Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Концентрирование

При механизированной сварке под флюсом глубина проплавления основного металла в определенных пределах не зависит от формы подготовки кромок и величины зазора, что объясняется высокой плотностью тока и концентрированностью теплового действия дуги при этом способе сварки,  [c.13]

Прямая пропорциональность между объемным расходом Q и падением давления Ар, предсказываемая уравнением (2-1.1), подтверждается экспериментально при ламинарном режиме течения для широкого класса обычных жидкостей с низким молекулярным весом. В то же время многие реальные материалы не подчиняются такой закономерности, и экспериментально наблюдаемая зависимость Q от Ар нелинейна. Концентрированные суспензии, краски, расплавы полимеров и растворы представляют собой типичные примеры материалов, обнаруживающих неньютоновское поведение.  [c.55]


Рис. 7-2. Снижение сопротивления в концентрированных растворах. Рис. 7-2. Снижение сопротивления в концентрированных растворах.
При принятом выше определении числа Рейнольдса типичное поведение, наблюдаемое у разбавленных растворов, проиллюстрировано на рис. 7-1, хотя в литературе указывались и другие типы зависимости [27, 28]. При равных числах Рейнольдса коэффициент трения зависит от диаметра трубы, достигая ньютоновского значения при очень больших диаметрах. Для более концентрированных растворов часто наблюдается поведение, иллюстрируемое на рис. 7-2. Здесь еще чувствуется влияние диаметра, но переход от ламинарного течения к турбулентному обнаружить нелегко, хотя, вообще говоря, можно различить небольшой изгиб вблизи точки Re = 2100.  [c.283]

При газовой сварке для концентрированного нагрева применяют горючий газ (ацетилен или другие газы, сжигаемые в кислороде) при электросварке — тепловую энергию электричества.  [c.288]

При газовой сварке для концентрированного нагрева применяют горючий газ (ацетилен или другие газы, сжигаемые в кислороде) при дуговой — тепловую энергию электричества. В мащиностроении находят широкое применение дуговая и контактная сварка.  [c.248]

Если минимальная ширина потока излучения Хо равна d, из формулы (4.2) следует, что при выполнении условий (4.1) дифракционные эффекты не наблюдаются вплоть до расстояния г/р 7. Следовательно, взаимодействие излучения с частицей в концентрированной дисперсной среде можно рассматривать в рамках геометрической, оптики и пренебречь дифракцией на отдельной частице. Это подтверждается опытными данными [139] о независимости степени черноты слоя от размеров частиц.  [c.133]

Экспериментальное исследование переноса излучения в концентрированных системах сталкивается со значительными трудностями, поскольку часто возникает необходимость разработки оригинальных методик и приборов применительно к исследуемой системе.  [c.134]

В некоторых работах [19] указывается, что в концентрированных дисперсных системах возможно нарушение закона Бугера. Представляют интерес экспериментальные работы, в которых проверяется выполнение закона Бугера в таких системах. Так, в [158] исследовалось ослабление широкого параллельного пучка света псевдоожиженным сдоем частиц белого электро-  [c.139]


Рез льтаты экспериментальных исследований переноса излучения в концентрированных дисперсных системах позволяют сделать вывод, что при описании радиационного теплообмена в этих системах необходимо исследовать допустимость аддитивного представления различных процессов переноса и условия, при которых оно применимо, а также зависимость излучательных характеристик системы от свойств частиц и распределения температуры. Независимость степени черноты от структуры дисперсной среды позволяет выбрать достаточно простую модель систе.мы,  [c.140]

В работе [173] выполнен сравнительный расчет спектральных характеристик разреженной и концентрированной дисперсных систем. Для расчета переноса излучения в разреженной системе использовалось уравнение переноса, а для описания концентрированной - системы — модель стопы. Как оказалось, спектральные характеристики концентрированной и разреженной дисперсных систем, особенно в случае больших частиц, сильно различаются.  [c.147]

В концентрированной дисперсной среде  [c.148]

