Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зубчатые Контроль — виды

При производстве зубчатых колес осуществляют три вида контроля профилактический, текущий и приемочный. Профилактический контроль включает в себя контроль средств производства станка — геометрический и кинематический инструмента — нового и после заточки приспособления — вне станка и на станке заготовки — после ее обработки, на станке — перед выполнением технологических операций обработки изделия, с целью обеспечения требуемой точности изготовления зубчатых колес. Этот вид контроля особенно эффективен при производстве зубчатых колес, червяков и червячных колес, поскольку имеется тесная связь между точностью средств производства и точностью готового изделия.  [c.693]


Отличительной особенностью этих приспособлений является относительная простота и сочетание однородных узлов в приспособлениях, предназначенных для контроля различных видов зубчатых колес.  [c.196]

Большое разнообразие требований к точности зубчатых колес в зависимости от условий эксплуатации, различие в габаритных размерах колес (диаметры от 1—2 мм до 5000 мм и более), в технологических приемах их изготовления и объемах производства создают необходимость применения различных методов и средств контроля и не позволяют установить единый, унифицированный способ контроля всех видов колес.  [c.441]

Эта схема может обеспечить точную и надежную работу автоматического прибора для однопрофильного контроля в условиях массового производства. В этой схеме измерительное колесо 2 должно иметь те же параметры, что и контролируемое 1. Для массового производства это несложное требование, так как для контроля каждого вида зубчатых деталей применяется индивидуальное измерительное колесо. Все радиальные погрешности промежуточ-  [c.450]

Индуктивный метод измерения обладает рядом преимуществ датчики просты но конструкции, надежны в работе и обеспечивают высокую точность измерения этот метод обеспечивает дистанционное управление, что весьма важно для комплексной автоматизации производственных процессов. Очень важным преимуществом этого метода является непрерывность контроля и возможность фиксации результатов контроля в виде графика, что весьма удобно при контроле, например, зубчатых колес, перемещения инструмента и т. д.  [c.349]

При изготовлении зубчатых колес обычно применяют контроль трех видов профилактический, производственный и приемочный (рис. 9.2).  [c.159]

Для обеспечения высокого качества изготовления зубчатых колес применяют контроль трех видов.  [c.213]

Контроль зубчатых колес других видов и типов проводится по отраслевым или иным нормативным документам.  [c.814]

Для каждой из трех норм точности и видов сопряжения установлены комплексные и поэлементные показатели. Выбор методов и комплексов контроля зависит от точности зубчатых колес, их размеров, условий производства, назначения передач и других факторов. Соответст вующие рекомендации приведены в пособиях [11, 19].  [c.209]

Примеры комплексов показателей точности для трех видов контроля зубчатых колес, используемых в скоростных и кинематических цепях, приведены в табл. 58.  [c.693]

Принципы классификации. Для удобства изучения механизмов и разработки общих методов проектирования и расчета их целесообразно классифицировать. Могут быть использованы разные признаки классификации по характеру движения — плоские и пространственные по видам кинематических пар — механизмы с низшими и высшими парами по назначению — механизмы приборов для контроля давлений, температуры, уровня ИТ. п. по принципу передачи усилий — механизмы трения и зацепления по конструктивному признаку — шарнирно-рычажные, кулачковые, фрикционные, зубчатые, червячные и т. д. по количеству звеньев — четырех-, шести- и многозвенные. В зависимости от задач, поставленных перед исследователем, пользуются той или иной классификацией, лучше всего удовлетворяющей решению этих задач.  [c.14]


Выявление только биения зубчатого венца цилиндрических колес осуществляется при контроле на биениемерах с измерительным наконечником в виде исходного контура. В цеховой практике, особенно при контроле биения крупногабаритных зубчатых колес, применяются шарики или цилиндрические ролики. В этих случаях для того, чтобы выяснились только радиальные составляющие, необходимо иметь такой диаметр  [c.190]

При создании этих приборов для двухпрофильного комплексного контроля стремились разработать конструкцию, которая удовлетворяла бы различным отраслям производства. Это естественно наложило определенный отпечаток на характер оснащения прибора сменными узлами и регистрирующими устройствами. Приборы МИЗ обладают широкой технической характеристикой по размерам и видам контролируемых зубчатых колес и предназначаются для условий мелкосерийного производства.  [c.195]

