Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение времени разрушения

ОПРЕДЕЛЕНИЕ ВРЕМЕНИ РАЗРУШЕНИЯ  [c.121]

Дифференциальное уравнение для определения времени разрушения получим подставив (2.26) в третью формулу (2.22)  [c.53]

Это соотношение устанавливает зависимость аз от t. Таким образом, (2.55) и (2.57) определяют зависимость от t, т. е. являются уравнениями кривой ползучести. Для определения времени разрушения необходимо верхний предел в интеграле (2.57) положить равным единице (oj = I). В случае использования соотношений (2.54), согласно (2.56)  [c.59]


Для определения времени разрушения необходимо верхний предел в последнем интеграле положить равным единице (со = 1).  [c.59]

Следует заметить, что метод определения времени разрушения фазы при помощи когерентного рассеяния пробных лучей был впервые применен к бриллюэнов-скому рассеянию, при котором удалось провести прямые измерения времени жизни акустических фононов [3.22-11].  [c.445]

Продолжительность работы детали обычно определяют экспериментально. В последнее время разработаны теоретические методы определения времени разрушения деталей по данным о разрушении стандартных образцов при растяжении [7, 8].  [c.110]

Уравнение (47) может быть применено к определению времени разрушения при переменных напряжениях. Тогда из этого уравнения можно вывести формулу суммирования повреждений  [c.111]

Получены уравнения, описывающие деформирование ортотропных материалов, у которых скорость логарифмической деформации является степенной функцией напряжения. Эти уравнения применены для определения времени разрушения ортотропных листов при двухосном растяжении их в условиях ползучести. Они также могут быть использованы в расчетах операций формоизменения сверхпластичного ортотропного материала.  [c.183]

Поврежденность характеризуется некоторым скаляром т)7 (0 -ф 1), который называется сплошностью. В начальный момент при отсутствии поврежденности г 5=1, в момент хрупкого разрушения принимается 11 = О, т. е. не учитывается локализация трещинообразования в заключительной стадии разрушения. Для решения задачи определения времени разрушения используется следующая зависимость  [c.246]

Определение времени разрушения элементов конструкций  [c.271]

В. И. Розенблюм [94] использовал эту схему для определения времени разрушения вращающегося диска постоянной толщины.  [c.271]

ГЛАВА XV ОПРЕДЕЛЕНИЕ ВРЕМЕНИ РАЗРУШЕНИЯ  [c.358]

Выше в 73 было рассмотрено определение коэффициента запаса в случае одноосного растяжения как при стационарном, так и при нестационарном режимах нагружения и нагрева. В 82 приведена величина эквивалентного напряжения для оценки длительной прочности при неодноосном напряженном состоянии. В простейшем случае стационарных режимов нагружения и нагрева оценка прочности производилась путем сопоставления эквивалентного напряжения с пределом длительной прочности. Возможен иной путь Исследования длительной прочности определение времени разрушения элемента конструкции. При этом следует рассмотреть различные типы разрушений вязкое при больших деформациях, хрупкое при малых, а также смешанное.  [c.358]


В работах [1,3—12, 20, 21,23, 26 ] решены задачи определения времени разрушения различных элементов конструкций. В работах [2, 13—19, 22, 231 рассмотрен несколько иной подход к определению времени разрушения,  [c.368]

Диагностика технического состояния и оценка ресурса аппаратов являются специальной дисциплиной, на базе которой формируются знания по обеспечению надежности и безопасности эксплуатации длительно проработавших сварных конструкций оболочкового типа. К числу отличительных черт нефтеперерабатывающих и нефтегазохимических производств следует отнести наличие значительной доли потенциально опасных объектов, выработавших проектный срок эксплуатации или не имеющих расчетного срока эксплуатации. Износ основного технологического нефтегазохимического оборудования достиг 80-90%, и оно естественно нуждается в замене. Поддерживать работоспособное состояние оборудования не представляется возможным без решения проблем диагностики современными достоверными методами и оценки остаточного ресурса. Параметры эксплуатации такого оборудования (рабочая температура и давление, рабочая среда и т.д.) охватывают очень широкие интервалы и весьма различны по воздействию на материал. Им присуще разнообразие по конструктивным оформлениям и по применяемым методам формоизменяющих операций при изготовлении. В процессе эксплуатации в металле конструктивных элементов оборудования происходит постепенное накопление необратимых повреждений и по истечении определенного времени возможны преждевременные их разрушения.  [c.3]

Недостаточное совершенство НД, в частности, по нормированию остаточного ресурса нефтегазохимического оборудования, объясняется тем, что они базируются в основном на критериях статической прочности бездефектного металла. Между тем, в процессе эксплуатации в металле конструктивных элементов происходит постепенное накопление необратимых повреждений и по истечении определенного времени возможны разрушения. Процессы накопления повреждений в металле усиливаются в зонах концентрации напряжений, которыми являются дефекты металлургического, строительномонтажного и эксплуатационного характера, а также зоны геометрических конструктивных концентраторов в местах приварки днищ, переходов, патрубков штуцеров в корпус аппарата. При этом особую опасность представляют трещиноподобные дефекты холодные и горячие трещины, непровары и подрезы швов, механические (царапины) и коррозионные (стресс-коррозия) повреждения и др.  [c.328]

Испытания стойкости к высоким т е м п е р а т у-] а м. Необходимость проведения длительных испытаний при высоких температурах для установления стабильности тех или иных (войств покрытий не вызывает сомнений. При испытаниях образец с покрытием обычно по.мещают в высокотемпературную печь и выдерживают при заданной температуре в течение определенного времени. Эксперимент проводится в условиях рабочей среды, которая создается в печи [146]. Во время испытаний производят снятие величин интересующего параметра (степени черноты). Так, степень черноты может определяться через кварцевое окно в нагревательной камере, а регистрация температуры испытуемого образца — с помощью пирометра [53]. Долговечность покрытий обычно ограничивают началом повреждения поверхности — плавление.м, растрескиванием, откалыванием или отслаиванием покрытия. Часто долговечность зависит от диффузионного разрушения покрытия.  [c.178]

Распад нестабильных частиц сильно отличается от тех видов разрушения, или распада, которые мы обычно наблюдаем. Вероятность смерти в течение ближайшего часа выше для пожилого человека, чем для молодого бактерия не испытывает деления непосредственно после своего рождения и делится только по истечении определенного времени старый автомобиль сломается скорее, чем новый. Во всех этих случаях вероятность того или иного вида распада зависит, в частности, от предыстории объекта, имеющейся к данному моменту объекты, просуществовавшие дольше, более склонны испытать то или иное разрушение. С другой стороны, бесспорным экспериментальным фактом является то обстоятельство, что вероятность распада элементарной частицы, или ядра любого радиоактивного изотопа, или, наконец, возбужденного атома или молекулы не зависит от продолжительности существования частицы. Свободный нейтрон нестабилен, но длительно существовавший нейтрон ничем не отличается от нейтрона, только что ставшего свободным. Предсказать момент распада заданной нестабильной частицы невозможно. Воспроизводимое значение имеет лишь среднее время жизни, установленное для большого числа частиц.  [c.435]


Испытания на двух уровнях напряжений Oi и Oj и определение времени до разрушения позволяют определить параметры т и С  [c.91]

Изложенные выше данные позволяют достаточно точно и подробно оценить условия образования трещины при коррозионном растрескивании. Вместе с тем эти факторы еще не полностью раскрывают природу развития трещины. При анализе ее развития следует обращать внимание на особенности вида излома. Поверхность излома коррозионного растрескивания всегда темная, похожая на поверхность излома замедленного разрушения псевдо-а-титановых сплавов, имеющих повышенное содержание водорода. Как известно, в таких сплавах под действием напряжений или в результате пластических деформаций может происходить в определенном временном интервале распад пересыщенной водородом а-фазы с выделением мелкодисперсных гидридов (необратимая водородная хрупкость II рода). Темный цвет поверхности излома, видимо, связан в этом случае также с наличием на поверхности излома гидридов  [c.63]

По параметрической диаграмме можно определить и другие характеристики, например предельно допустимую температуру эксплуатации. В этом случае на оси ординат параметрической диаграммы задают предельно допустимые значения удельной потери массы металла или глубины коррозионного разрушения. Затем движутся до пересечения с линией gg Р или gh — Р, затем вверх по ординате при постоянном значении Р до пересечения с линией Р — l/T , соответствующей определенному времени эксплуатации и, наконец, от точки пересечения вправо при постоянном значении ординаты до пересечения с осью ординат 1/Г. Точка пересечения соответствует определенной величине предельно допустимой температуры. Ниже приводятся параметрические диаграммы [131 для ряда сталей и сплавов, широко используемых при высоких температурах. Параметрические диаграммы построены в основном по экспериментальным данным (точки на диаграмме). Если диаграмма построена по значениям констант кинетических и температурных уравнений (51) и (52) окисления металлов, то экспериментальные точки отсутствуют. При построении диаграмм применялись следующие величины и их единицы g, g — г/см , h — мм, т — ч, Т — К, Q — кал/моль. Эти отступления от системы СИ для Q сделаны сознательно, для того чтобы не снизить точность диаграммы. При использовании вышеуказанных единиц шкалы Ig и Ig /г почти совпадают для сталей и никелевых сплавов. Параметрический метод позволяет надежно проводить интерполяцию, а также экстраполяцию. Экстраполяцию можно проводить по температуре на 50—100 °С, по времени на 1—1,5 порядка [13].  [c.309]

Отсюда можно предположить, что скорость процесса определяется не диффузией углерода в никель, а установлением соответствующей поверхности раздела углерод — никель. Это предположение подтверждается данными по определению времени установления адгезионной связи между никелем и углеродом, составляющими от >24 ч при 1273 К До -- 1ч при 1373 К. Оценка энергии активации процесса установления связи может быть сделана на основании кинетического уравнения скорости (разд. II, А, 2). Результаты нанесены на график рис. 18, и вычислена приближенная величина энергии активации 461 кДж/моль. Эту величину можно сопоставить с энергиями 348 и 616 кДж/моль, вносимыми соответственно одинарной и двойной связями углерод — углерод. Следовательно, скорость процесса, возможно, определяется разрушением связей углерод — углерод, которое должно произойти до диффузии углерода в никель.  [c.418]

Если и матрица, и волокно упруги, неэффективная длина б есть константа, зависящая от геометрии и свойств материала. Если материал матрицы вязкоупругий, сдвиговое напряжение вдоль границы раздела волокно — матрица релаксирует во времени, вызывая понижение осевого напряжения в волокне около разорванного конца (рис. 18). Имея в виду определение неэффективной длины б, видим, что б — возрастающая функция времени, причем скорость роста б зависит от свойств матрицы. Модель разрушения строится с учетом того, что рост неэффективных длин происходит как рост числа элементов материала, которые считаются разрушенными. Такой подход приводит к статистическому определению времени до разрушения при данной нагрузке.  [c.289]

К настояш,ему времени проведено много ударных испытаний для оценки вязкости материала или сопротивления разрушению. Наиболее обычные испытания — это определение анергии разрушения (по Изоду или Шарпи) довольно относительным способом. Недостаток этих методов состоит в их неспособности дать сведения, имеюш,ие физический смысл. На результаты оказывают влияние геометрия образца и способ осуществления эксперимента это приводит к серьезным трудностям при анализе результатов.  [c.322]

