в естественных условиях пластмассы и резины. Но и в данном случае применение метода охрупчивания материалов глубоким охлаждением делает ЭИ-метод разрушения достаточно эффективным."  [c.12]

Критериальные условия и вероятность пробоя. Критериальный параметр Ak=U/t (см. раздел 1.1), соответствующий равновероятности пробоя в параллельной системе сред и численно равный крутизне фронта косоугольного импульса напряжения, в значительной степени определяется тремя главными факторами видом горной породы, видом oкpyжiaющeй частицу разрушаемого материала внешней среды, формой импульса напряжения. В меньшей степени Ак зависит от геометрии электродов, величины разрядного промежутка и соотношения размеров разрядного промежутка и разрушаемого твердого тела. Особо отметим роль внешней среды. Важнейшей функцией среды является ограничение возможности развития разряда по поверхности материала, чем создаются благоприятные возможности для внедрения разряда в толщу твердого тела. Чем выше диэлектрические свойства внешней среды, тем проще реализуется процесс внедрения разряда в твердое тело. Наиболее предпочтительными в этом отношении являются минеральные масла и наиболее доступным является дизельное топливо как наиболее дешевое. В меньшей степени, но все же достаточно эффективно процесс реализуется и в воде. При более жестких условиях внедрение разряда в твердое тело достижимо также в вакууме, газовой или парогазовой среде. С ухудшением диэлектрических свойств точка равнопрочности сравниваемых сред смещается влево и численное значение критериального параметра Ак увеличивается. На импульсах с линейным нарастанием напря)кения (импульсы косоугольной формы) критериальный параметр Ак тождественен крутизне фронта импульса напряжения, и на основе обширного материала по электрической прочности различных горных пород оценка Ак имеет значения 200-500 кВ/мкс для системы горная порода - минеральные масла и 2000-3000 кВ/мкс для системы горная порода - вода . Применение данного критерия правомочно в достаточно широком диапазоне разрядных промежутков 10" -10 м и для геометрии электродов, свойственных технологическим устройствам разрушения пород. При другой форме импульсов напряжения параметр Ак корректируется коэффициентом, учитывающим форму импульса, в частности, на импульсах напряжения прямоугольной формы с наносекундным фронтом снижается на 20-30%.  [c.35]

Эффект полярности как следствие механизма ударной ионизации (стримерной теории пробоя) проявляется при пробое в резко неоднородном поле в форме превышения электрической прочности диэлектриков при отрицательной полярности импульса над прочностью при положительной полярности импульса. При пробое горных пород эффект полярности наблюдается лишь у достаточно прочных кристаллических пород - кварцита, порфира, но выражен незначительно (7-10%). В электроимпульсных породоразрушающих устройствах с симметричными электродами (для бурения и резания горных пород) эффектом полярности практически можно пренебречь.  [c.41]


Смотреть страницы где упоминается термин Прочность горных пород : [c.54]    [c.165]    [c.220]    [c.111]    [c.82]    [c.365]    [c.46]    [c.361]    [c.239]    [c.27]    [c.41]    [c.234]    [c.234]   
Справочник по обогащению руд Издание 2 (1982) -- [ c.82 ]



ПОИСК



Горный

Породы



© 2025 Mash-xxl.info Реклама на сайте