Для контроля косозубых цилиндрических зубчатых колес, особенно в турбинном производстве, в последние годы стали внедряться волномеры, с помощью которых осуществляется косвенный контроль циклической погрешности. Циклические ошибки в зубчатом колесе, полученном фрезерованием, сопровождаются появлением на боковой поверхности зуба неровностей в виде периодически повторяющихся волн. Определением с помощью волномера этих неровностей представляется возможность косвенно измерить величину циклической ошибки. Разработанный на Кировском заводе (Ленинград) волномер позволяет контролировать зубчатые колеса модуля от 1,5 до 10, независимо от диаметра [26]. Челябинский инструментальный завод приступил к освоению этих приборов.  [c.202]

Во многих цехах заводов транспортного машиностроения для оценки плавности работы зубчатого колеса производится контроль погрешности основного шага цилиндрических зубчатых колес. Иногда применяют приборы иностранных фирм и, в частности, фирмы Мааг (Швейцария). В этом приборе имеется один тангенциальный (в виде плоскости) и один точечный измерительные наконечники. При обычных измерениях с помощью этих приборов осуществляется контроль отдельных значений основного шага. Однако в процессе рабочего зацепления погрешность основного шага проявляется на всем перекрытии соседних профилей и, следовательно, измерение отдельных значений основного шага является недостаточным. Кроме того, при определении непрерывной погрешности основного шага у зубчатых колес, боковая поверхность которых подвергается шлифованию методом обката, выясняется ошибка в заправке шлифовального круга, т, е. ошибка, которую можно рассматривать как отклонение радиуса основной окружности.  [c.205]

На фиг. 33 показан общий вид указателя течения масла, а в табл. 9 приведены характеристики и основные размеры этих указателей. Указатели течения применяются для визуального контроля подачи масла к зубчатым и червячным зацеплениям и подшипникам скольжения редукторов, шестеренных клетей и электрических машин, подшипникам жидкостного трения и крупногабаритным подшипникам качения, установленным на шейках валков прокатных станов. Указатель устанавливается непосредственно на трубопроводе, подводящем смазку к зацеплению или подшипнику, в удобном для наблюдения месте. Под давлением масла, поступающего в корпус указателя справа, по направлению стрелки на корпусе, затвор указателя, преодолевая сопротивление пружинки, отклоняется на некоторый угол по часовой стрелке и при прохождении через указатель непрерывного потока масла остается в этом положении, немного отклоняясь от него в ту и другую сторону. Колебания затвора, отклоненного потоком масла, наблюдаются через стекло указателя.  [c.69]

Подобный порядок следует применять для подсчета допустимых отклонений индикаторов в приспособлениях для контроля не только всех видов зубчатых колес, но и вообще в приспособлениях с от-счетными измерителями.  [c.256]

Внедрение зубошлифования и комплексной двухпрофильной проверки зацепления в свое время являлось крупным достижением Рижского вагоностроительного завода. Дальнейшая работа по повышению качества передачи привела к модификации профиля зуба внедрению фланкирования и образованию продольных фасок на зубьях при чистовом фрезеровании. Имея в виду перспективу повышения степени точности зубчатых колес, переход к однопрофильному контролю зацепления, уже сейчас необходимо обратить внимание на контроль профиля зуба. (В разделе И показана связь погрешностей профиля не только с динамикой самой передачи, но и с работоспособностью деталей тяговых двигателей.) Следует наладить методы контроля, выясняющие непрерывное изменение контролируемого параметра, а не только его экстремальные значения.  [c.233]


Проверка колеса на качание производится обстукиванием мягким металлическим молотком. Другие виды погрешностей смонтированного на валу зубчатого колеса обнаруживают при контроле узла с помощью индикатора. Для этого вал 1 устанавливают на плите 2 на призмы (рис. 386, а) и изменением высоты регулируемой призмы 3 добиваются параллельности оси вала плоскости плиты. После этого сверху между зубьями колеса 4 помещают цилиндрический калибр 5 диаметром 1,68/п (т — модуль), на который устанавливают ножку индикатора 6 и замечают положение его стрелки. Перекладывая калибр через один-два зуба и поворачивая вал, определяют разницу в показаниях индикатора для всего зубчатого колеса. Допуски на радиальное биение приведены в табл. 49.  [c.427]

Собранные зубчатые и червячные передачи в целях приработки трущихся поверхностей, контроля сборки и проверки в условиях, близких к эксплуатационным, подвергают обкатке под нагрузкой. При этом ведущий вал передачи присоединяют к электродвигателю, а выходной вал нагружают крутящим моментом в виде гидравлического или электрического тормоза. Такой метод обкатки требует значительных затрат электроэнергии.  [c.461]

