Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Источник теплоты сварочный

По сравнению с аргонодуговой сваркой вольфрамовым электродом плазменная дуга имеет ряд преимуществ. Во-первых, она является более концентрированным источником теплоты и вследствие этого обладает большей проплавляющей способностью. Плазменной дугой можно сваривать металл толщиной до 10 мм без разделки кромок и применения присадочного металла. При этом снижается тепловое влияние дуги на свариваемый металл и уменьшаются сварочные деформации. Во-вторых, плазменная дуга обладает более высокой стабильностью горения, что обеспечивает повышенное качество сварных швов. Это позволяет выполнять так называемую микро-плазменную сварку металла толщиной 0,025—0,8 мм на токах 0,5— 10 А. В-третьих, увеличивая ток и расход газа, можно получить так называемую проникающую плазменную дугу. В этом случае резко возрастет тепловая мощность дуги, скорость истечения и давление плазмы. Такая дуга дает сквозное проплавление и выдувает расплавленный металл (процесс резки). Недостаток плазменной сварки — недолговечность горелок вследствие частого выхода из строя сопел и электродов.  [c.200]


В зависимости от используемого источника теплоты различают металлизацию дуговую, газовую, плазменную и ТВЧ, При дуговой металлизации используют специальные металлизационные аппараты (рис. 5.46). Через два направляющих мундштука 2, по которым протекает сварочный ток, подают проволоки 4. При соприкосновении проволок в точке I  [c.228]

Виды сварочных дуг. Источником теплоты при дуговой сварке является сварочная дуга — устойчивый электрический разряд в сильно ионизированной смеси газов и паров материалов, используемых при сварке, и характеризуемый высокой плотностью тока и высокой температурой.  [c.9]

Формирование сварочной ванны происходит под действием силы тяжести расплавленного металла давления источника теплоты (например, давления дуги) и сил поверхностного натяжения действующих на поверхности металла (рис. 16). Характер действия этих сил зависит от положения сварки.  [c.23]

Приведем пример того, как можно с помощью некоторых формальных приемов удовлетворить изотермическому условию. Пусть полубесконечная пластина нагревается в точке О сварочной дугой (рис. 5.7, а), а температура Т границы А—А постоянно поддерживается равной нулю. Очевидно, что если бы пластина была бесконечной, то распределение температур в сечении I — I в некоторый момент времени выражалось кривой 1 и температура по линии А — А не равнялась нулю. Однако можно представить, что в точке 0 той же бесконечной пластины, находящейся также на расстоянии L от Л — А, действует источник теплоты с отрицательным знаком, так называемый сток теплоты. Причем свойства  [c.147]

СХЕМАТИЗАЦИЯ СВАРОЧНЫХ ИСТОЧНИКОВ ТЕПЛОТЫ  [c.154]

При необходимости учесть распределенность теплоты, например, от сварочной дуги, по глубине металла можно принять нормальный закон распределения по аналогии с формулой (5.33). В общем случае использования различных сварочных источников теплоты вопрос о распределенности теплового потока по толщине металла должен решаться каждый раз конкретно в зависимости от свойств самого источника и его взаимодействия со свариваемым металлом. В первом приближении о характере распределения вводимой энергии можно судить по форме проплавления. На рис. 5.14, а. б. в показаны формы провара в электрошлако-вых сварных соединениях в зависимости от расположения и характера перемещения сварочных проволок в зазоре. Случай  [c.156]


Указанные допущения позволяют получить стройную теорию распределения температуры в телах при нагреве их различными движущимися источниками теплоты. Эта теория хорошо отражает качественную картину, а в ряде случаев дает также и достаточную для технических расчетов точность описания сварочных процессов. В точках, где находятся сосредоточенные источники, расчетная температура может достигать бесконечно больших значений. Наибольшие погрешности в описании полей температур наблюдаются в зонах вблизи действия источников теплоты. Определение температур в этих зонах по изложенным здесь методикам проводить не следует.  [c.158]

В сварочной технике все чаще применяются мощные источники теплоты, осуществляющие сварку с весьма большими скоростями. В предельном случае, когда дни стремятся к бесконечности, в то время как отношение q/v сохраняет некоторое конечное значение, распространение теплоты в массивном теле и пластине приобретает особенности, позволяющие значительно упростить расчетные схемы.  [c.179]