Усталость — это полная потеря свойств (или разрушение) элемента конструкции, наступившая после действия на него переменной нагрузки, максимальная амплитуда которой по величине меньше статической, монотонно прикладываемой нагрузки, вызывающей разрушение этого элемента. Процесс разрушения и усталости металлов зависит от состава, особенностей металлургического процесса, геометрии образца (элемента конструкции), вида нагрузки, времени и условий внешней среды. Для композитов число влияющих параметров необходимо увеличить по крайней мере вдвое из-за наличия в материале двух фаз. Более того, необходимо также учесть и влияние поверхности раздела, что приведет к еще большему усложнению задачи. Конечно, ни одна приемлемая модель для предсказания процесса разрушения не мол<ет одновременно включить все вышеупомянутые параметры. Действительно, невозможно себе представить систему черного ящика , у которого на входе — весь комплекс переменных параметров, а на выходе — только скорость роста разрушения и время достижения предельного состояния. Поэтому не существует единого подхода для определения усталостного разрушения для металлов (которые по крайней мере при макроскопическом подходе рассматриваются как однородные). Для композитов проблема тем более усложняется вследствие присущей им неоднородности. Усталости композитов посвящены многочисленные работы. Достижения и современные тенденции в этой области обобщены в работах [49, 50].  [c.84]


Видно, что уравнение (5.48), основанное на использовании степенного закона для скорости трещины вплоть до достижения критического значения К/о, дает время до разрушения, несколько большее при высоких уровнях напряжений, чем уравнение (5.43). С другой стороны, результаты экспериментов на полиуретановой резине лучше соответствуют расчету по уравнению (5.48), а не (5.50) [25, ч. III]. Можно полагать, что превышение величины экспериментально определенного времени до разрушения по сравнению с рассчитанной по уравнению (5.50) объясняется скорее эффектами конечных деформаций, чем использованным частным способом представления податливости при ползучести. Поэтому  [c.204]

Вязкость разрушения сплава 7005. Попытки определения вязкости разрушения сплава 7005 по величинам Кс или Ki [8] до настоящего времени были безуспешными только потому, что вязкость материала настолько высока, что нестабильный рост трещины не наблюдается даже при очень большой ширине образцов. При испытаниях надрезанных образцов толщиной 63 мм при изгибе были получены значения Ki в интервале от 43,2 до 56,2 МПа-м , но они недостаточно корректны, поскольку нестабильного развития трещины при испытаниях не наблюдалось. Попытки определить Ki и Кс на панелях толщиной 25,4 мм и шириной 508 мм с центральной щелью длиной 178 мм [9] также не увенчались успехом потому, что даже в таких больших сечениях наблюдалась общая текучесть и разрушение по ти-  [c.172]

Установление квазистатического однородного напряженного и деформационного состояния в образце достигается в результате интерференции упруго-пластических волн [373]. Время и степень выравнивания напряжений по длине образца определяются частотой взаимодействия волн, обратно пропорциональной длине образца. Поэтому с повышением скорости деформации обеспечение необходимой равномерности возможно только при сокращении длины образца [136]. При высокоскоростных испытаниях выравнивание напряжений по длине рабочей части образца требует определенного времени, сравнимого с временем испытания. С повышением скорости деформирования это время составляет все большую часть времени испытания при неизменной длине образца. По этой причине для высокоскоростных испытаний неприемлемы пропорциональные образцы, принятые для статических испытаний. Их применение приводит к локализации деформации и разрушения вблизи нагружаемого конца при достижении так называемой критической скорости удара [81, 129], а также к появлению ряда других аномальных эффектов, не характеризующих действительное механическое поведение материала.  [c.90]

Коррозия и механические свойства. Растяжение за пределом упругих деформаций увеличивает скорость коррозии. Если напряжения в металле ниже определенного уровня, разрушения не наступает даже при значительной продолжительности испытаний в коррозионной среде. Здесь предполагается, что уменьшение поперечных размеров элемента вследствие коррозии невелико и его можно не принимать во внимание. При превышении же указанного уровня напряжений отрезок времени от нагружения до разрушения уменьшается с увеличением уровня напряжений. Этого в отсутствие коррозии не наблюдается. Имеет место явление так называемого внутрикристаллического и межкристаллического коррозионного растрескивания. В условиях определенных напряженных состояний (возникающих, например, при растяжении с кручением) и наличия коррозионно активной среды происходит охрупчивание материала.  [c.273]

Труднее объяснить часто наблюдаемые переходы между поведением I и II типов, вызванные изменениями температуры п приложенных напряжений. Наиболее вероятно, что такие переходы обусловлены многочисленными переменными параметрами, связанными с типом и морфологией оксида, механизмом ползучести и составом сплава. Например, можно ожидать, что толстые окалины, образующиеся при высоких температурах на стойких к окислению сплавах, особенно с высоким содержанием хрома или алюминия, будут повышать сопротивление ползучести на воздухе. Высказывались предположения, что изменение типа поведения с температурой отражает переход от высокотемпературного упрочнения, связанного с окалиной, к отрицательному воздействию адсорбции газов (особенно в вершинах трещин) при более низких температурах [23—27]. В то же время изменения температуры могут оказывать и косвенное влияние, изменяя преобладающий тип ползучести [1—6]. Это может быть причиной и переходов, вызванных изменением уровня проложенных напряжений [1-6]. Действительно, в состоянии очень высокого напряжения может отсутствовать стадия установившейся ползучести и тогда по существу мы наблюдаем влияние среды на режим ускоренной ползучести или на разрушение материала. В связи с этим следует заметить, что, к сожалению, большинство исследований коррозионной ползучести, а также и большинство технических испытаний на ползучесть [1-6] не сопровождаются непрерывной регистрацией деформации при определении времени до разрушения (длительной прочности).  [c.41]

На образцах ДКБ могут быть сделаны измерения скорости роста коррозионной трещины как функции коэффициента интенсивности напряжений в вершине трещины. Таким образом, в то время как гладкие образцы не могут быть использованы для определения времени до разрушения конструкций с трещиной (дефектом) или для расчета нагрузок, ниже которых конструкции с трещиной не будут разрушаться за данный промежуток времени, образцы с трещиной могут быть использованы для этих целей. Это не значит, что образцы с трещиной должны заменить все гладкие образцы при испытаниях на КР алюминиевых сплавов. Более того, такие данные, полученные на образцах с трещиной, являются ценным дополнительным материалом к пороговому значению, определенному на гладких образцах, аналогично тому как данные по росту усталостной трещины являются важным дополнением к стандартной усталостной кривой 5—N для различных сплавов [70]. И подобно данным по росту усталостной трещины, данные по росту реальной коррозионной трещины могут быть полезными для установления интервалов технического осмотра и для контроля за изменением состояния конструкций. Кроме того, значения /Сщр могут быть использованы для установления нагрузок, которые гарантируют безопасность конструкций, имеющих необнаруженные трещины (дефекты) в коррозионной среде в течение расчетного срока службы. Специальные примеры по реальному использованию данных по образцам с трещиной (скорость и Кщр) даны ниже (см. п. 5).  [c.185]

Для определения времени разрушения необходимо верхний лредел этого интеграла положить равным единице (оз = 1).  [c.60]

Для определения времени разрушения необходимо положить верхний предел интеграла равным Вразр, определяемой (2.61).  [c.60]

При использовании энергетического критерия время разрушения связующего находится непосредственно из (25.3). Для определения времени разрушения связующего из деформационного критерия поступим следующим обраэом. Вначале иэ (25.1) получим времена разрушения по соответствующим компонентам тензора деформаций арс(р) и faa (p), затем время разрушения связующего  [c.150]

В работах А. Н. Грубина [40, 42] дано приближенное решение задачи о напряженном состоянии в круглом и плоском образцах с надрезами в условиях установившейся и неустановившейся ползучести. Профиль глубокой выточки — гиперболический, мелкой — эллиптический. Для линейных деформаций в наименьшем поперечном сечении и касательного напряжения в окрестности его или для линейных деформаций и радиального напряжения в наименьшем поперечном сечении приняты закономерности, полученные Найбером для соответствующей упругой задачи при .i = 0,5. Использовано приближенное выражение интенсивности деформаций. Расчет проведен на основе гипотезы старения по обобщенной зависимости между максимальными касательными напряжениями и максимальными сдвигами. Для определения времени разрушения использован критерий наибольшего нормального напряжения и закон линейного суммирования повреждений.  [c.248]


Второе издание книги полностью переработано. В нем в отличие от первого издания более подробно изложены общие вопросы теорйи пластичности,, а также рассмотрены теория пластичности с анизо- тропным упрочнением, условие пластичности и теория пластичност для анизотропных материалов, напряженное состояние в шейКе образца при растяжении, новые методы построения действительной диаграммы деформирования, большие деформации и пластическая устойчивость цилиндрических и сферических оболочек, численные методы решения краевых задач плоской деформации и примеры йри-менения их, теория ползучести с анизотропным упрочнением, кратковременная ползучесть, использование критерия Треска—Сен-Венана, в решении задач установившейся ползучести, методы решения задач неустановившейся ползучести и примеры их применения, определение времени разрушения в условиях ползучести, вязкоупругость.  [c.3]

Фрактографическое исследование в сочетании с микрострук-турным анализом и анализом трещин показало, что процесс развития макроскопических трещин в литейных никельхромовых высокожаропрочных сплавах МСбУ, ВЖЛ12У при переменном нагружении по симметричному и ассиметричному циклам при температурах 850—950°С занимает значительную часть общей жизни испытываемого гладкого образца. На это указывает, в частности, то, что общая долговечность оказывается связанной с характеристиками процесса разрушения, проявляющимися в изломе имеется связь между шириной усталостных полосок (ширина полосок измерялась с помощью оптического микроскопа при увеличениях 600—800) и долговечностью (рис. 127). Полученная зависимость может быть использована для приближенного, но тем не менее количественного определения времени  [c.155]

Рассмотренная теория прочности, исходящая из уравнения (1.48), описывает по существу конечную стадию разрушения, на которой в теле уже возникли трещины, способные привести к хрупкому разрушению. Не менее важными являются, однако, и начальные стадии развития процесса разрушения, на которых происходит зарождение и рост трещин до критических размеров Этот процесс протекает более или менее постепенно и для своего завершения требует определенного времени т. Это время, необходимое для развития процесса разрушения от момента нагрунГения тела до момента его разрыва, называется временной прочностью или долговечностью материала.  [c.57]

В то же время следует напомнить, что сохраняют свое значение и традиционные методы испытания гладких образцов. В случае технических испытаний таких форм материалов, как лист или проволока, другого выбора, как правило, нет. Накоплен оченп большой объем информации о взаимосвязи поведения гладких образцов с различными эксплуатационными характеристиками материалов. Эти данные останутся полезными только при условии, что в дальнейшем, наряду с испытаниями, применяемыми в механике разрушения, будут проводиться и исследования на гладких образцах [6]. В случае сравнительно вязких материалов проведение испытаний по определению времени до разрушения или по исследованию зависимости о — К на образцах с предварительно наведенной трещиной может быть затруднено, особенно если прочность материала мала и изменение полного сечения образца препятствует проведению испытаний уже на ранней стадии. С большой осторожностью следует интерпретировать также поведение образцов, применяемых в механике разрушения, характеризуемых высокими скоростями деформации в вершине трещины и очень чувствительных к влиянию загрязнений [302]. Этим и другим подобным вопросам необходимо уделять внимание, чтобы использование методов механики разрушений не стало скорее модным, чем полезным.  [c.125]


Смотреть страницы где упоминается термин Определение времени разрушения : [c.613]    [c.4]    [c.141]    [c.365]    [c.179]    [c.16]    [c.321]    [c.170]   
Смотреть главы в:

Прикладная теория пластичности и ползучести  -> Определение времени разрушения



ПОИСК



Время до разрушения

Малинин Н. Н. Определение времени вязкого разрушения ортотропных листов в условиях ползучести

Определение времени разрушения С.А.Шестериков)

Разрушения определение



© 2025 Mash-xxl.info Реклама на сайте