Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разностные схемы для уравнения теплопроводности

Составление системы конечно-разностных уравнений. Используя неявную конечно-разностную схему для уравнения теплопроводности  [c.195]

Решение получить численным методом е помощью ЭВМ на разностной сетке с числом узлов, равным 7, используя явную или неявную конечно-разностную схему для уравнения теплопроводности. Шаг по времени принять равным 0,15 с. Для того чтобы при указанных условиях получить наименьшую погрешность аппроксимации, положить комплекс аДт/(Ддс) равным 1/6. Результаты расчета сравнить с точным решением.  [c.202]


Разностные схемы для уравнения теплопроводности  [c.143]

Устойчивость разностных схем для уравнения теплопроводности  [c.186]

Для явной разностной схемы решення уравнения теплопроводности, рассмотренной в этой главе, это утверждение справедливо при к=0 11 ).— Прим, ред.  [c.129]

Конечно-разностная аппроксимация уравнений распространения тепла. Приступим к построению разностной схемы для уравнения энергии и соотношений для потоков теплопроводности и излучения. Для этого предварительно преобразуем тождественно закон сохранения энергии (VI. 1). Используем значения и / из уравнений состояния (VI. 13) и производную от потока поглощаемой энергии из закона Бугера— Ламберта (VI.2). В результате получим  [c.172]

Консервативная схема для уравнения теплопроводности. Выше были рассмотрены некоторые способы построения разностных схем, аппроксимирующих систему одномерных нестационарных уравнений газодинамики без учета реальных диссипативных процессов. Обратимся теперь к случаю, когда в задаче присутствуют процессы теплопроводности. Изменится лишь уравнение энергии, которое для одномерного плоского случая имеет вид  [c.143]

Выбор конечно-разностной схемы для численного решения уравнения теплопроводности. Уравнение теплопроводности при переменных граничных условиях и наличии лучистого теплообмена на границе тела может быть решена методом сеток. При решении задачи по явной разностной схеме допустимый шаг по времени  [c.194]

В данном разделе сначала коротко рассмотрим основные понятия теории численных методов, а затем более подробно остановимся на применении конечно-разностных схем для решения уравнений теплопроводности. Метод конечных элементов будет изложен в следующей главе.  [c.69]

Рассмотрим пример такой неудачной разностной схемы для одномерного стационарного уравнения с переменной теплопроводностью X (х)  [c.84]

Все рассмотренные нами ранее разностные схемы для решения уравнений теплопроводности являются реализациями метода конечных разностей. Системы алгебраических уравнений для определения численного решения мы получали путем замены производных в дифференциальном уравнении и в граничных условиях или в уравнениях теплового баланса для элементарных ячеек конечными разностями. Таки.м образом, в методе конечных разностей отправной точкой для получения приближенного решения является дифференциальная краевая задача. Однако искомое поле можно находить и из решения соответствующей вариационной задачи. На ее численном решении основан получивший широкое распространение метод конечных элементов (МКЭ) [7, 27].  [c.128]


Мы рассмотрели конечно-разностные схемы для решения стационарного уравнения энергии. В случае нестационарной задачи построение соответствующ,их схем производится на основе приведенных аппроксимаций конвективного и кондуктивного потоков точно так же, как это делалось для нестационарного уравнения теплопроводности, т. е. можно использовать явную или неявную схемы. В явной схеме потоки берут с предыдуш,его шага, в неявной — с текущего. Можно ввести и схему с весами. Отмеченные выше отрицательные и положительные свойства аппроксимаций (5.6)—(5.8) проявляются и при решении нестационарных задач. В частности, даже неявная схема с разностью вперед является неустойчивой при любом соотношении шагов по пространственной и временной переменным. С другой стороны, неявная схема с аппроксимацией разностью против потока безусловно устойчива.  [c.162]

Конечно-разностные схемы для решения двухмерных и трехмерных задач. Рассмотренный выше метод решения систем неявных конечно-разностных уравнений применим и при решении двухмерных задач нестационарной теплопроводности в случае использования следующей разностной схемы переменных направлений  [c.92]

Записывая (3.24) для всех внутренних точек верхнего слоя, получаем систему алгебраических уравнений, решение которой рассмотрено в 3.4. Аналогичные разностные схемы можно построить и для двумерного уравнения теплопроводности. Некоторые из схем исследованы в гл. 5.  [c.81]

Решение задач теплопроводности может быть получено еще одним численным методом — метод ом конечных элементов. Математической основой метода конечных элементов является вариационное исчисление. В отличие от метода конечных разностей, в котором исходные дифференциальные уравнения непосредственно используются для построения разностной схемы, в методе конечных элементов дифференциальное уравнение теплопроводности и соответствующие граничные условия используются для постановки вариационной задачи, которая затем решается численно.  [c.246]

Разностная схема и разностное решение. Основные понятия теории разностных схем разберем на примере одномерного нестационарного уравнения теплопроводности для пластины с внутренним источником теплоты  [c.70]

Проиллюстрируем описанную методику построения разностной схемы на примере стационарного уравнения теплопроводности для стержня с боковым теплообменом  [c.88]

Совокупность разностного уравнения, граничных и начальных условий называется разностной схемой. Рассмотрим разностную схему решения одномерного уравнения теплопроводности для некоторой скалярной величины Т, под которой можно понимать температуру пли мгновенное значение напряженности электрического либо магнитного поля в металле  [c.128]

В заключение следует отметить, что нелинейное уравнение теплопроводности при произвольной зависимости X=f T) сравнительно легко представляется в ко-нечно-разностной форме различных видов. Расчетные зависимости с симметричным смещением обеспечивают высокую точность [формула (2-121)]. Однако в случае ярко выраженной несимметричности температурного поля, что имеет место в элементах конструкций тепловых машин, несимметричное смещение может обеспечить требуемую точность при большей простоте расчетных зависимостей [формулы (2-119), (2-120)]. Учет нелинейности усложняет расчетные зависимости для определения температуры. Кроме того, учет нелинейности приводит к тому, что коэффициенты в расчетных зависимостях являются переменными. Схема расчета, расчетный бланк и порядок проведения расчета сохраняются такими же, как и при решении линейного уравнения теплопроводности. Линеаризация уравнения теплопроводности при пользовании численным методом существенных преимуществ не дает.  [c.99]


Упражнение 6.1. Показать, что для п-мерного уравнения теплопроводности в случае равномерной сетки hi = / 2 = = = h) условие устойчивости разностной схемы имеет вид  [c.200]

Таким образом, для многомерного уравнения теплопроводности условие устойчивости разностной схемы становится более жестким.  [c.200]

НОЙ катастрофе. Классическим историческим примером здесь является явная схема Ричардсона для параболического уравнения теплопроводности, в которой использовались конечно-разностные аппроксимации производных центральными разностями как по пространственным переменным, так и по времени. О Брайен с соавторами [1950] показал, что эта схема безусловно неустойчива ).  [c.18]

Видно, что структура системы уравнений (6.25) представляет рекуррентное матричное соотношение типа (6.20). Следует отметить, что решение задачи нестационарной теплопроводности с использованием схемы (6.25) дает лучшие результаты для первых временных шагов, чем решение с использованием центральной разностной схемы (6.17). Сказанное иллюстрируется на примере решения задачи о разогреве призматического стержня (рис. 6.1).  [c.110]

Чтобы максимально облегчить понимание проблем, которые возникают при конструировании разностных схем для уравнений механики сплошной среды, ограничимся рассмотрением законов сохранения массы, количества дви зкения и энергии в одномерном случае в виде (1.131) — (1.133). Система трех уравнений (1.131) — (1.133) содержит семь искомых функций (Р, V, Е, 17, 8, 82, д) от двух независимых аргументов (t — время, г — эйлерова координата). Динамические процессы в твердых телах протекают за времена настолько малые, что теплопроводность не успевает повлиять на термодинамические характеристики вещества. Поэтому в урав-  [c.217]

Для построения консервативной схемы можно использовать интегроинтерполяционный метод [25] (или метод элементарных балансов), существо которого состоит в том, что разностная схема строится на основе интегральных законов сохранения. В результате получается разностный аналог закона сохранения для ячейки сетки. В качестве примера рассмотрим построение консервативной схемы для стационарного уравнения теплопроводности (или диффузии)  [c.251]

Разностные уравнения (5.27) — (5.31) связывают значения сеточной функции в двух соседних сечениях по оси z с номерами (т —1) и т. При известных значениях Un,m-i ( . Л г) эти уравнения образуют систему N уравнений относительно значений сеточной функции в сечении z z - Система уравнений имеет трехдиагональную матрицу и может быть решена методом прогонки, которая проводится поперек трубы . Таким образом, построенная разностная схема аналогична неявной схеме для нестационарного одномерного уравнения теплопроводности, с тем отли-чием, что роль временных слоев играют поперечные сечения 2 . В первом сечении (т = 1) температуры задаются граничным условием (5.32), а далее последовательно для каждого сечения решается методом прогонки система разностных уравнений (5.27)—(5.31) относительно неизвестных (п = 1,. .., Nr) и определяются тем-  [c.165]

Для решения системы нелинейных уравнений параболического типа (1.8). .. (1.11) с краевыми условиями (1.12). ... .. (1.14) может быть применен метод сеток с использованием явной схемы, согласно которому система уравнений приводится к безразмерному виду и записывается в конечных разностях. Вид конечно-разностных аналогов исходных уравнений и метод их решения применительно к рассматриваемой задаче представлены в [9]. Алгоритм решения этой задачи бьш реализован в виде программы расчета на БЭСМ-4М. При расчете задаются геометрические размеры пучка, параметры потока теплоносителя на входе в пучок, распределение тепловыделения (теплоподвода) у по длине и радиусу пучка и физические свойства теплоносителя. Для замыкания системы уравнений из эксперимента определяются эффективные коэффициенты турбулентной теплопроводности Хдфф, вязкости эфф п коэффициент гидравлического сопротивления % в виде зависимотей от критериев подобия, характеризующих процесс [39].  [c.16]

В последующих трех параграфах излагается гибридная разностная схема, являющаяся обобщением этих двух алгоритмов и предназначенная для расчета связанной задачи нагружения многослойного препятствия импульсом излучения с учетом плавления и испарения наружного слоя [60]. Причем в предлагаемом виде конечно-разностная методика позволяет учитывать и вязко-пластическое поведение материала, а распространение алгоритма А. А. Самарского с параболического уравнения теплопроводности на гиперболическое дает возможность численно изучать инерционность распространения тепла. Объединение обоих алгоритмов в связанной задаче и включение в общую схему расчета роста микроповрежденности достигается с помощью итерационной процедуры.  [c.167]

Метод раздельных прогонок для разностных схем магнитной гидродинамики. По сравнепию с газовой динамикой система уравнений магнитной гидродинамики с теплопроводностью является более сложной,— здесь появляются дополнительные уравнения,  [c.330]

В практических задачах времт тоже должно быть дискретизировано, что предполагает применение метода конечных разностей. Например, схема- Кранка — Николсона симметрична относительно п+1/2 при вычислении uf tn+ ) через и потому имеет точность порядка At . Таким образом, окончательно вычисленное приближение содержит эту ошибку, как и ошибку метода Галёркина, вызванную дискретизацией по х. Последнюю из них мы проанализируем подробно и покажем, что при к 2т ее оптимальный порядок для 5-й производной тоже р -вен Этот результат применяется к уравнениям параболического типа, например к уравнению теплопроводности Ь — эллиптический оператор того же типа, что и в стационарных задачах. В случае гиперболических уравнений, не содержащих диссипативных членов, возможности метода конечных элементов несколько меньше трудности в сравнении с явными разностными методами- могут оказаться слишком большими. Тем не менее даже в этом случае достигнуты значительные результаты исследование границ можно проводить почти автоматически в гл. 7 включен набросок теории метода конечных элементов для гиперболического случая.  [c.139]


Схему (2.13а) можно интерпретировать как алгоритм расшепления по физическим признакам в первом уравнении (2.136) учитывается только конвекция, во втором — только диффузия. Соответственно обращаемый оператор в первом уравнении после умножения его на А совпадает с оператором, обращаемым при решении разностных уравнений для уравнения переноса (1.8). Второе уравнение (2.136) аналогично разностному уравнению теплопроводности, причем имеется возможность выбора обращаемого оператора Е — атбг. Определяя скалярными про-  [c.53]

Для расчета двумерных течений особенно эффективной схемой с введением явной искусственной вязкости является схема Русанова [1961]. В основе схемы Русанова лежит введение членов с искусственной диффузией общего вида д авд11 /дх) /дх в конечно-разностные недиссипативные уравнения для ди/д1 (где и р, ри, pv, Ее), причем берутся разности вперед по времени и центральные разности по пространственным переменным. Таким образом, в схему вводится не только искусственная вязкость, но и искусственная теплопроводность и искусственная диффузия массы ). Коэффициент искусственной диффузии пропорционален У +а и некоторому эмпирически подбираемому параметру со. Форма д (ссвди/дх)/дх позволяет получить более точные решения со скачками, чем более простая форма авдЮ/дх (Ван Леер [1969]).  [c.350]


Смотреть страницы где упоминается термин Разностные схемы для уравнения теплопроводности : [c.160]    [c.15]    [c.94]    [c.152]    [c.283]    [c.5]    [c.192]    [c.18]    [c.154]    [c.148]    [c.129]   
Смотреть главы в:

Разностные методы решения задач газовой динамики Изд.3  -> Разностные схемы для уравнения теплопроводности



ПОИСК



Разностная схема

Тон разностный

Уравнение теплопроводности



© 2025 Mash-xxl.info Реклама на сайте