Среди конструктивных особенностей узла переднего подшипника турбины заслуживают внимания зубчатая передача от главного вала для привода масляных насосов и регулятора, которая заменила применявшуюся ранее червячную передачу, подверженную в ряде случаев быстрому износу направляющие, расположенные по краям корпуса переднего подшипника, ограничивающие его отставание от рамы при тепловых расширениях сосредоточение в этом блоке основных элементов управления машиной и системы смазки. Все механизмы, расположенные в корпусе переднего подшипника, легко доступны для контроля и ревизии без разборки всего подшипника. Каждый узел, составляющий блок переднего подшипника, сделан так, что может быть испытан отдельно и установлен в собранном виде.  [c.207]

Контроль зубчатых колес делится на два вида окончательный и технологический. Цель окончательного контроля — оценка соответствия точности изделия требованиям, определяемым его назначением, и сортировка изделий на годные и бракованные. Технологический контроль Имеет целью выявление погрешностей процесса изготовления по результатам измерения зубчатых колес для подналадки технологического процесса.  [c.898]

При необходимости обработки венца зубчатого колеса или червяка в собранном виде данные, необходимые для их изготовления и контроля, помещаются только на сборочном чертеже.  [c.382]

Проверку колеса на неплотнее прилегание к шейке вала осуществляют путем обстукивания ступицы молотком из мягкого материала. Другие виды погрешностей контролируют с помощью индикаторных устройств. Радиальное биение зубчатых колес не должно превышать допусков, указанных в табл. 13. Контроль радиального биения вала осуществляется при установке его в центрах или на призмах (рис. 35) или по эталону (рис. 36). При этом осуществляется контроль и торцового биения колеса.  [c.314]

Непосредственный контроль зубчатых колес, реек, червяков, конических и червячных пар и передач всех видов по всем показателям устанавливаемого стандартом комплекса не является обязательным, если изготовитель гарантирует выполнение соответствующих требований стандарта. При необходимости ОСТ и СТП устанавливают требования к допустимому уровню шума и вибраций, потерям на  [c.357]

Структура построения стандарта показана на схеме 1.2. Особенности стандарта заключаются в следующем точность изготовления зубчатых колес характеризуется кинематической точностью, плавностью работы колеса и контактом зубьев, на которые имеются нормы для каждой из трех норм предусматриваются степени точности для каждой нормы точности имеются несколько комплексов контроля, но изготовитель использует только по одному в каждой норме независимо от точности изготовления выбирается один из шести видов сопряжения, определяющий гарантированный (наименьший возможный) боковой зазор между профилями в передаче.  [c.215]

При назначении точностных требований к зубчатым колесам и выборе методов и средств контроля исходят из положения, что контроль всех параметров зубчатого колеса не является обязательным, если вся система контроля в процессе производства обеспечивает выполнение заданных норм точности. Это указывает на необходимость применения не только окончательного контроля готового зубчатого колеса, но и на использование других видов контроля профилактического контроля, технологического контроля и активного контроля.  [c.441]

Приемочному контролю подвергаются все зубчатые колеса, если система контроля в процессе производства не гарантирует выполнения заданных норм в результате применения профилактических видов контроля, технологического и активного видов контроля.  [c.443]

Значительные трудности представляет контроль нового зуборезного инструмента. Режущий инструмент в виде зуборезных долбяков, шеверов, притирочных колес, зубчатых хонов и т. д. имеет форму, близкую к цилиндрическим косозубым зубчатым колесам. Вследствие этого такие виды зуборезного инструмента контролируются на наиболее точных приборах, предназначенных для контроля цилиндрических зубчатых колес.  [c.444]

Технологический контроль зубчатого колеса отличается от окончательного контроля тем, что этот вид контроля имеет другую цель, а именно, на основе результатов контроля детали проверить правильность наладки данной технологической операции и при необходимости позволить произвести под-  [c.444]


Для прямозубого некорригированного реверсируемого зубчатого колеса (т = 4 мм, Zj =50, d = 200 мм) делительного механизма выбрать степени точности и показатели точности по нормам точности и виду сопряжения зубьев. Контроль зубчатого колеса может быть выполнен на межцентромере и норма-лемере. Зацепление смазывается окунанием.  [c.180]

Наметить степени точности, вид сопряжения, вид допуска и класс отклонений Определить допуски и предельные отклонения комплексных и поэлементных показателей точности зубчатых колес, передачи, обосновать показатели точности. Указать, какие показатели точности было бы лучше применить в данном случае начерти1ь эскизы, пояснить принцип действия и конструкцию измерительных приборов и их основных узлов, которые следует использовать для контроля заданной зубчатой передачи и ее зубчатых колес.  [c.184]

Особенно тесная связь между указанными процессами суш,ествует при книематическом копировании, например при получении эволь-вентных, спиральных и винтовых поверхностей методом обкатки, контроле зубчатого колеса в однопрофильном зацеплении с точным образцовым колесом, контроле копира 1 сравнением его g профилем образцового копира 2 (рис. 6.4) и т. д. Так, при контроле крепежных резьб важным и обоснованным показателем является их свинчивае-мость с контрдеталью, а при контроле кинематических резьб важно обеспечить одностороннее силовое замыкание. Для рассортировки шариков подшипников по диаметру используют клиновой калибр (рис. 6.5), выполненный в виде двух расходяш ихся под углом 2а линеек. Существует два метода его настройки по образцовым шарам (расположенным в сечениях —А и Л,—с заданными диаметрами d и D) и по блокам концевых мер длины. При настройке необходимо вводить поправки на размеры блоков, так как геометрия и материал этих образцов отличны от геометрии и материала контролируемых деталей, а следовательно, различны положение точек соприкосновения С G линейками и смятие соприкасающихся поверхностей.  [c.141]

Органы управления прибором показаны на рис. 39. Переключатель 1 пределов измерений может занимать семь положений соответственно семи ступеням вертикальных увеличений. Переключатель 2 вида работ может занимать четыре положения, 1) Возврат на нуль , 2) Измерения , 3) Затрублено , 4) Запись причем в положении 3 выполняют все манипуляции с ощупывающей головкой, а в положении 1 возвращают при измерениях стрелку показывающего прибора на нулевое деление шкалы. Тумблер 3 питания, находящийся на массивном корпусе прибора вне панели управления, включает одновременно лампу питания, а рядом с ним находится щиток переключателя напряжения питания 127 и 220 В. Тумблер 4 контроля напряжения при работе находится в нижнем положении (ЗП, ПП), а верхнее положение ( Контроль питания ) используют при контроле величины напряжения питания. Контрольный прибор 5 служит для контроля настройки профилографа-профилометра. В положении 120 (крайнем правом) переключателя 1 его стрелка не должна отклоняться влево более чем на 6 В, а при настройке головки она должна быть в верхнем прямоугольнике шкалы и при измерениях в пределах 20— 32 В. Включателем 6 включают движение бумажной ленты при записи профилограммы. Плата 7 служит для установки сменных зубчатых колес для получения нужного горизонтального увеличения. Перо 8 имеет сверху конус для заливки чернил, которыми производят запись. Корректором 9 пера устанавливают перо на середину бумажной ленты при записи. Планкой 10 прижимают профилографную бумажную ленту. Замком 11 запирают крышку записывающего прибора. Рычаг /2 служит для стопорения мотопривода на стойке корпуса прибора. Рычагом 13 переводят (взводят)  [c.141]

Для контроля шума зубчатых колес, передач и других механизмов в цехах с уровнем шума порядка 70—75 децибел можно с успехом применять звукоизолированные кабины, стены которых выполнены в виде двойных деревянных перегородок с воздушной прослойкой, со специальным полом и потолком. Это обеспечивает снижение цехового уровня шума на 10—12 децибел.  [c.323]

Мы уже познакомились с условными изображениями передач и механизмов на кинематических схемах. Однако для проектирования машин нужны не схематические, а конструктивные изоб[ражен я, которые 31начительно отличаются от первых. В СССР действует Государственный стандарт, устанавливающий точные требования к изображению отдельных деталей и передач. Конечно, мы не можем здесь рассмотреть все разновидности деталей и приведем конструктивные изображения лишь нескольких важнейших передач. На рисунке 92 показано, как изображаются зубчатые, червячные и реечные передачи, храповые механизмы и пружины (без обозначения размеров). Как видим, на чертежах в определенном масштабе даются контуры деталей и их элементов, приводятся необходимые разрезы, помогаюш,ие уяснить конструкцию и ее особенности. Таким образом, чертежом называют графическое изображение пространственной формы машины, детали и ее элементов на плоскости в виде проекций, построенных в определенном масштабе и даюшдх исчерпывающие данные для изготовления и контроля деталей.  [c.222]

Метод первый. На контролируемом станке нарезается одно или несколько зубчатых колес, параметры которых соответствуют колесам, подлежащим обработке на данном станке. Нарезанные пробные колеса обмеряются, в результате чего устанавливается соответствие этих колес нормам точности на зубчатые ко.песа, подлежащие производству. Такой мгтод контроля может применяться для зуборезных станков любых видов. Однако результаты подобного контроля в подавляющем количестве случаев оказываются малопригодными для того, чтобы вынести вполне определенное суждение о точности основных кинематических пар станка (поскольку взаимное сочетание влияний многих факторов является достаточно сложным).  [c.633]

Точность обработки заготовок. Качество окончательно изготовленных конических и гипоидных зубчатых передач в значительной степени определяется точностью обработки заготовок. Наиболее ответственными поверхностями являются шейки, отверстия и опорные торцы, которые являются базами при зуборбработке, контроле и сборке. В табл. 26 приведены допуски на отверстия и шейки типовых конических зубчатых колес в закаленном и незакаленном виде в зависимости от их степени точности (ГОСТ 1758 — 81).  [c.356]

Зубчатые колеса и передачи контролируют, как правило, специализированными средствами измерения и контроля. Выполнение требований каждого вида норм точности (кинематической, плавности, контакта) и сопряжений может контролироваться проверкой комплексных показателей или комплексов поэлементных показателей. В табл. 25 перечислены возможные комплексы контроля зубчатых колес в зависимости от степени точности указаны также наибольщие значения диаметров делительных окружностей (тахлО или наибольщая ширина венца, ограничивающие целесообразное использование указанных комплексов для контроля зубчатьп< колес.  [c.39]

Единообразие построения стандартов на правила вьшолнения чертеже зубчатых колес и звездочек для различных т1 пов цепей обеспечивает удоб ство при их использовании. Стандарты выделяют информацию, обязатель ную для указания на изображении зубчатого колеса или звездочки соответ ствующего вида, и помещаемую в таблице параметров. Сведения, помещав мые на чертеже, даются в минимальном объеме, но достаточном для изго товления и контроля зубчатого колеса или звездочки.  [c.150]

Обозначение степени точности зубчатого колеса включает указание степени точности, предельных отклонений толщины зуба или длины общей нормали и вида комплексного контроля. Например, 9ds" обозначает 9-ю степень точности, верхнее и нижнее отклонение толщины зуба по d 9 fs" — верхнее отклонение по с и нижнее отклонение по f допуск на колебание толщины зуба fs (для одного колеса) равен допуску любого поля d или с или f приемка колеса методом двухпрофильной обкатки (S")-  [c.131]


Во-первых, скачкообразное увеличение тренда (большой скачок тенденции тренда) свидетельствует о быстром развитии дефектов, связанных с нарушением структуры материала (поломок деталей) или конструкции (нарушения взаимного положения ее элементов), например обрыв лопаток, разрушение лопаток, муфт, зубчатых колес, отслаивание фундаментов и т.д. Внезапные изменения тренда важны при стационарном мониторинге и поэтому их регламентируют некоторыми нормами [5]. Контроль по этому вибропараметру является более чувствительным к некоторым видам дефектов и позволяет производить их обнаружение на более ранней стадии развития. Это свойство контроля скачкообразного изменения уровня тренда вибрации ярко проявляется, например, при таком повреждении как поломка лопатки турбины. В некоторых случаях поломка лопатки может привести даже к снижению контролируемого уровня вибрации в случае, если она ориентирована по вектору остаточного дисбаланса ротора. На рис. 2 показана зависимость тренда СКЗ виброскорости от изменения нагрузки машины при поломке, например, лопатки турбины.  [c.367]

Проекторы предназначаются для контроля деталей со сложными фасонными поверхностями, как, например, кулачков, резьбовых калибров, мелкомодульных зубчатых колес, часовых резьб, шаблонов, червячных и дисковых фрез и др. Имеется много различных типов отечественных и зарубежных проекторов, используемых в машиностроении и в приборостроении. Принцип действия почти всех типов проекторов мало чем отличается один от другого и заключается в том, что контролируемая деталь или часть ее проектируется в увеличенном виде на экран. На светлом фоне экрана получается теневое изображение детали. На экран может помещаться чертеж, выполненный на стекле или кальке, с одним или двумя предельными контурами детали, в масштабе, равном увеличению проектора. Такой чертеж называется проек-  [c.346]


Смотреть страницы где упоминается термин Зубчатые Контроль — виды : [c.206]    [c.41]    [c.274]    [c.203]    [c.113]    [c.382]    [c.319]   
Справочник металлиста Том 1 Изд.2 (1965) -- [ c.898 ]



ПОИСК



Зубчатые Контроль

Контроль — Виды

Система и виды контроля цилиндрических зубчатых колес (д-р техн. наук Б. А Тайц, д-р техн. наук Н. Н Марков)



© 2025 Mash-xxl.info Реклама на сайте