Общий объем литейных пор плавно изменяется, но их размеры и распределение зависят от температурного интервала кристаллизации. При большом интервале литейные поры, как правило, мелки и распределены по всему сечению отливки. Плотность отливки будет мала, но ио этой же причине небольшой будет и литейная усадка. При температурном интервале кристаллизации, равном нулю (чистые компоненты, эвтектика), образуется концентрирован-  [c.580]

Литейные свойства латуней определяются взаимным расположением линий ликвидус и солидус. Так как линии ликвидус и солидус для кристаллизации а- и р-фаз лежат близко одна от другой, то литейные свойства латуней характеризуются малой склонностью к ликвации, хорошей жидкотекучестью, склонностью к образованию концентрированной усадочной раковины.  [c.608]

Жидкотекучесть бронзы невелика из-за большой разницы в температурах между линиями ликвидус и солидус. По этой же причине бронза не дает концентрированной усадочной раковины и для отливки из бронз высокой плотности (рассеянные усадочные поры по всему объему отливки понижают ее герметичность, в то же время это обстоятельство определяет ее пониженную плотность и малую усадку).  [c.613]

По сравнению с аргонодуговой сваркой вольфрамовым электродом плазменная дуга имеет ряд преимуществ. Во-первых, она является более концентрированным источником теплоты и вследствие этого обладает большей проплавляющей способностью. Плазменной дугой можно сваривать металл толщиной до 10 мм без разделки кромок и применения присадочного металла. При этом снижается тепловое влияние дуги на свариваемый металл и уменьшаются сварочные деформации. Во-вторых, плазменная дуга обладает более высокой стабильностью горения, что обеспечивает повышенное качество сварных швов. Это позволяет выполнять так называемую микро-плазменную сварку металла толщиной 0,025—0,8 мм на токах 0,5— 10 А. В-третьих, увеличивая ток и расход газа, можно получить так называемую проникающую плазменную дугу. В этом случае резко возрастет тепловая мощность дуги, скорость истечения и давление плазмы. Такая дуга дает сквозное проплавление и выдувает расплавленный металл (процесс резки). Недостаток плазменной сварки — недолговечность горелок вследствие частого выхода из строя сопел и электродов.  [c.200]

Толщина этой диффузной части двойного электрического слоя оценивается А. Н. Фрумкиным в чистой воде — до 1 мкм, для не очень низких концентраций растворов—в 10 —10 см, а в концентрированных растворах — в десятки или единицы ангстрем.  [c.159]

В таком концентрационном элементе, согласно формуле Нернста, более отрицательным является электрод, соприкасающийся с более разбавленным раствором, а более положительным— соприкасающийся с более концентрированным раствором.  [c.28]

Примером коррозионного растрескивания под напряжением может служить каустическая хрупкость стали в щелочных растворах. Опыт показал, что для возникновения каустической хрупкости необходимо совместное действие концентрированных щелочных растворов при повышенной температуре и высоких внутренних растягивающих напряжений. На рис. 52 показана область склонности углеродистой и малоуглеродистой сталей к рас-  [c.89]


Для некоторых систем первые пороги устойчивости отсутствуют, а коррозионная стойкость наступает только при высоких значениях п, как это видно из кривой изменения химической стойкости для системы Си—Аи в концентрированной азотной кислоте плотности 1,3-Ю кг м при температуре 90° С (рис. 97). Известны случаи наступления коррозионной стойкости, напри-чер для бронз, и при более высоком пороге устойчивости.  [c.126]

Изменять технологические характеристики дуги можно, используя центральную подачу защитного газа с высокой скоростью. Высокие скорости истечения газа нри обычных расходах достигаются применением сопл с уменьшенным выходным отверстием. Обдувание дуги газом способствует уменьшению ее поверхности, Т. е. сжатию. В результате ввод теплоты дуги в изделие становится более концентрированным. Кинетическим да1 , 1епиеи потока газа расплавленный металл оттесняется из-под дуги, и дуга  [c.57]

