Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зависимости между деформациями и напряжениями для упругого изотропного тела

Зависимости между деформациями и напряжениями для упругого изотропного тела. Связь между линейными деформациями в направлениях осей X, у, г и нормальными напряжениями в тех же направлениях  [c.178]

Зависимости между деформациями и напряжениями для упругого изотропного тела  [c.37]

Приведенные в первой главе формулы и уравнения справедливы для любой сплошной среды, независимо от того, является она упругой, пластической или находится в любом другом физическом состоянии. Для различных физических состояний сплошной среды физические уравнения различны. Рассмотрим среды или тела, для которых зависимости между деформациями и напряжениями носят линейный характер, т. е. подчиняются обобщенному закону Гука. По упругим свойствам тела разделяются, с одной стороны, на однородные и неоднородные, а с другой — на изотропные и анизотропные. Тела, в которых упругие свойства во всех точках одинаковы, называются однородными, а тела с различными упругими свойствами в различных точках тела — неоднородными. Неоднородность непрерывная, когда упругие свойства тела от точки к точке изменяются непрерывно, и дискретная, когда упругие свойства тела от точки к точке испытывают разрывы или скачки. Тела, упругие свойства которых во всех направлениях, проведенных через данную точку, одинаковы, называют изотропными, а тела, упругие свойства которых во всех направлениях, проведенных через данную точку, различны,— анизотропными. В зависимости от структуры тело может быть изотропным или анизотропным и одновременно однородным или неоднородным [91]. В случае однородного упругого тела, обладающего анизотропией общего вида, зависимость между компонентами тензора напряжений и тензора деформаций в точке линейная  [c.68]


Известно, что ограничения, накладываемые результатами простейших экспериментов (связь между напряжениями и деформациями при растяжении-сжатии, чистом сдвиге и т.п.), не определяют полностью функцию Ф, поэтому, вообще говоря, можно построить сколько угодно зависимостей между компонентами напряжений и деформаций для упругого изотропного тела, приводящих при одноосном растяжении-сжатии к линейному закону Гука [3, 4].  [c.112]

Деформируемое тело, полностью восстанавливающее свои размеры и форму после снятия нагрузки, называется упругим. Для изотропного однородного упругого тела при малых деформациях и напряжениях, не превышающих некоторых определенных значений, принимаем линейные зависимости между компонентами деформации и компонентами напряжения. Эти линейные зависимости выражают собой закон Гука  [c.180]

Приведенные выше формулы теории напряженного и деформированного состояния применимы как для упругих, так и неупругих тел. Для решения контактных задач необходимо знать количественные зависимости между напряжениями и деформациями. Рассмотрим их для случая линейно упругих, изотропных тел.  [c.96]

Нелинейно-упругое тело ). Пусть нелинейно-упругое однородное и изотропное тело содержит в себе трещины нормального разрыва. Будем считать, что среда несжимаема и подчиняется произвольной степенной зависимости между интенсивностью касательных напряжений / и интенсивностью деформаций сдвига Г. Эту зависимость можно рассматривать в качестве удобной аппроксимации произвольной связи между / и Г в интервале величин, характерных для окрестности контура трещины.  [c.111]

Деформационная теория пластичности [3, 4] предполагает наличие однозначной зависимости между суммарными деформациями в упруго-пластическом теле и напряжениями. Для изотропного тела основные соотношения деформационной теории имеют вид  [c.531]

Изотропное линейно-упругое тело обладает одинаковыми механическими свойствами во всех направлениях. Зависимости между напряжениями и деформациями для него можно представить в виде матрицы  [c.20]

Те, кто использовал линейную аппроксимацию и испытал выгоду от ее теоретической простоты, подразделили зависимости между напряжением и деформацией на различающиеся множества, каждое из которых сделалось предметом специального исследования. Описание тел на основе схемы линейной упругости привело к обширной экспериментальной программе определения постоянных упругости для изотропных и анизотропных предположительно однородных сред. Далее, это привело к исследованию зависимости этих упругих постоянных (упругих жесткостей или податливостей) от разнообразных параметров, таких, как температура окружающей среды, скорость изменения напряжений, скорость деформации, предшествующая термическая, химическая механическая истории и окружающие электрическое и магнитное поля. По большей части численные значения были табулированы и каталогизированы не просто с целью их собирания (хотя на самом деле это иногда и случалось в наше время), но скорее для исследования и сравнения осмысливаемых экспериментальных данных с теоретическими трактовками с подчеркиванием функциональной зависимости от различных параметров.  [c.534]


Объектом исследования теории упругости является тело произвольной формы, нагруженное произвольной системой сил. Основные допущения следующие де рмации тела от приложенной системы сил небольшие (е <С 1), связь между напряжениями и деформациями может быть описана линейной зависимостью, которую обычно называют законом Гука, и материал тела обладает свойствами однородности и изотропности. Эти допущения достаточно общие, поэтому полученные на их основе зависимости и уравнения тоже носят общий характер, пригодный для любого конкретного случая.  [c.10]

Наиболее общую зависимость между составляющими напряжения и составляющими деформации в упругом теле даёт обобщённый закон Гука, согласно которому составляющие напряжения в данной точке тела суть линейные и однородные функции составляющих деформаций в той же точке. В самом общем случае упругого тела шесть уравнений этого закона содержат 21 упругую постоянную. Эта зависимость сильно упрощается для изотропных тел, у которых упругие свойства во всех направлениях одинаковы. Для таких тел число независимых упругих постоянных уменьшается до двух А,. Закон Гука для изотропного тела имеет вид  [c.120]

