Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Строение и основные свойства металлов

СТРОЕНИЕ И ОСНОВНЫЕ СВОЙСТВА МЕТАЛЛОВ  [c.19]

Глава II. Строение и основные свойства металлов  [c.20]

В учебнике описаны строение и основные свойства металлов, обрабатываемых сваркой, а также процессы деформации, разрушения и схватывания, лежащие в основе образования сварного соединения. Приведены краткие сведения об основных источниках тепла, применяемых в сварке, основы теории распространения тепла и примеры применения ее к сварочным процессам. Даны основные сведения по химической термодинамике, физической химии и диффузии, необходимые для понимания металлургических процессов при сварке и пайке. Рассмотрены основные вопросы свариваемости металлов.  [c.2]


Глава I. СТРОЕНИЕ И ОСНОВНЫЕ СВОЙСТВА МЕТАЛЛОВ  [c.5]

СТРОЕНИЕ И ОСНОВНЫЕ СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ  [c.4]

Теория пластичности металлов изучает основные закономерности их пластической деформации, а также разрабатывает теоретические основы методов расчета напряженно-деформированного состояния металла при его обработке давлением. Условно различают физическую, математическую и прикладную теории пластичности. Физическая теория пластичности на основе реального кристаллического строения металлов и дефектов их кристаллических решеток изучает механизм пластической деформации, влияние холодной и горячей пластической деформации на механические, физические и химические свойства металла.  [c.6]

В монографии впервые дано систематическое изложение современного состояния исследований нанокристаллических материалов. Обобщены экспериментальные результаты по влиянию нанокристаллического состояния на микроструктуру и механические, теплофизические, оптические, магнитные свойства металлов, сплавов и твердофазных соединений. Рассмотрены основные методы получения изолированных наночастиц, ультрадисперсных порошков и компактных нанокристаллических материалов. Подробно обсуждены размерные эффекты в изолированных наночастицах и компактный нанокристаллических материалах, показана важная роль границ раздела в формировании структуры и свойств компактных наноматериалов. Проведен анализ модельных представлений, объясняющих особенности строения и аномальные свойства веществ в нанокристаллическом состоянии.  [c.2]

В первом разделе курса Свойства металлов даны общие сведения о строении металлов и сплавов, о структурных изменениях металлов и сплавов при различных температурах, об основных свойствах металлов и сплавов, применяемых в машино-  [c.5]

В разделе Основные свойства металлов и сплавов даны понятия о строении металлов и сплавов, о структурных изменениях металлов и сплавов при различных температурах, об основных свойствах металлов и сплавов, применяемых в машиностроении. Эти понятия необходимы для усвоения III, IV и V разделов. Более подробные сведения о строении металлов и сплавов, их термической обработке, физико-химических и механических свойствах, а также о выборе сплавов для деталей машин приведены в курсе Материаловедение , который изучают позднее.  [c.4]


Первая группа факторов определяет характер напряженного состояния в металле поверхностных слоев и тепловые явления в зоне трения. Вторая группа факторов — жидкая, газообразная и твердая среда — определяет адсорбционные, химические и диффузионные процессы на поверхности трения и в поверхностных слоях, а твердая среда, кроме того, может вызывать иногда один из самых неблагоприятных видов изнашивания — абразивный. Факторы третьей группы — механические свойства, структура, внутреннее строение и химический состав металла — также существенно влияют на процессы трения и изнашивания, изменяя их качественные и количественные показатели (виды и скорости изнашивания). Влияние каждой из этих трех групп факторов сложно и разнообразно. Будучи несущественным в одних условиях, оно оказывается решающим в других. Поэтому роль того или иного из них необходимо оценивать лишь в совокупности с другими факторами, а приведенные ниже примеры, в основном из практики ПТМ, следует рассматривать как частные закономерности, присущие данным условиям эксплуатации, поскольку в других условиях они могут быть иными.  [c.81]

СТРОЕНИЕ И СВОЙСТВА ТВЕРДОГО ТЕЛА. ОСНОВНЫЕ СВОЙСТВА МЕТАЛЛОВ  [c.7]