В связи с высокой температурой и теплопроводностью, затрудияюЩ1Г ми локальный разогрев, требуются более концентрированные источники нагрева и повышенные режимы сварки. Однако в связи со склонностью меди к росту зерна при сварке многослойных швов металл каждого прохода для измельчения зерна проковывают при температурах 550—800° С.  [c.343]

Типичными примерами дилатантных жидкостей являются концентрированные суспензии твердых частиц с другой стороны, полимерные расплавы и растворы почти всегда являются псевдо-пластическими.  [c.56]

Псевдоожиженнцй слой представляет собой разновидность концентрированной гетерогенной среды — рассеивающей, поглощающей и излучающей (диапазон изменения порозности псевдоожиженного слоя 0,4—0,9 [3]). В дальнейшем под концентрированной дисперсной средой понимается система, концентрация частиц в которой соответствует этому диапазону. Явления, которые в принципе могут возникнуть при взаимодействии излучения с подобной системой, рассматриваются в работах [19, 20, 126]. В частности, Забродский предполагает существенность следующих эффектов [19]  [c.131]

Особенности концентрированной дисперсной среды и сделанные, исходя из них, оценки различных эффектов, возможных в процессе переноса излучения, позволяют сформулировать основные характеристики подобных систем. При расчете радиационных свойств дисперсного слоя его можно представить как ансамбль больших по сравнению с длиной волны сферических частиц с серой, диффузно отражающей и излучающей поверхна-стью, разделенных прозрачной средой.  [c.134]

Лредставляют интерес исследования сложного теплообмена в другой разновидности концентрированных дисперсных систем — плотном слое. При исследованиях этой среды оказывается возможным за счет вакууми-рования системы исключить конвекцию и теплопровод- ность газа и изучать только радиационный перенос в широком диапазоне температур [153—157]. Результаты этих работ свидетельствуют о том, что для нлотного слоя при обработке экспериментальных данных оказыва.-ется удачным предположение об аддитивности различных механизмов переноса энергии [157]. При этом перенос излучения учитывается введением-коэффициента лучистой теплопроводности  [c.139]

Выполненными в [128] измерениями пропускания инфракрасных дисперсных фильтров (также относящихся к концентрированным дисперсным системам) не установлены отклонения от закона Бугера для этих систем. Измерения интенсивности рассеянного концентрированной системой света, порожденного узким падающим пучком, показали, что для некоторых направлений рассеяния (угол рассеяния порядка нескольких градусов) наблюдаются отклонения от закона Бугера [159]. По-видимому, в результате рассе 1ния происходит пространственное перераспределение энергии, которое становится заметным при рассеянии узких пучков. В то же время для полусферического рассеянного излучения в концентрированных дисперсных средах не происходит нарушения закона Бугера.  [c.140]

Для таких дисперсных систем, как туман, дым, запыленный поток, характерна малая концентрация рассеивающих частиц, и предположение о независимости рассеяния излучения отдельными частицами оказывается справедливым [125]. В ряде работ [153—167] урав- нение перепоса было использовано для определения оптических свойств двух разновидностей концентрированной дисперсной системы плотного и псевдоожижен-ного слоя. При этом были получены следующие качественные результаты для дисперсной среды в отличие от сплошной яркость в направлении касательной к по-  [c.144]

Сравнение различных методов расчета переноса излучения в дисперсных системах позволяет, на наш взгляд, сделать вывод, что наиболее адекватным по отношению к концентрированной дисперсной среде будет описани.е этого процесса на основании. модели стопы. Данную модель можно применять к грубодисперсным системам. Она позволяет учесть такие явления, как многократное отрада 147  [c.147]

Рассмотрим радиационный перенос. Профили температуры, представленные на рис. 4.8, позволяют определить влияние параметров системы на распределение 7 при Л = onst. Существенно различается зависимость T i) для концентрированной и разреженной дисперсных систем. При большом расстоянии между частицами, когда велико пропускание системы, вблизи ограничивающих поверхностей формируется незначительный температурный скачок. Аналогичное распределение температуры приведено в [125] для плоского слоя серого газа, находящегося в состоянии радиационного равновесия.  [c.165]

