Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Выбор анализа характеристик

Выбор анализа характеристик  [c.123]

Указанные методы используются на практике не только для оценки технологического разброса параметров и характеристик ЭМП при заданных допусках на конструктивные данные, но и для выбора допусков при заданных ограничениях на разброс параметров и характеристик. Эта обратная задача решается с помощью многократных решений прямой задачи при вариациях допусков на конструктивные данные. Определяя технологический разброс для различных вариантов допусков, можно установить их взаимное влияние (корреляцию) и соответственно выбрать допуски. Более детально практические аспекты применения методов анализа характеристик погрешностей рассмотрим на примере рассмотренных выше бесконтактных высокочастотных сельсинов с кольцевым вращающимся трансформатором.  [c.234]


В связи с тем что термин готовность отражает два фундаментальных подхода к оценке эффективности, представляется весьма полезным использовать его при анализе характеристик системы. Для иллюстрации использования понятия готовности при выборе компромиссных решений рассмотрим систему оружия А (фиг. 2.3).  [c.71]

При проектировании машин с гидротрансформаторами важным является выбор расчетного режима. При этом выборе исходят из целесообразности обеспечения высоких КПД на наиболее употребляемых режимах работы, и поэтому он определяется условиями эксплуатации проектируемой гидропередачи. Как следует из анализа характеристики т = /(г) на рис 17.5, б, область высоких КПД лежит между точками Ви Е. Любая из точек на этом участке может быть использована в качестве расчетной. Но наиболее часто в качестве расчетного режима принимается режим гидромуфты (точка С на рис 17.5, б).  [c.251]

Выбор профиля турбин ТЭЦ удобно осуществлять на основе анализа характеристики взаимосвязей предельных значений расходов пара в производственной d , т/ч, и отопительный с1т, т/ч, отборы турбин типа ПТ. Характеристики йп = (с1т) для различных турбин типа ПТ представлены на рис. 4.17.  [c.99]

Выше подробно исследовались дифракционные и поляризационные характеристики незаполненных ножевых решеток при сканировании поперек лент. Исходя из (5.15) ясно, что густые решетки, обладающие достаточно большим сектором сканирования в плоскости Ф= 90° Тх= 0), не дают аналогичных характеристик при сканировании в плоскости, близкой к Ф = 0. Стремление расширить сектор сканирования в этой плоскости за счет увеличения периода решетки может привести к ограничению на сектор сканирования в плоскости Ф =90°, связанному с возникновением новой гармоники Флоке либо с выполнением условия (5.16). Количественный и качественный анализ характеристик поляризатора в случае сканирования в полусфере наиболее полно удается провести на основе двухкоординатных зависимостей исследуемых величин в пространстве направляющих косинусов для заданной геометрии решетки и длины волны. Это позволяет дать рекомендации по выбору оптимальных значений параметров ИХ и 2h/l, обеспечивающих максимальный сектор сканирования (рис. 149, 150).  [c.213]

Конечно, только изучение физических закономерностей и движущих сил процессов приводит к правильному выбору основных характеристик процесса и к плодотворному применению теории подобия и анализа размерностей.  [c.278]

Расчет температурного режима при пожаре в помещении состоит из следующих основных этапов анализ конструктивно-планировочных характеристик помещений и определение вида, количества и размещения пожарной нагрузки определение вида возможного пожара выбор определяющих характеристик пожара выбор метода расчета и проведение расчета определение эквивалентной продолжительности пожара расчет вероятных характеристик пожара решение практических задач пожарной профилактики. На рис. 5.1 приведена блок-схема расчета температурного режима пожара в помещениях различного назначения.  [c.228]


Анализ характеристик объекта контроля и показателей процесса контроля. На этом этапе выявляются характеристики объекта контроля, показатели процесса контроля, определяющие выбор средств контроля, уточняется метод контроля.  [c.112]

При выборе средств контроля, проводя анализ характеристик объекта контроля и показателей процесса контроля (точности измерений, достоверности, трудоемкости и стоимости контроля) необходимо учитывать  [c.16]

Раздельный анализ энергетической установки и теплового насоса показывает, что выбор температурных уровней РТО имеет большое значение с точки зрения площадей, а, следовательно, и массы излучателей. Учитывая, что площади радиаторов-излучателей больших тепловых энергетических установок будут сопоставимы с площадями РТО подсистем терморегулирования, необходимо для выбора оптимальных характеристик проводить анализ их совместной работы.  [c.127]

Из анализа характеристик следует, что наибольшая экономичность двш-ателя в эксплуатации достигается при работе по экономической или близкой к ней характеристике. Если при работе По этой характеристике обеспечиваются приемлемые надежность и долговечность двигателя, то задача выбора генераторной характеристики двигателя решается однозначно.  [c.246]

Далее, в гл. 5 и 6 на основе решения электродинамической задачи определяются параметры математических моделей излучающего полотна АФАР, используемые при анализе характеристик АФАР. Параметры математической модели излучающего полотна АФАР определяются для излучателей двух наиболее распространенных типов волноводных и вибраторных с произвольной поляризацией поЛя излучения. Здесь же исследуются вопросы сходимости численных алгоритмов определения параметров мате атических моделей. Приводятся результаты расчетов, показывающие пригодность алгоритмов и позволяющие ориентироваться в выборе состава и числа учитываемых Мод, После определения параметров математических моделей АФАР конкретного типа можно найти токи в излучателях, а по ним характеристики АФАР.  [c.7]

Рассмотрены способы физического представления измерительной вибрационной информации, выбора независимых каналов измерения, описания объектов диагностики в форме вибрационных портретов, преобразования приведения уровней вибрации к режиму по оборотам роторов, выбора контролируемых характеристик вибрации. Предложена математическая модель статистического анализа динамических рядов измерений.  [c.2]

Глава 9 написана крупнейшим специалистом в области нейтронной радиографии Бергером и снабжена большим списком литературы (101 название). Для всех дефектоскопистов особую ценность представляют следующие разделы описание и сравнительный анализ характеристик источников нейтронов и детекторов, позволяющий сделать обоснованный их выбор, примеры использования нейтронной радиографии в технике, что позволяет значительно сократить период создания и внедрения контрольных установок. Автор, на наш взгляд, реально оценивает большие перспективы нейтронной радиографии.  [c.13]

Выбор типа планетарной передачи. Существует большое количество различных типов планетарных передач. Их характеристики и анализ можно найти в [33]. Здесь даются только основные указания по выбору типа планетарной передачи. Самое широкое применение на практике получила простейшая передача, схема которой изображена на рис. 8.45. Она с успехом используется как для больших, так и для малых мош, юстей в машиностроении и приборостроении.  [c.161]

Основная имитационная программа может включать в себя подпрограмму расчета параметров производительности и параметров экономической эффективности при детерминированных характеристиках оборудования и выбранных параметрах партии обрабатываемых деталей. С ее помощью можно оценить качество выбранной компоновки РТК по всему спектру деталей. Подпрограмма оценки качества компоновки используется для анализа конкурирующих вариантов РТК. Если качество РТК не удовлетворяет заданному (с некоторым запасом), то производятся либо изменения компоновки, режимов резания, либо замена оборудования. При этом оценивается требуемая емкость накопителей. После выбора компоновки рассчитывается производительность и экономическая эффективность РТК с учетом надежности оборудования и инструмента.  [c.59]


Функциональное проектирование включает в себя анализ технического задания (ТЗ) и на его основе выбор с системных позиций методики построения и путей реализации вычислительного процесса в ЭВА связано с анализом и синтезом блоков ЭВА заключается в разработке функциональных и принципиальных схем. Здесь определяют принципы функционирования и важнейшие параметры и характеристики ЭВА.  [c.10]

Техническое предложение разрабатывается на основе технического задания разработчиком в тесном взаимодействии с заказчиком. К разработке технического предложения привлекаются также соисполнители. Типовое техническое предложение углубляет содержание отдельных разделов технического задания, а также включает новые разделы по описанию и анализу принципиально возможных вариантов объекта проектирования, обоснованному выбору рационального варианта (рациональных вариантов), оценке характеристик и технико-экономических показателей рациональных вариантов, уточнению работ на следующих этапах разработки и составлению заданий и требований к их выполнению.  [c.35]

