Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Собственные напряжения при сварке

Перечисленные мероприятия способствуют уменьшению собственных напряжений при сварке, гарантируют допустимое их значение для предотвращения трещин в процессе сварки и для повышения эксплуатационной надежности конструкции.  [c.612]

I. ОБРАЗОВАНИЕ ДЕФОРМАЦИИ И СОБСТВЕННЫХ НАПРЯЖЕНИИ ПРИ СВАРКЕ  [c.110]

Основным источником образования собственных напряжений при сварке является неравномерный разогрев свариваемых деталей. При рассмотрении процесса образования собственных сварочных напряжений следует учитывать следующие обстоятельства.  [c.110]


ЯМ В пространстве. В элементах относительно небольшой толщины, например меньше 30 мм, компонент собственных напряжений, направленный по толщине, весьма мал. Поле собственных напряжений при сварке рассматривается весьма часто как плоскостное. Во многих типах соединений, например в продольных швах, в элементах небольших толщин поля собственных напряжений условно принимаются как одноосные.  [c.111]

Н и к о л а е в Г. А., и др.. Образование собственных напряжений при сварке металла больших толщин, Автоматическая сварка № 6, 1960.  [c.546]

Прочность и высокая работоспособность сварных конструкций гарантируются выполнением конструктивных и технологических требований по уменьшению собственных напряжений при сварке. Основные технологические требования для уменьшения соб ственных напряжений в процессе сварки следующие  [c.197]

ГЛАВА 7 СОБСТВЕННЫЕ НАПРЯЖЕНИЯ ПРИ СВАРКЕ  [c.186]

Изучение собственных напряжений при сварке целесообразно начинать с простейших примеров. Рассмотрим изм нение напряжения при нагреве стержня, закрепленного по концам (рис. 7.6, а), до 500 °С и последующем его охлаждении. Будем полагать, что модуль упругости Е и предел текучести для низкоуглеродистой стали изменяются непрерывно с повышением температуры, как показано на рис. 7.3 и 7.5. Материал идеальный упругопластический (см. рис. 7.4). Напряжения сжатия на рис. 7.6, б будем откладывать вниз, а напряжения растяжения—вверх полные деформации удлинения, равные сумме упругих и пластических, — вправо, а деформации укорочения — влево. Для определения деформаций будем использовать формулу (7.2), а для определения напряжений — формулу  [c.190]

Существуют экспериментальные методы определения остаточных напряжений рентгеновский, магнитный, ультразвуковой и механические. Чаще используют механические методы, которые основаны на измерении деформаций металла при освобождении его от остаточных напряжений. Сварочные напряжения определяют, например, для анализа напряженного состояния при исследовании выносливости соединений, сопротивляемости разрушению при наличии трещин, коррозионной стойкости, а также в целях установления эффективности использованных методов снижения собственных напряжений при сварке, после сварки или термической обработки и для определения усадки и возникающих при этом перемещений. В качестве измерительных преобразователей перемещений часто используют механические приборы и тензорезисторы, значительно реже — индуктивные и пневматические преобразователи. Рассмотрим пример определения одноосных остаточных напряжений Ох в сварной  [c.198]


Как было указано выше, устранение объемных остаточных напряжений в швах большой толщины высоким отпуском приносит пользу. Особые меры в отношении устранения остаточных напряжений принимаются при сварке конструкций, работающих в условиях глубокого холода (сосуды химической аппаратуры и др.). С целью повышения пластических свойств сварных изделий этого рода последние для устранения в них собственных напряжений после сварки подвергаются высокому отпуску. Хороший провар, отсутствие трещин, включений, подрезов являются важными факторами, способствующими сохранению сварными соединениями пластических свойств, при которых остаточные напряжения перестают оказывать вредное влияние на работу конструкций под статическими силами.  [c.213]