Физические свойства и высокая температура плавления требуют при сварке концентрированного источника тепла, но низкий коэффициент теплопроводности и высокое электрическое сопротивление создают условия, при которых для сварки титана необходимо меньше электрической энергии, чем для сварки стали и особенно А1. Титан маломагнитен, поэтому при его сварке заметно уменьшается магнитное отдувание дуги.  [c.106]


Легкая окисляемость Си в расплавленном состоянии приводит к образованию ujO, хорошо растворяющейся в жидкой Си, давая легкоплавкую эвтектику, которая, располагаясь по границам зерен, снижает стойкость металла шва против кристаллизационных трещин. Высокая теплопроводность Си вызывает необходимость применения концентрированных источников нагрева и часто подогрева.  [c.114]

Участки металла, соприкасающиеся с более концентрированными растворами солей с активным анионом, являются анодами (рис. 132, ж), а с растворами пассивирующих солей, наоборот, — катодами  [c.189]

Возникновение пассивного состояния металла определяется не только окислительной способностью агрессивной среды. Известны случаи пассивации металлов и в нсокислителыюй среде, например молибдена в соляной кислоте, магния в плавиковой кислоте и др. Пассивное состояние наступает также, как было указано в гл. III, вследствие анодной поляри ацни металла. Процессу пассивации способствует увеличение анодной плотности тока. Во многих случаях при достижении некоторой плотности тока происходит внезапный переход электрода в пассивное состояние (например, железа в концентрированном растворе NaOH при повышенной температуре).  [c.60]

Оптическими методами было установлено, что на нове[)хмо-сти железа, запассивироваииого в концентрированной азотной кислоте, образуется невидимая пленка, толщина которой составляет 2—3 нм на углеродистой стали, запассивированной в этих же условиях, образуется более толстая пленка (9—11 нм), па хромоникелевой стали — более тонкая (0,9—1 нм) защитная пленка на алюминии в зависимости от условий имеет различную толщину — от 5 до 100 нм и т. д.  [c.62]

При неправильном методе вальцовки может наблюдаться коррозионное растрескивание концов металлических трубок. Известны случаи, когда трубки вертикальных конденсаторов из стали типа Х18Н9, охлаждаемые растворами хлористых солей, растрескивались вследствие концентрирования хлоридов в зазорах. Растрескивание было устранено при изменении метода вальцовки трубок.  [c.88]

Хромистые чугуны обладают высокой коррозионной стойкостью в окислительных средах. В холодной азотной кислоте, как в разбавленной, так и в концентрированной, хромистые чугуны стойки. В концентрированной горячей кислоте коррозионная стойкость хромистых чугунов значительно ниже стойкости стали типа Х18Н9. В 70%-ной фосфорной кислоте, в нитрозилсер-ной кислоте, в уксусной кислоте, в растворах солей, в том числе и в хлористых, в большинстве органических соединений (не являющихся восстановителями) хромистые чугуны не подвергаются коррозии. Они также отличаются стойкостью к некоторым расплавленным металлам (алюминий, свинец).  [c.244]

Никелевые чугуны обладают коррозионной стойкостью в расплавах солей и в концентрированных растворах едких щелочей. С увеличением содержания никеля стойкость чугунов увеличивается, но со,держание кремния при этом должно быть снижено. Такие чугуны пригодны для расплавленных щелочей. В Советском Союзе для изготовления аппаратуры, устойчивой против действия водных растворов щелочей, выпускаются на базе природнолегированных халиловских руд две марки щелочестойких чугунов СЧЩ-1 и СЧЩ-2, состав и свойства которых приведены в табл. 22.  [c.244]


Смотреть страницы где упоминается термин Концентрирование : [c.201]    [c.11]    [c.70]    [c.460]    [c.180]    [c.306]    [c.343]    [c.144]    [c.70]    [c.203]    [c.205]    [c.242]   
Металлургия и материаловедение (1982) -- [ c.399 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте