Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения переноса (кинетические уравнения)

Уравнения переноса (кинетические уравнения)  [c.218]

УРАВНЕНИЯ ПЕРЕНОСА (КИНЕТИЧЕСКИЕ УРАВНЕНИЯ) 221  [c.221]

Уравнение переноса кинетической энергии пульсационного движения можно получить исходя из уравнений движения (1.32) с помощью следующей процедуры (для простоты будем рассматривать течение несжимаемой жидкости). Вначале произведем осреднение уравнений движения, воспользовавшись подстановкой соотношений (1.74). Полученную систему уравнений осредненного движения вычтем из исходной системы нестационарных уравнений (1.32). Каждое из полученных после вычитания уравнений умножаем на соответствующую компоненту пульсационной составляющей вектора скорости и, v, w. После осреднения и суммирования полученных уравнений придем к уравнению для кинетической энергии пульсационного движения  [c.51]


Вначале рассмотрим уравнение переноса кинетической энергии движения, для чего воспользуемся уравнением (1-2-22), которое написано в виде  [c.20]

Тогда получим уравнение переноса кинетической энергии, которое в векторной форме будет иметь вид  [c.20]

Уравнение переноса кинетической энергии фг—- г ,ф, = /f d у,. = п,ЙГ  [c.38]

Далее воспользуемся уравнением переноса кинетической энергии (2-37)  [c.45]

Дифференциальные уравнения переноса кинетической энергии видимого движения и внутренней энергии соответственно имеют вид  [c.44]

Методом Боголюбова в курсе устанавливаются кинетическое уравнение Больцмана для газа, кинетическое уравнение Власова для плазмы и некоторые их приложения. На основе кинетического уравнения Больцмана выводятся макроскопические уравнения переноса и следующие из них уравнения гидродинамики и вычисляются коэффициенты переноса. Явления переноса рассматриваются также методом функций Грина.  [c.37]

Для вывода уравнений гидродинамики исходя из кинетического уравнения Больцмана получим вначале общее уравнение переноса Энскога без использования явных решений уравнения Больцмана. Для этого умножим кинетическое уравнение Больцмана  [c.137]

Все феноменологические законы, в которые входят коэффициенты переноса, служат для замыкания системы уравнений гидродинамики. Однако такой подход к проблеме описания неравновесной системы на гидродинамическом этапе не является фактическим ее рещением, так как остаются не доказанными уравнения переноса (закон Фика и др.) и неизвестны коэффициенты переноса (коэффициенты диффузии, теплопроводности, вязкости и т. д.). Только микроскопическая теория позволяет решить эту проблему на основе решения кинетического уравнения. Одночастичная функция распределения /(г, V, t) содержит всю информацию о плотности, скорости, температуре, напряжениях и тепловом потоке в неравновесной системе. Это возможно потому, что /(г, V, t) зависит от семи переменных, а не от четырех, как все перечисленные макроскопические параметры.  [c.140]

Этот подход, основанный на изучении линейной реакции системы на внешнее возмущение, оказывается эффективным как в классической, так и в квантовой неравновесной (и равновесной) статистической физике и, в частности, в теории явлений переноса. Таким образом, помимо метода кинетических уравнений кинетические проблемы могут решаться интенсивно развивающимся в последние годы методом функций Грина,  [c.164]


Итак, кинетическое уравнение переноса излучения может быть записано в виде  [c.162]

Применение метода сферических гармоник при расчетах теплообмена излучением в диффузионном приближении. Эффективным средством решения уравнения переноса является метод сферических гармоник. Этот метод достаточно хорошо разработан в приложении к решению кинетического уравнения переноса нейтронов. Запишем уравнение переноса излучения в предположении, что процесс является стационарным и рассеянием можно пренебречь, излучение серое. Кроме того, предположим, что излучение находится в локальном термодинамическом равновесии и, следовательно, спонтанное испускание излучения зависит только от локальной температуры Т. Тогда  [c.175]

В этом случае для описания переноса излучения необхо-мо использовать интегродифференциальное кинетическое уравнение (4.4.8) для определения спектральной плотности энергетической яркости излучения L . Примеры таких расчетов содержатся в [1].  [c.206]

Так как qR определяется через, то выражение (6.1.5) необходимо дополнить кинетическим уравнением переноса излучения (6.1.6), которое очевидным образом следует из уравнения (4.4.10). В этом уравнении —спектральный коэффициент ослабления, у — объемная спектральная плотность спонтанного излучения, (IV—спектральный коэффициент рассеяния.  [c.222]

Кинетическая температура 24 Кинетический режим гетерогенной реакции 304 Кинетическое уравнение переноса излучения 162 Компоненты активные 418  [c.459]

При дальнейшем анализе механохимических явлений будет рассматриваться преимущественно влияние механических воздействий на электрохимические реакции, поскольку тем самым решаются и другие задачи с одной стороны, обсуждаемые кинетические уравнения электрохимических реакций преобразуются для описания химических реакций (т. е. протекающих без переноса заряда) путем простой замены величины электрохимического сродства величиной химического сродства, а с другой стороны, например, химическая коррозия при высокотемпературном окислении металлов по теории Вагнера рассматривается как электрохимическая реакция на модели гальванического элемента.  [c.12]

При исследовании систем, находящихся вдали от состояния равновесия, неожиданно обнаруживается зависимость между кинетикой идущих в системах химических реакций и их пространственно-временной структурой. Конечно, верно, что взаимодействия, определяющие величины констант скоростей химических реакций и параметров переноса, в свою очередь определяются величинами близкодействующих сил (имеются в виду валентные связи, водородные связи, силы Вап-дер-Ваальса). Тем не мепее решения кинетических уравнений зависят, кроме того, и от глобальных характеристик. Эта зависимость, тривиальная для термодинамической ветви вблизи равновесия, для химических систем, находящихся в условиях, далеких от равновесных, становится определяющей. Например, диссипативные структуры, как правило, возникают лишь в таких системах, размеры которых превышают некоторые критические значения. Значения этих критических величин являются сложной функцией параметров, определяющих идущие в системе химические реакции и диффузию. Поэтому мы можем сказать, что химические нестабильности сопряжены с упорядочением па больших расстояниях, благодаря которому система функционирует как единое целое.  [c.137]

Соотношение (1.47) является формулировкой теоремы взаимности функций Грина основного и сопряженного уравнений при инверсии координат источника (го, то) и точки измерения (Г(, ti). Аналогичная теорема взаимности для дифференциальных уравне ний второго порядка известна в математике [85] и доказана Б. Б. Кадомцевым для кинетического уравнения переноса лучистой энергии 1[24].  [c.21]

ВЫВОД УРАВНЕНИЙ ПЕРЕНОСА НА ОСНОВЕ КИНЕТИЧЕСКОЙ ТЕОРИИ ГАЗОВ  [c.35]


При Кп > 10 понятие коэффициента теплопроводности лишается обычного физического смысла, превращаясь в условную расчетную величину. Объясняется это тем, что в условиях вакуума, когда А 6, Л > б, механизм теплопроводности, вязкости и диффузии изменяется. Процесс переноса в этих условиях определяется, главным образом, уже не межмолекулярными столкновениями, а столкновениями молекул со стенками. Поэтому кинетические уравнения для коэффициентов переноса X, ц и D видоизменяются. Однако и при вакууме коэффициенты Я, т) и D сохраняют свой тепло- и физико-технический смысл, поскольку они остаются коэффициентами пропорциональности в уравнениях (4-23)—(4-25) [Л. 15, 22, 132].  [c.152]

Используются известные молекулярно-кинетические уравнения и решения теоретической физики для переноса в континуальных условиях.  [c.155]

ПЕРЕНОСА ЯВЛЕНИЯ — неравновесные процессы, в результате к-рых в физ. системе происходит пространственный перенос электрич. заряда, вещества, импульса, энергии, энтропии или к.-л. др. физ. величины. Общую феноменологич, теорию П. я., применимую к любой системе (газообразной, жидкой или твёрдой), даёт термодинамика неравновесных процессов. Более детально П. я. изучает кинетика физическая. П. я. в газах рассматриваются на основе кинетической теории газов с помощью кинетического уравнения Больцмана для ф-ции распределения молекул П. я. в мета.т-лах — на основе кинетич. ур-ния для электронов в металле перенос энергии в непроводящих кристаллах — с помощью кинетич. ур-ния для фононов кристаллич. решётки. Общая теория П. я. развивается в неравновесной статистич. механике на основе Лиувилля уравнения для ф-ции распределения всех частиц, из к-рых состоит система (см. Грина — Кубо формулы).  [c.572]

Для выполнения расчетов процессов переноса на основе кинетической теории (уравнение переноса Больцмана) [588] требуются данные о молекулярном взаимодействии, которые значительно усложняют расчеты для некоторых газов [342] и неизвестны для большинства жидкостей [229]. Введением соответствующих феноменологических соотношений в механике сплошной среды [686] удается эффективно заменить фазовое пространство (координаты положения и количества движения) уравнения переноса Больцмана конфигурационным пространством (координаты положения) и свойствами переноса пос.ледние могут быть определены экспериментально. Это составляет основу второго из указанных выше методов исследования, который сравнительно недавно используется при изучении многофазных систем.  [c.16]

Прохождение излучений через защиту с неоднородностями описывается интегро-дифференциальным уравнением переноса излучений, которое для рассматриваемых задач не имеет аналитического решения. Среди возможных численных методов решения подобных задач можно указать на мето.д Монте-Карло и применение многогрупповых методов решения кинетического уравнения к многомерным геометриям. Метод Монте-Карло в принципе пригоден для строгого решения любой задачи прохождения излучений через неоднородности. Основными возможными преградами для его использования являются ограниченное быстродействие и память ЭВМ.  [c.139]

В пособии, написанном в соответствии с программой по теоретической физике, утвержденной Минвузом СССР, приведен материал второй части курса термодинамики и статистической физики (Ч. I Термодинамика и статистическая физика. Теория равновесных систем — 1986 г.). Излагаются общий метод вывода кинетических уравнений по Боголюбову и получение этим методом газокинетического уравнения Больцмана и кинетического уравнения Власова для плазмы. Рассматриваются вопросы теории брауновского движения, случайных процессов и процессов переноса, а также новые вопросы, определяющие перспективы развития термодинамики и статистической физики самоорганизация сильно неравновесных систем, численные методы в статистической физике — метод Монте-Карло и метод молекулярной динамики.  [c.2]

Кинетическое уравнение Больцмана позволяет получить не только уравнения переноса массы, импульса и энергии и следующие из них уравнения газогндродинамики, но и вычислить различные кинетические коэффициенты.  [c.146]

Полученные кинетические уравнения с трудом поддавались решению. В 1905 г. Г. Лоренц рассмотрел предельный случай смеси двух газов, один из которых с молекулярной массой т и малой плотностью, а другой — с молекулярной массой М. В пределе гп1М 0, пренебрегая взаимодействием легких молекул, он определил коэффициенты переноса [40]. Но лишь после введе-  [c.214]

Существенно большими возможностями для газов умеренной плотности обладают методы кингтичгской теории газов, так как они позволяют получить как уравнения переноса различных субстанций (массы, импульса, энергии и др.), так иJкoэффициeнты переноса в виде функции состояния газовой смеси (температуры, состава и др.). Мэтоды кинетической теории [9, 16] находят широкое применение при изучении сложных химически реагирующих газовых смесей.  [c.16]

При расчёте объема цилиндров и чйсла Цастйц й Нйх Нё учитывается возможность ухода частиц из рассматривагмого объема в процессе столкновения, поэтому кинетическое уравнение не описывает явления переноса на времени порядка времени столкновения.  [c.18]

При оксидировании алюминия в растворе силиката натрия в области предпробнвных значений напряженности поля вклад электронной составляющей тока в процесс переноса, заряда составляет более 80 что делает невозможным использование традиционных кинетических уравнений для ионного тока. В связи с этим был выполнен теоретический анализ и экспериментальная проверка применимости уравнений Янга—Цобеля, Шоттки и Пула—Френкеля для описания полного тока и его электронной составляющей на границах раздела фаз ц в объеме оксида. Путем обработки кривых спада тока при вольтотатическом режиме формовки получены линейные характеристики в координатах Ini—VU и показано, что кинетика процесса контролируется контактными явлениями на границах раздела фаз. Энергетический расчет позволил предположить существование блокирующего контакта на границе металл— оксид.  [c.238]


Анализ массо- и теплопереноса в топках основан на кинетическом уравнении радиометрического переноса (тер-мофореза) и на использовании физической аналогии между процессами загрязнения и теплового регулярного режима первого рода.  [c.4]

Необходима дополнительная экспериментальная проверка обобщенных кинетических уравнений переноса для, газа (пара), жидкости и твердого тела. В эти соотношения входят молекулярно-кинетические, термодинамические и атомные характеристики. Уточнение уравнений целесо-ббразно проводить с использованием аппарата термодинамики, квантовой MiexaHHKH и молекулярной физики.  [c.228]

В статистич. теории в общем случае сред, состоящих из взаимодействующих частиц, Н. с. определяется зависящей от времени ф-цией распределения всех частиц по координатам и импульсам или соответствующим статистич. оператором. Однако такое определение Н. с. имеет слишком общий характер, обычно достаточно описывать Н. с. менее детально, на основе огрублённого иля т. и. сокращённого описания. Напр., для газа малой плотности достаточно знать одночастичную ф-цию распределения по координатам и импульсам любой из частиц, удовлетворяющую кинетическому уравнению Больцмана и полностью определяющую ср. значения длотностен энергий, импульса и числа частиц и их потоки. Для состояний, близких к равновесному, можно получить решение кинетич. ур-ния, зависящее от Т(х.1),. i x,t), и(х,1) и их градиентов и позволяющее вывести ур-ния переноса для газа. Однако ф-ция распределения по энергиям для частиц газа в стационарном Н. с. может сильно отличаться от равновесного распределения Максвелла. Напр., для электронов в полупроводниках в сильном электрич. поле, сообщающем электронам большую энергию, теряет смысл даже понятие темп-ры электронов, а ф-ция распределения отличается от максвелловской и сильно зависит от приложенного поля.  [c.328]

Поскольку уровне (1) основано на лучевых понята-ях, в нём акцентируется лишь корпускулярная сторона дуализма волна — частица. Поэтому ур-ыие (1) служит также основой теории переноса нейтронов, где вместо яркости I фигурирует одночастичная ф-ция распределения нейтронов по скоростям, а ур-ние аналогично линеаризованному кинетическому уравнению Больцмана. При квантовой интерпретации излучения яркость 1 пропорциональна ф-ции распределения фотонов по направлениям и по частотам.  [c.566]


Смотреть страницы где упоминается термин Уравнения переноса (кинетические уравнения) : [c.169]    [c.156]    [c.549]    [c.692]    [c.219]    [c.268]    [c.77]    [c.215]    [c.93]    [c.40]    [c.360]   
Смотреть главы в:

Теория твёрдого тела  -> Уравнения переноса (кинетические уравнения)



ПОИСК



Вывод уравнений переноса на основе кинетической теории газов

Кинетические уравнения

Кинетическое уравнение переноса излучения

Переноса коэффициенты вандерваальсовой жидкости и кинетические уравнения

Переноса уравнение уравнение переноса

Переносье

СОБСТВЕННЫЕ ЗНАЧЕНИЯ КИНЕТИЧЕСКИХ УРАВНЕНИЙ И ТЕОРИЯ КОЭФФИЦИЕНТОВ ПЕРЕНОСА

Стационарное кинетическое уравнение с релаксационным членом и коэффициенты переноса

Стационарное решение кинетического уравнения и явления переноса

Ток переноса

Уравнение переноса как кинетическое

Уравнение переноса как кинетическое

Явление переноса в твердых телах. Кинетическое уравнение



© 2025 Mash-xxl.info Реклама на сайте