На величину деформаций и напряжений при сварке существенное влияние оказывает ряд факторов жесткость или размеры и конструкция соединяемых элементов реактивные силы, возникающие обычно вследствие ограничения деформаций свариваемых элементов активные силы от собственного веса изделия или от полезной нагрузки последовательность наложения швов режим сварки и число слоев температура подогрева различия в составе, теплофизических свойствах, характере и температурных интервалах фазовых превращений металла шва и основного металла и т. д. [28—30].  [c.21]

Расширение и сокращение металла от неравномерного нагрева или охлаждения, а также от структурных превращений образуют так называемые собственные, или внутренние деформации и напряжения при сварке. В отличие от напряжений и деформаций, создаваемых нагрузками, собственные напряжения и дес рмации существуют в теле при отсутствии каких-либо нагрузок.  [c.186]

Углерод понижает теплопроводность стали, вследствие чего зона нагрева при сварке становится более широкой. Это способствует возникновению в сварных изделиях значительных собственных напряжений от сварки. Повышенное содержание углерода в присадочной проволоке увеличивает предел прочности и уменьшает пластические свойства металла шва. В присадочных стержнях для сварки серого чугуна, где интенсивность графитизации в значительной мере зависит от суммарного содержания в чугуне углерода, количество этого элемента доводится до 3,5—4%.  [c.161]

Холодные трещины образуются при быстром охлаждении и, как правило, на завершающем этапе мартенситного превращения (ниже 200—400° или после сварки) под влиянием местных собственных термических напряжений, а также напрял<ений, вызванных распадом аустенита в мартенсит, образование которого сопровождается изменениями объема металла. С увеличением содержания углерода в стали склонность ее к мартен-ситному превращению и холодным трещинам возрастает. Холодные трешины всегда возникают по границам зерен, но в дальнейшем мог>т распространяться и по телу зерна. На образование холодных трещин при сварке углеродистой стали существенное влияние оказывает термический цикл сварки. Длительная выдержка стали при температурах выше критической точки Асз вызывает рост зерен аустенита и увеличивает хрупкость стали. Повышенная скорость охлаждения способствует образованию мартенсита в структуре шва и основного металла. Наоборот, при малых скоростях охлаждения аустенит распадается на более стабильные структуры, что обеспечивает большую пластичность металла и предупреждает появление трещин от возникновения собственных напряжений при структурных изменениях в стали.  [c.205]

Возникновение собственных сварочных напряжений (т. е. без приложения внешних сил) происходит следующим образом. Вследствие неравномерного разогрева изделия при сварке (рис. 5.49, а)  [c.229]

К основным физическим процессам при сварке плавлением относятся электрические, тепловые, механические процессы в источниках нагрева плавление основного и электродного (присадочного) металла, их перемешивание, формирование и кристаллизация сварочной ванны ввод и распространение тепла в свариваемом соединении, приводящее к изменению структуры металла в шве и зоне термического влияния и образованию собственных сварочных деформаций и напряжений.  [c.19]


В зависимости от продолжительности существования собственные напряжения и деформации при сварке разделяют на времен-  [c.32]

Образование сварочных деформаций и напряжений. Основными причинами образования собственных напряжений и деформаций в сварных соединениях и конструкциях являются неравномерный нагрев и охлаждение металла при сварке, структурные и фазовые превращения, механическое (упругое и пластическое) де( р-мирование при сборке, монтаже и правке сварных узлов и конструкций.  [c.33]

Опреде.тение напряженного состояния в конструкции, т. е. определение величины и вида напряжений в элементах конструкций. Эти напряжения состоят из рабочих напряжений, возникающих от внешнего нагружения (вес груза, давление и др.) или связанных с условиями эксплуатации (например, температурные напряжения) собственных напряжений, возникающих при сборке, сварке и т. д.  [c.37]

Количественным критерием оценки сопротивляемости сварного соединения образованию холодным трещинам являются минимальные внешние напряжения, при которых начинают возникать холодные трещины при выдержке образцов под нагрузкой, прокладываемой сразу же после сварки. Внешние нагрузки воспроизводят воздействие на металл собственных сварочных и усадочных напряжений, которые постоянно действуют сразу после сварки при хранении и эксплуатации конструкции.  [c.44]