В п. 6.4 отмечалось, что большинство сварочных источников теплоты, строго говоря, не сосредоточенные, а обладают распределенностью теплового потока по нормальному закону [уравнение (5.33)]. Если источник теплоты обладает высокой концентрацией теплоты, то его можно рассматривать как сосредоточенный. Для некоторых источников теплоты, таких, как газовое пламя, а иногда и дуга, оказывается необходимым учет их распределенности.  [c.196]

Полный тепловой к. п. д. проплавления т) р выражает отношение vF Qh ко всей (полной) тепловой мощности сварочного источника теплоты UI. Источники теплоты, когда они используются для соединений, формирование которых происходит в основном в результате наплавки металла (см. рис. 7.20, вверху), целесообразно оценивать по полному тепловому к. п. д. наплавки  [c.233]

В простейших инженерных схемах расчета воспроизвести сложную пространственную форму выделения теплоты при электрошлаковой сварке не представляется возможным. Хорошо отвечает фактическому распределению температур и форме проплавления следующая расчетная схема источника теплоты (рис. 7.21,6) в сплошной пластине без сварочного зазора / движутся три (равномерных по толщине металла) источника теплоты в виде линий АС, BD, расстояние между которыми равно 1, ч А В. Мощность источника на линии А В соответствует  [c.233]

Следует обратить внимание на то, что при электрошлаковой сварке даже без подогрева металла можно обеспечить весьма малые скорости охлаждения, что важно, например, при сварке легированных и, в частности, инструментальных сталей. Этого можно достичь увеличением мощности металлического источника теплоты путем увеличения сварочного зазора / до нескольких десятков сантиметров.  [c.236]

Способы предотвращения холодных трещин в сварных соединениях направлены на уменьшение или устранение отрицательного действия основных факторов, обусловливающих их образование, путем 1) регулирования структуры металла сварных соединений 2) снижения концентрации диффузионного водорода в шве 3) уменьшения уровня сварочных напряжений. Способы регулирования структуры рассмотрены в п. 13.3. Наиболее часто для предотвращения холодных трещин применяют предварительный или последующий подогрев сварных соединений. При сварке углеродистых и низколегированных сталей, не содержащих активных карбидообразующих, подогрев может исключить закалочные структуры в шве и ЗТВ. Кроме того, подогрев способствует интенсивному удалению Нд из соединения. При невозможности или нецелесообразности применения подогрева проводят низкий или высокий отпуск сварных узлов непосредственно после сварки. Для предотвращения XT в ряде случаев (мартенситные стали небольших толщин) достаточен местный кратковременный отпуск с помощью индуктора ТВЧ или других концентрированных источников теплоты с нагревом до 1000 К в течение 2...3 мин.  [c.543]

В зависимости от используемого источника теплоты различают металлизацию дуговую, газовую, плазменную и ТВЧ. При дуговой металлизации используют специальные металлизационные аппараты (рис. 5.46). Через два направляющих мундштука 2, по которым протекает сварочный ток, подают проволоки 4. При соприкосновении проволок в точке I в результате короткого замыкания появляется дуговой разряд и образуются капли металла, увлекаемые струей сжатого воздуха, поступающего в корпус 3 через рукоятку  [c.272]


После прекращения поступления теплоты к сварочной ванне (удаление источника теплоты или его отключение) происходит быстрое охлаждение и  [c.446]

Сварочные источники теплоты  [c.449]

Таблица 23.1. Энергетические характеристики сварочных источников теплоты Таблица 23.1. <a href="/info/220037">Энергетические характеристики</a> <a href="/info/451456">сварочных источников</a> теплоты
Форму и размеры сварочной ванны определяет изотермическая поверхность объемного теплового поля, соответствующая температуре плавления основного металла. В головной части ванны под воздействием источника теплоты металл нагрет значительно выше температуры его плавления, а в хвостовой части ванны температура приближается к температуре плавления основного металла. Средняя температура сварочной ванны при сварке под флюсом конструкционных низкоуглеродистых сталей составляет около 1800 °С. Максимальная температура для этих условий достигает 2300 °С.  [c.23]