На этапе технического проектирования продолжается дальнейшая детализация объекта проектирования вплоть до принятия решений по его конструктивному исполнению. С позиций конструирования уточняются и корректируются техническое задание и отдельные положения технического предложения и эскизного проекта. С помощью анализа возможных вариантов конструктивного исполнения осуществляется выбор окончательного варианта. Для принятого конструктивного варианта объекта проектирования выполняются наиболее точные расчетные и экспериментальные исследования характеристик и параметров как объекта в целом, так и его узлов и деталей. Расчетно-экспериментальным путем проверяется выполнение всех требований технического задания. По результатам проверки корректируются проектные решения и данные до тех пор, пока все требования будут удовлетворены.  [c.36]

Формирование функциональных и критериальных моделей ЭМП Оптимизация параметров, характеристик, процессов ЭМП с учетом ТЗ и других ограничений Уточнение и корректировка расчетов оптимального варианта (вариантов) ЭМП Анализ вариантов и выбор конечного варианта Формирование расчетных формуляров конечного варианта (вариантов)  [c.116]

Систематическая погрещность имеет неслучайный характер, однако реализацию того или иного ее значения в каждом конкретном случае можно рассматривать как явление случайное. В этой связи различия между случайной и систематической погрешностями имеют значение при анализе способов их определения, но не при рассмотрении способов их представления и описания. Сказанное дает основание для использования в качестве показателей точности результатов эксперимента, содержащих систематическую погрешность, характеристик, рассмотренных выше применительно к случайным погрешностям. Однако характер погрешности должен учитываться при выборе соответствующих законов распределения.  [c.40]

Разработаны лишь частные задачи синтеза некоторых типов -Простейших четырехзвенных механизмов. Поэтому при проекти- овании стержневых механизмов, особенно многозвенных, обычно выбирают из числа существующих механизмы, более или менее отвечающие поставленным условиям. Эти условия обычно могут быть выполнены механизмами, имеющими разные кинематические схемы. Поэтому ставится задача определения основных кинематических характеристик рассматриваемых механизмов с целью выбора наиболее подходящего для заданных условий. Эти задачи решает кинематический анализ стержневых механизмов.  [c.209]

Рассматриваемые характеристики используют при выборе числа ступеней и при анализе работы турбин на частичных и переходных режимах. Вместе с тем следует отметить, что все подобные характеристики не учитывают потери, рассмотренные в этом параграфе, которые могут колебаться в довольно широких пределах.  [c.150]

Однако не всякий скачок, заложенный в функции 0", обязательно приводит к скачку ускорений. Например, если толкатель кулачкового механизма перемещается без выстоя, то можно на границе прямого и обратного ходов застыковать ускорения без скачка, не требуя, чтобы в точке стыкования ускорения были равны нулю [т. е. даже при 0" (0) ф 0]. При синтезе механизмов следует иметь в виду, что достаточно резкие изменения ускорения (хотя и нескачкообразные) с учетом упругих свойств звеньев могут привести к тому же динамическому эффекту, что и мягкий удар (см. н. 10). Поэтому окончательное суждение о достоинствах того или иного закона движения не может быть сделано в общем виде, а обязательно должно основываться на учете характеристик конкретной колебательной системы. Этому вопросу уделяется большое внимание в последующих главах. Здесь же ограничимся изложением некоторых подходов к выбору безразмерных характеристик на основе анализа идеального механизма.  [c.21]

Начальная фаза работы связана с выбором соответствующего экспериментального обрудования, с помощью которого можно было бы достаточно точно определить демпфирующие характеристики добавочных покрытий. Было разработано и проанализировано несколько основных конструктивных вариантов входных направляющих лопаток. Наконец, была выбрана лопатка, приваренная к двум массивным титановым блокам. Такая конструкция с приемлемой точностью воспроизводит реальные граничные условия, которые имеют лопатки в двигателях, а мало похожий на исходную конструкцию базовый образец позволял проводить сравнительный анализ характеристик до и после установки демпфирующих покрытий.  [c.340]

Автоматизированный выбор типоконструкции сушилки осуществляется на основе анализа характеристик.подлежащего сушке материала. Эти данные сведены в таблицу, в которую включены все типы сушильных аппаратов, серийно выпускаемые заводами химического машиностроения, и характеристики материалов, на пример,такие как агрегатное состояние, термостойкость, дисперсность, необходимое время сушки и другие. Как правило, пригодными для конкретного материала оказываются несколько типов аппаратов.  [c.120]


У открытого резонатора, по сравнению с волноводным, спектр различных типов колебаний значительно реже, а модовый объем основного типа колебаний больше, чем у основного типа колебаний ЕНц волноводного резонатора. Однако для зеркал с отверстиями связи эффективность выходного отверстия в волноводном резонаторе значительно превосходит эффективность этого же отверстия в открытом резонаторе, образованном зеркалами той же геометрии, что и волноводный. Этим можно объяснить известное преимущество волноводных резонаторов для ряда конфигураций зерйал в конструкциях ГЛОН большой выходной мощности генерации по сравнению с открытыми резонаторами. Однако в цельм проблема выбора оптимальной конструкции резонатора ГЛОН (открытой или волноводной) по отношению к конкретной лазерной системе (активные молекулы, система оптической накачки и т. д.) остается далеко не решенной. Это особенно касается случаев, когда от лазерного источника ГЛОН требуется сочетание высокой энергетической эффективности излучения и его малой угловой расходимости. В таких задачах необходимые рекомендации по выбору оптимальной конструкции резонатора ГЛОН можно дать только при сравнительном анализе характеристик волноводных и открытых резонаторов с учетом активной среды.  [c.169]

Наряду с удачным выбором корректируемых параметров большое значение для исследования коррекционных свойств межпланетных орбит имеет простота аналитических выражений для изохронных производных параметров движения вдоль траектории. Очень простые выражения для изохронных производных были получены В. И. Чарным (1965) в результате изучения свойств линеаризованной системы уравнений возмуш ен-ного движения в рамках задачи двух тел. Эти исследования были продолжены В. Г. Хорошавцевым (1965), рассмотревшим задачу о расчете изохронных производных параметров движения искусственного спутника для случая больших промежутков времени движения, когда траектория разбивается на участки, а также В. Н. Кубасовым (1966), получившим аналитическую зависимость величины указанных производных от времени полета. Полученные аналитические выражения для изохронных производных позволили значительно упростить анализ характеристик коррекций при полетах к Луне и планетам.  [c.306]

Защита атмосферного воздуха от вредных выбросов. Исходные данные, полученные от санитарно-эпидемиологической и гидрометеорологической служб, характеризующие состояние атмосферного воздуха в районе строительства котельной. Определение количества вредных выбросов в атмосферу. Технические решения, обеспечивающие снижение содержания в дымовых газах окислов серы и азота. Для котельных на твердом топливе —обоснование выбора и характеристика золоулавливающих устройств. Согласование с Гипрогазоочист-кой установки электрофильтров. Выбор дымовых труб по условиям рассеивания в атмосфере вредных выбросов согласно СН 369-74, Определение остаточного содержания вредных веществ и количество этих веществ, выбрасываемое в атмосферу после очистки. Уточнение размеров сани-тарно-защитнои зоны по п, 8.2 СН 369-74, Сводные данные результатов расчета по разделу в табличной форме. Анализ состояния воздушного бассейна до и после осуществления проекта котельной.  [c.45]

После выбора системы с наивысшим коэффициентом следующим этапом процедуры оценки должно стать обращение к поставщику с предложением о прогоне контрольного примера для анализа характеристик системы. Контрольный пример-это группа конкретных задач, достаточно полно отражающих специфику фирмы-пользователя. Эти задачи должны относиться и к области проектирования, и к области производства. Они также должны учитывать предполагаемые области применения САПР/АПП. Общее число отдельных задач, составляющих контрольный пример, зависит от степени их сложности обычно оно равно трем или четырем. Для решения задач проектирования система должна вьшолнить необходимый инженерный анализ и выпустить нужную конструкторскую документацию (например, чертежи, спецификации материалов и т.п.). Для решения производственных задач система должна вьшолнить функции анализа или планирования и выдать необходимую документацию в жесткой или гибкой форме (например, программы для станков с ЧПУ, вьшолненные на перфоленте или хранящиеся в памяти ЭВМ).  [c.513]

Пользуясь световыми кнопками, можно за пультом дисплея выбирать те или иные аналитические подпрограммы. Этот выбор определяет режим аэродинамического анализа, выполняемого во время общего анализа характеристик самолета. Например, коэффициенты трения можно определять на основе среднего числа Рейнольдса или на основе конкретных чисел, непрерывно корректируемых с учетом изменений высоты и ск зости. Индуктивное сопротивление, вычисляемое на итерации каждого щага данной фазы полета, зависит от общего веса, скорости и высоты. А эти параметры могли быть скорректированы лищь в соответствии с условиями протекания предыдущего шага. Поскольку величину шага, с которым выполняется анализ, можно регулировать по каждой фазе полета, можно добиться оптимального соотношения точности и времени выполнения анализа. Аэродинамические процедуры, включенные в САП, используют методы, применяемые в настоящее время в аэродинамических лабораториях фирмы Lo kheed-Georgia  [c.222]

Данные об изменении теплопоступлений по часам расчетных суток должны также использоваться для анализа расчетного режима работы системы при выборе основных характеристик системы автоматического регулирования.  [c.55]

Управление подсистемами и программами САПР осуществляется с целью варьирования разработчиком отдельных параметров проектируемого изделия с целью анализа выбранного технического решения, выбора способа представления графической информации и конструкторской документации, а также улучшения определенных техннко-экономических характеристик проектируемого объекта путем ослабления несущественных ограничений.  [c.375]

Рабочая компоновка. После сравнительного анализа и выбора окончательного варианта составляют рабочую компоновку, служашую исходньии материалом для рабочего проектирования. На рабочей компоновке (рис. 28) проставляют основные увязочные, присоединительные и габаритные размеры, размеры посадочных и центрирующих соединений, тип посадок и классы точности, номера шарикоподшипников. Указывают также максимальный и минимальный уровень масла в маслоотстойнике. На поле чертежа приводят основные характеристики агрегата (производительность, напор, частоту и направление вращения, потребляемую мощность, марку электродвигателя) и технические требования (проверка водяных полостей насЬса гидропробой, испытание крыльчатки на прочность под действием центробежных сил и др.). На основании рабочей компоновки производят проверочный расчет на Прочность.  [c.99]

На уровне функционально-параметрического проектирования решают задачи, связанные с выбором функциональных схем объекта проектирования и анализом процессов их функционирования. Функциональные схемы составляют путем изучения возможностей практической реализации выбранных ранее структурнопараметрических вариантов исполнения объекта проектирования. Для каждой схемы исследуются функциональные показатели, характеристики и процессы в различных режимах эксплуатации. Проверяется соответствие процессов функционирования требованиям и условиям технического задания и при необходимости вносятся коррективы в принятые ранее решения. В рассмотрение включают новые параметры, необходимые для оценки функциональных свойств объекта проектирования и характеризующие его внутреннее строение. Поэтому функционально-параметрическое проектирование называют также внутренним проектированием технических объектов.  [c.38]


Таким образом, круг рассматриваемых вариантов расширяется за счет конкретизации возможностей конструкторско-технологиче-ской реализации функционально-параметрических вариантов. С помощью сравнительного анализа всех вариантов осуществляется выбор конечного варианта, для которого уточняются необходимые функциональные характеристики, проверяется соответствие техническому заданию, вносятся необходимые коррективы в принятые ранее проектные решения и составляется полный комплект проектной документации. В отдельных случаях, когда не удается обосновать один конечный вариант, отбираются несколько (минимальное число) конечных вариантов для дальнейшей проработки и сопоставления в опытных образцах.  [c.39]

Учет разброса параметров и характеристик для выбора технологических допусков на стадии проектирования является одним из эффективных способов повышения качества ЭМП. Однако конструирование расчетных алгоритмов с вероятностными значениями проектных данных приведет к недопустимому переусложнению инженерных методик расчета и необходимости статистической обработки громадного объема информации. Поэтому йлияние технологических допус1 Ьв обычно анализируется после определения расчетных проектных данных. При этом решается следующая задача анализа исследовать отклонения расчетных проектных данных в зависимости от заданных законов распределения случайных значений исходных конструктивных данных и параметров. Отклонения расчетных данных исследуются с помощью тех же детерминированных расчетных алгоритмов, которые применяются без учета технологического разброса конструктивных данных.  [c.231]

Создание новой техники невозможно без проектировочных и проверочных расчетов на прочность и долговечность, цель которых в конечном итоге - подтверждение правильности выбора материала, размеров элементов конструкций и машин, обеспечивающих их надежную работу в пределах заданных условий нагружения и срока службы. Обычно подобные расчеты выполняют на основании традиционных подходов сопротивления материалов с привлечением дополнительных методов, позволяющих уточнить напряженное состояние в рассчитываемых зонах деталей, и стандартных, как правило, экспериментов для получения нужных характеристик материалов. Однако увеличение мощности, производительности, КПД и других характеристик современной техники, большие габариты, сложные очертания конструкции, недоработанность технологии или случайные условия эксплуатации обусловливают возникновение дефектов, приводящих к нежелательным последствиям. Для учета в расчетах на прочность и долговечность существующих дефектов применяют методы линейной и нелинейной механики разрушения, основанные на анализе напряженно-деформированного состояния в окрестности фронта трещины.  [c.5]

Выбор метода построения модели должен учитывать особенности системы функциональных связей, характер распределения случайных значений Х/, а также требования к объему информации о выходных показателях У/. Для задач вероятностного анализа ЭМУ уу = /у (х,-) представляется в общем виде, как было видно из предыдущих рассуждений, сложными и нелинейными уравнениями, для которых не может быть гарантирована явновыраженность и дифференцируемость. Входные параметры являются, как правило, непрерывными в границах поля допуска случайными величинами, а вероятностные законы их распределения могут быть в принципе различны. Для выходных показателей обычно требуется полная статистическая характеристика на основе методов, используемых в теории вероятностей.  [c.131]

Последнее обстоятельство является весьма важным и свидетельств) -ет о том, что при выборе того или иного присадочного материала необходимо предварительно знать, обеспечивается ли при заданных параметрах сварного соединения (А д, к) и >словиях нагружения оболочковой конструкции п (или типе оболочки) требования по запасу пластичности металла шва Лр. В противном случае при экспл> атации конструкции в наиболее нагр женной части мягкого шва может произойти локальное разрушение (Л = Лр), что приведет к разрушению всей конструкции. С точки зрения силового подхода данные условия сводятся к тот, чтобы в процессе нагружения сварных конструкций, ослабленных мягким швом, наибольшие напряжения в центральной части шва не превышали своего предельного значения — сопротивления микросколу определяющегося ресурсом пластичности металла /129/. Характеристика не зависит от температу ры и скорости нагружения и нашла хорошее практаческое применение при анализе разрушения материалов в у словиях их апастического деформирования /130, 131/. В работе /129/ нами была установлена связь данной силовой характеристики с ресурсом пластичности металла в виде  [c.195]

Так как Та) и (Та) не зависят от выбора направления осей координат и являются инвариантными по отношению к преобразованиям осей характеристиками напряженного состояния, то значения Оо среднего гидростатического напряжения и Токт октаэдрического касательного напряжения тоже не зависят от выбора направления осей координат и являются инвариантами напряженного состояния по отношению к преобразованию координатных осей. Предыдущим анализом выявлены все особенности напряженного состояния в точке и теперь могут быть выявлены характерные площадки напряженного состояния. На рис. 6.6 индексом а обозначены главные площадки, индексом Ь — площадки наибольших касательных напряжений и индексом с — октаэдрическая площадка.  [c.122]

Анализ напряжений. Композиционные материалы с пространственным расиоложение.ч арматуры имеют относительно небольшую толщину. Определение трансверсальных характеристик при растяженнн таких материалов вследствие малости нх размеров сопряжено с определенными трудностями. Во-первых, при малой длине образца СЛО.ЖПО обеспечить его закрепление а захватах испытательной машины во-вторых, не установлена возможность сопоставления опытных данных, полученных на образцах разной длины. Все это вызывает необходимость обос-нопанного выбора размеров образца.  [c.27]


Смотреть страницы где упоминается термин Выбор анализа характеристик : [c.345]    [c.95]    [c.25]    [c.92]    [c.179]    [c.466]    [c.510]    [c.26]   
Смотреть главы в:

OrCAD моделирование  -> Выбор анализа характеристик



ПОИСК



Анализ характеристик



© 2025 Mash-xxl.info Реклама на сайте