Закономерности формирования химического состава металла шва изложены в разд. III Физико-химические и металлургические процессы при сварке . Материал первых двух разделов дает описание тех физических и температурных условий, которые создаются над поверхностью металла и в самом металле в процессе сварки. В этом плане материал первых двух разделов представляет собой как бы описание того физического фона, от которого зависит протекание реакций, переход различных легирующих элементов в металл шва или их удаление и окисление. Вопросы защиты металла шва и массообмена на границе металл— шлак и металл — газ — центральные в разд. III. Эти процессы предопределяют химический состав металла шва, а следовательно, во многом и его механические свойства. Однако формирование свойств сварного шва, а тем более сварного соединения, определяется не только химическим составом металла. Характер кристаллизации шва во многом влияет на его свойства. Свойства околошовной зоны и в определенной мере металла шва существенно зависят от температурного и термомеханического циклов, которые сопровождают процесс сварки. Для многих легированных сталей и сплавов эта фаза формирования сварного соединения предопределяет их механические свойства. Процесс сварки может создавать в металле такие скорости нагрева и охлаждения металла вследствие передачи теплоты по механизму теплопроводности, которые часто невозможно организовать при термической обработке путем поверхностной теплопередачи. Образование сварного соединения сопровождается пластическими деформациями металла и возникновением собственных напряжений, которые также влияют на свойства соединений. Эти вопросы рассматриваются в IV, заключительном разделе учебника — Термодеформационные процессы и превращения в металлах при сварке .  [c.6]

При проектировании машиностроительных конструкций следует а) выбирать генеральную схему с учётом целесообразного распределения в ней усилий б) обеспечить возможность рационального изготовления конструкций в) учитывать вибрационную прочность конструкций и г) учитывать термическое воздействие, оказываемое на конструкции сваркой (собственные напряжения и деформации).  [c.848]

Собственные напряжения первого рода (механические) называются температурными, если они вызваны неравномерным нагревом или остыванием изделия, и остаточными, если возникли в результате пластических деформаций при сварке.  [c.857]

Собственные напряжения учитываются как плоскостные при сварке изделий, у которых один из размеров мал по сравнению с двумя другими, например, тонких пластин и оболочек.  [c.857]

Деформации элементов при сварке в значительной мере изменится при наличии в заготовках собственных остаточных напряжений, вызванных технологическими операциями, предшествующими сварке (прокатка, газовая и дуговая резка и т. д.). Определить ориентировочную величину ожидаемой деформации конструкции после сварки можно лишь при условии, когда металл, подлежащий свариванию, не имеет собственных напряжений. Если свариваемый металл подвергался газовой или дуговой резке, то после сварки деформации часто оказываются меньшими, чем в конструкции, элементы которой были обработаны механическим путём.  [c.861]

При рассмотрении характера сварочных напряжений целесообразно разделить их на собственно сварочные напряжения, обусловленные лишь неравномерностью нагрева изделия при сварке, и напряжения, вызванные  [c.60]

При определении несущей способности по критериям сопротивления циклическому нагружению учитываются силовые и температурные нагрузки внутреннее и наружное давление, собственный вес изделия и его содержимого, вес других присоединенных элементов, реакции опор и трубопроводов, температурные воздействия, вибрации, сейсмические нагрузки. В расчете учитываются остаточные напряжения от сварки однородных и неоднородных материалов, остаточные напряжения от сварки суммируются с напряжениями от указанных выше нагрузок.  [c.220]

Обеспечивая протекание с известной скоростью технологического процесса сварки, они вместе с тем являются причиной структурных, объемных и пластических изменений в металле, в результате которых в элементах конструкций возникают собственные напряжения и остаточные деформации. Необходимость непрерывного повышения качества сварных изделий и производительности сварки определяет практический интерес, который приобретают исследования распространения тепла в процессе сварки или наплавки при помощи аналитических, экспериментальных методов и методов аналогии.  [c.411]


Напряжения. При анализе напряжений, вызванных сваркой, наибольший интерес представляют собственные напряжения. Собственные напряжения в зависимости от характера сил, явившихся причиной образования напряжений, классифицируются следующим образом  [c.499]

Трансформаторы фазового регулирования тиристорные), появившиеся относительно недавно, являются результатом развития силовой электронной техники. Тиристорным трансформатором (рис. 5.9) принято называть комбинацию собственно трансформатора Т и полупроводниковых регуляторов KS1 и KS2 с системой управления. Трансформатор служит для понижения сетевого напряжения до необходимого при сварке уровня U , а иногда используется и для получения необходимой внешней характеристики, а также регулирования режима сварки. Обычно две последние функции выполняет тиристорный регулятор. Фазовое управление, отличаюш,ее тиристорный трансформатор от рассмотренных ранее (с амплитудным регулированием), осуществляется полупроводниковым регулятором.  [c.122]

Количественная оценка сопротивления сварных соединений образованию холодных трещин основана на теории замедленного разрушения и предусматривает механические испытания сварных образцов. Испытания эти подобий испытаниям на длительную прочность. Наибольшее применение получил метод МВТУ на машине ЛТП. Метод основан на механическом испытании сварных образцов рекомендуемых размеров путем нагружения постоянными нагрузками. Нагрузки моделируют упругую энергию собственных напряжений в сварных конструкциях. За показатель сопротивляемости металла образованию холодных трещин при сварке следует принимать минимальное растягивающее напряжение от внешней нагрузки, при котором в сварном соединении образца образуются трещины после выдержки образца под нагрузкой в течение 20 ч.  [c.49]

В сварочной технике ультразвук может быть использован в различных целях. Воздействуя им на сварочную ванну в про-цессе кристаллизации, можно улучшить механические свойства сварного соединения благодаря измельчению структуры металла шва и удалению газов. Ультразвук может быть источником энергии для создания точечных и шовных соединений. Ультразвуковые колебания активно разрушают естественные и искусственные пленки, что позволяет сваривать металлы с окисленной поверхностью, покрытые слоем лака и т. п. Ультразвук снижает или снимает собственные напряжения и деформации, возникающие при сварке. Им можно стабилизировать структурные составляющие металла сварного соединения, устраняя возможность самопроизвольного деформирования сварных конструкций со временем.  [c.17]

При сварке малоуглеродистых и многих низколегированных конструкционных сталей возникают преимущественно собственные напряжения 1-го рода, при сварке углеродистых и легированных сталей—напр яжения 1-го,2-го и 3-го рода.  [c.912]

Образование собственных напряжений происходит в результате неравномерного распределения температуры в изделии и пластических деформаций, возникающих при этом. Собственные напряжения в некоторых случаях обусловливают образование трещин в процессе сварки. Наиболее часто появляются горячие трещины в период остывания швов при температурах, близких к Т солидуса. Образование этих трещин происходит вследствие малой пластичности металла при указанных температурах. Наиболее часто горячие трещины возникают при сварке малоуглеродистых и нержавеющих сталей.  [c.912]

Стыковые соединения. Такой вид соединения по сравнению с другими обеспечивает наименьшие собственные напряжения и деформации при сварке, расход основного и наплавленного металла, времени на сварку, что обусловило наибольшее его применение в сварочном производстве. Собираться встык могут листы одинаковой или разной толщины. Во втором случае на листе большей толщины делается скос с одной или двух сторон — до толщины меньшего листа. Разновидностью стыкового является соединение с отбортовкой и втавр. Соединения с отбортовкой применяют при толщине листов до 3 мм. Листы толщиной 3—8 мм собирают без скоса кромок и с зазором 0,5—2 мм. Элементы толщиной до 6 мм сваривают с одной стороны, толщиной 6—8 мм с двух сторон. У листов толщиной 3—8 мм кромки также можно скашивать. При толщине металла 3—26 мм выполняется односторонний скос кромок, называемый У-образной разделкой. Для металла толщиной 12—40 мм кромки скашивают с двух сторон (Х-образная разделка) при скосе одной кромки разделка называется К-образной. При Х-образной разделке количество наплавленного металла почти в 2 раза меньше, чем при У-образной, что приводит к уменьшению расхода электродов, электроэнергии, остаточных напряжений и деформаций и увеличению производительности. Для металла толщиной 20—60 мм рекомендуется 6 -образная разделка кромок, имеющая те же преимущества перед Х-образной, как последняя перед У-образной.  [c.106]

Мероприятия по уменьшению собственных напряжении при сварке можно разделить на конструктивные и те.кно.югические. Грамотный подход к конструированию сварных соединений и правильное расположение швов в сварной конструкции ведет не только к облегчению изготовления конструкции, но способствует также снижению собственной напряженности.  [c.608]

С достаточной степенью точности ОСН исследуемого сварного узла конструкции могут быть оценены на основе предположения [88, 118], что предварительное напряженное состояние , возникающее после сварки соседних элементов конструкции, не влияет на формирование ОСН в рассматриваемом узле конструкции и что ОСН исследуемого узла конструкции определяются взаимодействием (при отсутствии пластического деформирования— суперпозицией) собственных ОСН, возникающих при сварке рассматриваемого узла, и напряжений, действующих от соседних сварных узлов (так называемых реактивных напряжений) — рис. 5.4. Отметим, что дифференцирование ОСН на собственные и реактивные является удобной инженерной схемати-  [c.278]

Ранее было введено понятие реактивных напряжений — напряжений, действующих от соседних сварных узлов на рассматриваемый узел. При таком определении собственные ОСН любого узла могут выступать в качестве реактивных в случае, если проводится анализ остаточной напряженности после сварки соседнего узла. Следовательно, для оиредблёния ОСН в конструкции в целом принципиально необходимо знать распределение собственных сварочных напряжений для всех сварных узлов.  [c.297]

На первом этапе указанного анализа проведены расчетноэкспериментальные исследования ОСН в сварных толстолистовых конструкциях с многопроходными швами. Удобной инженерной схематизацией для расчета ОН в сложных сварных конструкциях является их дифференцирование на собственные и реактивные напряжения. В этом случае" ОСН сварного узла могут быть определены с помощью суперпозиции собственных ОСН, возникающих непосредственно при сварке рассматриваемого узла, и напряжений, действующих от соседних сварных узлов, названных реактивными напряжениями.  [c.326]

Воздействуя им на сварочную ванну в процессе кристаллизации, можно улучшить механические свойства сваргюго соединения благодаря измельчению структуры металла шва н удалению газов. Ультразвуковые колебания активно разрушают естественные и искусственные пленки, что позволяет сваривать металлы с окисленной поверхностью. Ультразвук снижает или снимает собственные напряжения и деформации, возникающие при сварке.  [c.227]


Возникновение собственных сварочных напряжений (т.е. без приложения внешних сил) связано с неравномерностью температурного поля при сварке. Вследствие неравномерного разофева заготовки при сварке (рис. 5.49, а) температурные деформации шва и з. т. в. офа-ничиваются в результате сопротивления менее нафетых зон основного металла.  [c.274]

В сварных конструкциях могут быть не только общие, но и местные деформации в виде выпучив и волн. Длинные и узкие листы, сваренные встык, под действием угловых деформаций и собственной массы получают волнистость (рис. 27), размеры которой определяются углом Р и толщиной свариваемых листов, определяющей их массу. При приварке к листу ребер поясные листы получают местные деформации - грибовидность. Кроме местных угловых деформаций могут возникать выпучины и волнистость на поверхности листа. Остаточные деформации, возникающие в результате перераспределения внутренних остаточных напряжений после сварки, называют вторичными. Это перераспределение может произойти при первом нагружении сварной конструкции, при механической, термической и газопламенной обработке сварных изделий. Остаточные сварочные напряжения, перемещения и деформации могут существенно снизить прочность, исказить точность форм и размеров конструкции, ухудшить внешний вид изделия, снизить технологическую прочность сварных соединений, что приведет к возникновению горячих или холодных трещин. В определенных условиях может снизиться статическая прочность или произойти потеря устойчивости сварной конструкции, что, в свою  [c.41]

Механизм коррозионных разрушений сварных соединений определяется приложением энергии в месте соединенияз тепловой энергии при сварке термического класса (дуговой, газовой, электрошлаковой, электроннолучевой, лазерной, плазменно-лучевой) давления и тепловой энергии при сварке термомеханического класса (контактной, диффузионной, дугопрессовой, газопрессовой и др.) механической энергии и давления при сварке механического класса (холодной, взрывом, магнитно-импульсной, ультразвуковой, трением). При этом происходят необратимые физико-химические изменения металла в зоне соединения вследствие процессов плавления и кристаллизации полимерные превращения распад пересыщенных твердых растворов старение, рекристаллизация усложнение напряженного состояния в связи с возникновением собственных напряжений и деформаций.  [c.494]

Для оценки сопротивляемости сварных соединений разрушению в агрессивных средах в условиях напряженного состояния разработан ряд методик. Напряжения в образце могут быть вызваны собственным полем остаточных напряжений за счет сварки, путем приложения внешней нагрузки или суммарным действием обоих факторов. Напряженное состояние в образцах может быть одноосным или двухосным. Испытания при одноосном нагружении внешней нагрузкой следует рассматривать как сравнительные, поскольку они не полностью воспроизводят напряженное состояние конструкций типа оболочек. Тем не менее они могут быть успешно использованы для сравнительной оценки стойкости против коррозионного растрескивания основного металла, а также влияния различных факторов неоднородности сварных соединений. Одноосные напряжения могут быть созданы постоянной нагрузкой. Статические растягивающие одноосные напряжения в образцах с заданной начальной деформацией могут быть созданы изгибом или растяжением. Для сварных соединений широко используют образцы в виде скоб (рис. 101). Различные начальные напряжения в них можно создавать, изменяя с помощью винта величину стрелы прогиба. Для выявления стойкости определенной зоны сварного соединения целесообразно использовать одноопорную схему, так как в зоне приложения нагрузки создаются максимальные напряжения. При двухопорной схеме более равномерное распределение напряжений позволяет сразу выявить слабую зону. Подготовленные таким образом образцы помещают в агрессивную среду и, если через заданное время образец не разрушился, его испытывают на растяжение. Считается, что сварное соединение может работать в условиях напрялсенного состояния, если изменение свойств не превышает 5... 10 %.  [c.174]

Наиболее опасными элементами современных промысловых и магистральных трубопроводов и нефтехранилищ являются их сварные соединения. Наряду с остаточными термическими напряжениями после сварки в швах могут образоваться различные технологические дефекты (непровары, подрезы, газовые поры, шлаковые включения и др.), создающие условия для возникновения концентрации напряжений. В дополнение к сложным статическим и циклическим эксплуатационным нагрузкам (под действием собственного веса и технологической среды, тепловых расширений, цикличности рабочего давления и температуры, неравномерности распределения температуры и воздействия коррозии и т.д.) могут действовать неучтенные нагрузки, например из-за нарушения расчетного состояния опорно-подвесной системы, защемления отдельных участков конструкции, просацки фундамента и т. п. В результате прежде всего в сварных соединениях возникают повреждения, которые развиваются по механизму усталости, ползучести, коррозии, дисперсионного охрупчивания при повторном нагреве, водородного охрупчивания.  [c.119]


Смотреть страницы где упоминается термин Собственные напряжения при сварке : [c.423]    [c.84]   
Смотреть главы в:

Сварные конструкции Прочность сварных соединений и деформации конструкций  -> Собственные напряжения при сварке



ПОИСК



Напряжения собственные

Образование деформаций и собственных напряжений при сварке



© 2025 Mash-xxl.info Реклама на сайте