Изучение упомянутых дисциплин предполагает достаточно глубокое изучение студентами таких вопросов, как классификация способов сварки, теоретические основы источников теплоты, используемых при сварке, физико-металлургические и тепловые процессы при сварке, процессы кристаллизации металла сварного шва и технологическая прочность сварных соединений и т.п. Поэтому основное внимание в данном учебнике уделено технологии сварки плавлением, а по сварочному оборудованию приведены только сведения, дополняющие курс источников питания. В разделах по технологии сварки авторы не стремились привести все данные о сварочных материалах, режимах и т.п., учитывая, что эти данные имеются в справочной литературе, и уделили основное внимание освещению основ выбора технологии.  [c.7]

Жесткие требования по точности выполнения устанавливаемых режимов предъявляются к манипуляторам и механизмам перемещения сварочного источника теплоты в автоматизированных установках. Допустимы следующие колебания скорости перемещения при сварке под флюсом 5 % при аргонодуговой сварке тонколистовых металлов 2 % в установках для электронно-лучевой и лазерной сварки менее 1 %. Точность установки свариваемых изделий и отклонение положения стыка при сварке не должно превышать 20. .. 25 % поперечного размера площади пятна ввода теплоты в изделие, т.е. при сварке под флюсом это составляете 1. .. 2 мм при микроплазменной - не более 0,25 мм при электронно-лучевой и лазерной (в зависимости от диаметра луча) от 0,1 мм до 10 мкм.  [c.168]

В сварочной ванне расплавленные основной и, если используют, дополнительный металлы перемешиваются. По мере перемещения источника теплоты вслед за ним перемещается и сварочная ванна. В результате потерь теплоты на излучение, теплоотвод в изделие, а при электрошлако-вой сварке и в формирующие ползуны в хвостовой части ванны происходит понижение температуры расплавленного металла, который, затвердевая, образует сварной шов.  [c.256]

В связи с тем что в таких процессах наплавки стремятся избежать непосредственного воздействия высокотемпературного сварочного источника теплоты на наплавляемую поверхность, а соединение наплавляемого слоя с основным металлом осуществляется при минимальном подплавлении наплавляемой поверхности, к чистоте этой поверхности при подготовке к наплавке предъявляются весьма высокие требования.  [c.540]

Источником теплоты при дуговой сварке плавлением является сварочная электрическая дуга. Сварочная дуга представляет собой мощный длительный электрический разряд между проводниками в ионизированной атмосфере газов и паров металла. Она образуется между электродом и основным металлом (изделием) или между двумя электродами, имеющими разность потенциалов.  [c.374]

Вместе с тем, ЭШП выгодно отличается от ВДП большими возможностями управления процессами, протекающими в плавильном пространстве. При ЭШП, в отличие от ВДП, источником теплоты служит не дуга, а шлаковая ванна (рис. 168), точно так же, как при ЭШС. Мелкокапельный перенос электродного металла, характерный для электрошлакового сварочного процесса, предопределяет развитие удельной поверхности контакта жидких металла и шлака при ЭШП. Установлено, например, что при ЭШС на обычных для этого процесса режимах в 1 сек через шлаковую ванну проходит примерно 10 капель средним диаметром около 5 лгж и весом 0,5 г [6]. Это значит, что удельная поверхность взаимодействия металла и шлака, еще до попадания отдельных капель электродного металла в металлическую ванну, достигает  [c.401]

Газовое (или сварочное) пламя—основной источник теплоты при сварке и других процессах газопламенной обработки. Сварочное пламя образуется при сгорании смеси горючего газа или паров горючей жидкости с кислородом.  [c.53]

Фазовые и структурные превращения в ЗТВ сварочного источника теплоты  [c.409]


Другим положительным свойством электронного луча, выгодно отличающим его от остальных сварочных источников теплоты, является возможность глубокого проплавления металла благодаря тому, что электронный луч высокой интенсивности может проникать в металл на глубину в несколько миллиметров. При этом образуется узкий канал с достаточно высокой проницаемостью для электронов, заполненный металлическими парами.  [c.373]

Минимальная площадь пятна нагрева является одной из характеристик сварочного источника теплоты.  [c.183]

Дуговая плазменная струя — интенсивный источник теплоты с Бшроким диапазоном технологических свойств. Ее можно исполь зовать для нагрева, сварки или резки как электропроводных металлов (обе схемы рис. 53), так и неэлектропроводпых материалов, таких как стекло, керамика и др. (плазменная струя косвенного действия, рис. 53, б). Тепловая эффективность дуговой плазмониой струи зависит от величины сварочного тока и напряжения, состава, расхода и скорости истечения плазмообразующего газа, расстояния от сопла до поверхности изделия, скорости  [c.65]

В сварочной ванне расплавленные основной и, если используют, доно,л нительиый металлы переменгиваются. По мере перемещения источника теплоты вслед за ним перемещается и сварочная ванна. В результате потерь теплоты на излучение, теплоотвод в изделие, а при электрошлаковой сварке — ив формирующие ползуны в хвостовой части ванны происходит понижение температуры расплавленного металла, который, затвердевая, образует сварной шов. Форма и o6iieM сварочной ванны зависят от способа сварки и основных параметров режима. Ее объем может составлять от миллиметров до сотен кубических сантиметров.  [c.208]

В современных установках для сварки, сверления, резки пли фрезерования электронный луч фокусируется на площади диаметром менее 0,001 см, что позволяет получить большую удельную мощность. При использовании обычных сварочных источников теплоты (дуги, газового пламени) металл нагревают и плавят за счет распространения теплоты от поверхности в глубину, при этом форма зоны расплавления в сечении приблил<ается к полукругу Fn- При сварке электронным лучом теплота выделяется непосредственно в самом металле причем наиболее интенсивно на некоторой глубине под его поверхностью. Отношение глубины проплавления к ширине может достигать 20 1 такое проплавление называется кинжальным (рис. 5.16).  [c.203]

Например, при нагреве сварочной дугой полубесконечной пластины в точке О (рис. ЪЛ, б) граница А — А соприкасается с воздухом и излучает некоторое количество теплоты. Для простоты расчетов можно принять, что граница А — А теплонепроницаема, т. е. адиабатична. Выполнить это условие можно, пользуясь формальным приемом. Допустим, что пластина бесконечна и Б ней на расстоянии L по другую сторону от линии А — А в точке Oi действует точно такой же источник теплоты, как и в точке О. Очевидно, что тепловой поток через границу А — А от источника О равен в каждой точке линии А — А тепловому потоку от источника Oi. Суммарный тепловой поток через границу /4 —/4, следовательно, равен нулю. Температуру точек полубесконечной пластины находят путем сложения ординат кривой 1 с ординатами кривой I (рис. 5.7,6). Температура края полубесконечной пластины оказывается вдвое больше температуры соответствующих точек бесконечной пластины. Описанный прием компенсации теплового потока носит название метода отражения, так как в этом случае теплонепроницаемая граница может рассматриваться как граница, отражающая тепловой поток, идущий со стороны металла.  [c.148]

Сварочная ванна перемещается по свариваемому изделию вместе с источником теплоты. После затвердевания расплавленного металла сварочйой ванны образуется шов. Поперечное сечение переплавленного металла условно делят на площадь наплавки F и площадь проплавления основного металла Fo (рис. 12.13). Очертания зоны проплавления основного металла характеризуется коэффициентом формы проплавления i )np = = b/h или относительной глубиной проплавления h/b, а также коэффициентом полноты проплавления ц р= Fo/(bh). Очертание зоны наплавки характеризуется коэффициентом формы валика ) =Ь/с и полноты валика i =FJ b ). Глубина и форма проплавления зависят от сосредоточенности источника теплоты, определяемой способом сварки и силой сварочного тока. Так, заглубление сварочных ванн имеет место при электронно-лучевой и лазерной сварке, а также при дуговой сварке легких металлов с использованием тока большой плотности. На рис. 12.14 показаны формы поперечных сечений швов при различных способах сварки.  [c.446]

Источником теплоты при дуговой сварке служит электрическая дуга, которая горит между электродом и заготовкой. В зависимости от материала и числа электродов, а также способа включения электродов и заготовки в цепь электрического тока различают следующие виды дуговой сварки сварка нетавящимся (графитовым или вольфрамовым) электродом I дугой прямого действия 2 (рис. 5.1, а), при которой соединение выполняется путем расплавления только основного металла 3 либо с применением присадочного металла 4, сварка плавящимся (металлическим) электродом 1 дугой прямого действия 2 (рис. 5.1, б) с одновременным расплавлением основного металла 3 и электрода, который пополняет сварочную ванну жидким металлом сварка косвенной дугой 5 (рис. 5.1, в), горящей между двумя, как правило, неплавящимися электродами 7 при этом основной металл 3 нагревается и расплавляется теплотой столба дуги сварка трехфазной дугой 6 (рис. 5.1, г), при которой дуга горит между электродами 7,  [c.222]

Расход флюса при этом способе сварки невелик и обычно не превышает 5 % массы наплавленного металла. Ввиду малого количества шлака легирование наплавленного металла происходит в основном за счет электродной проволоки. Доля основного металла в шве может быть снижена до 10. .. 20 %. Вертикальное положение металлической ванны, повышенная температура ее верхней части и значительное время пребывания металла в расплавленном состоянии способствуют улучшению условий удаления газов и неметаллических включений из металла шва. По сравнению со сварочной дугой шлаковая ванна - менее концентрированный источник теплоты. Поэтому термический цикл электрошлаковой сварки характеризуется медленным нафевом и охлаждением основного металла. Отклонение положения оси свариваемого шва от вертикали возможно не более чем на 15° в плоскости листов и на 30. .. 45° от горизонтали.  [c.154]

Электроннолучевая сварка (ЭЛС) — один из самых новых способов сварки металлов плавлением. Вначале его рассматривали только как средство соединения деталей и узлов из тугоплавких и химически активных металлов, например вольфрама, молибдена, циркония, тантала, ниобия и др. Однако ряд замечательных особенностей ЭЛС привлек к ней внимание специалистов, полагавших, что этот способ сварки окажется перспективным и в применении к трудносвариваемым аустенитным жаропрочным сталям и сплавам. Важнейшей особенностью ЭЛС является невиданная ранее при сварке концентрация энергии. Источником теплоты при ЭЛС служит, как известно, сфокусированный в узкий луч поток быстро движущихся в вакууме электронов, бомбарди рующих место сварки. В современных промышленных установках для ЭЛС ускоряющее напряжение достигает 100 кв, но сварочный ток, т. е. ток в пучке электронов, обычно не достигает и 1 а.  [c.349]


Назначение термической обработки сварных соединений 1) снятие или сни жение уровня остаточных сварочных напряжений, 2) восстановление или улучше ние структурного состояния и свойств металла в ЗТВ, на которую нагрев сварочным источником теплоты оказал неблагоприятное влияние, 3) рекристаллизациго и улучшение качества соединения в результате протекания диффузионных про цессов при методах сварки давлением.  [c.411]

Для роботизированной дуговой сварки могут применяться те же источники, что и для механизированной или автоматической сварки при условии, что они имеют аналоговые или цифровые входы и выходы для связи с системой управления робота или комплекса, либо могут быть снабжены преобразователями, ВЫПОЛН5ПОЩИМИ эти функции. В составе оборудования для РДС обычно применяют самые совершенные источники питания сварочной дуги, в которых осуществляется управление процессом использования теплоты и переноса металла на уровне объема капель и времени переноса каждой из них, инверторные источники питания. Транзисторные источники питания могут обеспечивать скорость изменения силы сварочного тока до 50 А/мс, что значительно уменьшает разбрызгивание и позволяет выполнять роботизированную сварку в самых различных пространственных положениях.  [c.138]

Плазма — это четвертое агрегатное состояние вещества, представляющего собой ионизированньга газ, состоящий из положительно и отрицательно заряженных частиц в таких пропорциях, что общий заряд равен нулю. Температура плазмы, являющейся хорошим электрическим проводником, может достигать очень больших значений, намного превышающих температуру обычной сварочной дуги. Выделить плазму в чистом виде очень трудно, поэтому в технике используется лишь плазменно-дуговой источник теплоты — обогащенный плазмой обычный дуговой разряд.  [c.143]


Смотреть страницы где упоминается термин Источник теплоты сварочный : [c.71]    [c.83]    [c.147]    [c.446]    [c.118]    [c.118]    [c.449]    [c.177]   
Теория сварочных процессов (1988) -- [ c.154 ]



ПОИСК



Источник теплоты

Сварочный ток - Источники

Схемы сварочных источников теплоты



© 2025 Mash-xxl.info Реклама на сайте