Основы теории упругости были разработаны почти одновременно Навье (1821), Коши (1822), Пуассоном (1829). Независимо друг от друга они получили по существу все основные уравнения этой теории. Особо выделялись работы Коши. В отличие от Навье и Пуассона, привлекавших гипотезу молекулярных сил, Коши, опираясь на метод, в котором используется статика твердого тела, ввел понятия деформации и нагфяжения, установил дифференциальные уравнения равновесия, граничные условия, зависимости между деформациями и перемещениями, а также соотношения между напряжениями и деформациями для изотропного тела, первоначально содержавшие две упругие постоянные. В эти же годы появились исследования М. В. Остроградского о распространении волн в упругом теле при возмущении в его малой области. На эти исследования ссылается в своих работах Пуассон, впервые (1830) доказавший существование в однородной изотропной среде двух типов волн (волны расширения и искажения).  [c.5]

В своём выводе основных уравнений теории упругости Навье (см. стр. 129) исходил из предположения, что идеально упругое тело состоит из молекул, между которыми при его деформировании возникают силы взаимодействия. При этом принималось, что силы эти пропорциональны изменениям расстояний между молекулами и действуют по направлениям соединяющих их прямых линий. Таким путем Навье удалось установить соотношения между деформациями и упругими силами для изотропных тел с введением лишь одной упругой константы. Коши (см. стр. 135) первоначально ввел две константы в зависимости между напряжением и деформацией в случае изотропии. В самом же общем случае анизотропного тела Пуассон и Коши допускали, что каждая из шести компонент напряжения может быть представлена однородной линейной функцией шести компонент деформации (обобщенный закон Гука). В эти функции входило 36 постоянных. Положив в основу физического истолкования явления упомянутую выше молекулярнуро теорию, они снизили число постоянных для общего случая до 15. Они показали, что изотропия допускает дальнейшее снижение этого числа, так что окончательно для записи соотношений между компонентами напряжения и деформации необходима лишь одна постоянная, которую и ввел Навье.  [c.262]

Упругость твердого тела. Согласно закону Гука между напряжениями и деформациями существует пропорциональная зависимость. Для изотропного тела связь между компонентами тензоров Tjjj и дается шестью уравнениями. При этом вводят две упругие постоянные модуль нормальной упругости Е (при осевом растяжении-сжатии) и модуль сдвига G. Вместо модулей Е и G вводят другую пару констант, например постоянные Ламе Л и р,, модуль объемного сжатия К и коэффициент Пуассона v.  [c.5]


В основе деформационной теории пластичности лежат гипотезы, предложенные Хубером [397], Мизесом [423], Хенки [395 и обобщенные на случай материала с упрочнением Надаи [200]. Она предполагает, что для упругопластических тел можно установить зависимости между напряжениями и деформациями, подобно закону Гука для упругих тел. Развитие и обоснование теории малых упругопластических деформаций связано с работами Ильюшина, поэтому часто теорию малых упругопластических деформаций называют теорией пластичности Ильюшина. Здесь принимается, что при простой активной деформации первоначально изотропного материала, свойства которого не зависят от третьего инварианта тензора напряжений, справедливы следующие три гипотезы.  [c.42]

Формулы (1) и дают искомую зависимость между компонентами напряжения и деформации в изотропном теле. Величины Я, [а представляют собой постоянные, характеризуюш ие упругие свойства данного тела ). Обозначения эти были введены Ламе (G. Lame, 1795—1870) поэтому Я и [X называются постоянными Ламе. Для каждого данного материала они должны быть определены экспериментально ).  [c.64]

Мы изложили здесь в самых общих чертах вывод основных уравнений математической теории изотропного упругого тела, подвергнутого бесконечно малой деформации. Необходимо, по крайней мере вкратце, отметить, что некоторые материалы, хрупкие или обладающие пористой структурой с мягкими и слабыми включениями (чугун, бетон), но следуют линейным зависимостям между напряжениями и деформациями, выраженным уравнениями (25.2), (25.3) или (25.14). Кривая простого растяжения или сжатия для таких материалов в пределах малых деформаций состоит из двух сегментов—одного Qx f ( х) для стадии нагрузки и другого, с более крутым уклоном d x d x> для разгрузки. Эти материалы обнаруживают обычно весьма заметный упругий гистерезис с характерными для него петлями в кривых деформирования иод иеременными циклами нагрузки и разгрузки (гл. 1П). Делались разнообразные попытки использовать аппарат математической теории упругости также и для этих материалов, соответствеппо его обобщив. Поскольку такие материалы обнаруживают отчетливые изменения объема, то в определенных случаях представляется достаточным принять для них линейную зависимость между малым упругим изменением объема  [c.445]


Смотреть страницы где упоминается термин Зависимости между деформациями и напряжениями для упругого изотропного тела : [c.302]   
Смотреть главы в:

Прикладная теория пластичности и ползучести  -> Зависимости между деформациями и напряжениями для упругого изотропного тела



ПОИСК



228 — Деформации — Зависимость

293 — Зависимость от напряжения упругая

597 — Деформации и напряжения

Деформации изотропных тел

Деформация Зависимости между деформациями в рас

Деформация упругая

Зависимости между

Зависимости напряжений от деформаций

Зависимость между напряжениями и деформациями

Изотропность

Напряжения 5 — Зависимости

Напряжения упругие

Тела упругие — Деформации —

Тело Зависимость напряжений от деформаций

Тело изотропное — Зависимость между деформациями и напряжениями

Тело изотропное — Зависимость между деформациями и напряжениями в пределах упругости

Тело изотропное — Зависимость между деформациями и напряжениями девиаторов напряжений и деформаций в пределах упругости

Тело изотропное,

Упругие тела

Упругость напряжение



© 2025 Mash-xxl.info Реклама на сайте