Рассмотрим кратко строение и основные особенности электрического контакта. Если наблюдать при большом увеличении поверхность любого металла после обработки резанием или давлением, то на ней видны значительные неровности (выступы и впадины). При сжатии деталей образуется контакт, который представляет собой соприкосновение двух поверхностей по небольшому числу отдельных точек. Площадь контакта в каждой точке и число точек зависят от усилия сжатия деталей, механических свойств металла и состояния поверхности. Чем мягче металл и меньше высота неровностей на его поверхности, тем ниже так называемое контактное сопротивление при постоянном усилии сжатия.  [c.3]

Несмотря на тяжелые условия военных лет и загруженность чисто практическими задачами, институт и в годы войны не прекращал разработки основных проблем теоретического материаловедения. Среди них отметим выявление связи между строением и технологическими свойствами литейных сплавов, разработку теории упрочения и установление природы твердости мартенсита, разработку теории прочности и механических свойств материалов, дальнейшее развитие теории отпускной хрупкости, работы по теории коррозии и обработки металлов давлением, исследования свойств жидких металлов и т. д.  [c.342]

В учебном пособии рассмотрены основные разделы курса материаловедения атомно-кристаллическое строение металлов, основы кристаллизации, диаграммы состояния сплавов, а также основные конструкционные. металлы и сплавы на основе железа и цветных металлов. Показана возможность изменения структуры и свойств материалов за счет термической и химикотермической обработки. Большое внимание уделено неметаллическим материала.м, которые находят применение в промышленности. Приведены варианты заданий для выполнения контрольной работы.  [c.2]

Замедление процесса коррозии при введении индивидуальных адсорбционных ингибиторов связано, главным образом, с изменением в строении двойного электрического слоя, с возникновением дополнительного положительного адсорбционного скачка потенциала и уменьшением свободной поверхности корродирующего металла в результате экранирования части ее адсорбированным ингибитором. Скопление ингибитора на поверхности корродирующего металла обусловлено преимущественно электростатической адсорбцией, а также специфической адсорбцией I рода, зависящей, в основном, от свойств частиц ингибитора и от заряда металла [12].  [c.36]

Основным фактором, определяющим изменение строения и свойств металла в результате холодной пластической деформации, является накопленная энергия в деформированном металле, которая связана с изменением дислокационной структуры. Эта накопленная (скрытая) энергия деформирования определяет необратимые процессы в зерне, которые вызывают последующие изменения дислокационной структуры материала в условиях эксплуатации и определяют жаропрочные свойства стали.  [c.26]


Развитие основных отраслей современного машиностроения в значительной мере определяется созданием новых конструкционных материалов, повышением свойств существующих металлов и сплавов, а также усовершенствованием процессов их производства и упрочнения. Это, в свою очередь, требует глубокого изучения строения и свойств материалов, как применяемых в машиностроении в настоящее время, так и новых. Поэтому в практике металловедческих исследований все большее внимание уделяется разработке, созданию и применению прогрессивных способов изучения металлических материалов в широком температурном диапазоне, к которым прежде всего следует отнести методы низко- и высокотемпературной металлографии, объединяемые под общим термином тепловая микроскопия .  [c.3]

Настоящая монография охватывает ряд основных вопросов проблемы развития тепловой микроскопии, включая методические основы низко- и высокотемпературной металлографии, анализ конструктивного выполнения основных систем и узлов установок, разработанных под руководством автора. В книге рассмотрены также технические характеристики современной отечественной, главным образом серийной, и зарубежной аппаратуры, определены тенденции и рациональные пределы совершенствования средств тепловой микроскопии. Кроме того, монография содержит ряд экспериментальных результатов, полученных методами тепловой микроскопии и иллюстрирующих эффективность их использования для исследования строения и свойств широкого класса материалов (чистых металлов, промышленных сплавов, композиционных и полупроводниковых материалов). При этом в качестве примеров, как правило, приведены такие исследования, постановка которых оказалась возможной благодаря применению методов и аппаратуры для низко- и высокотемпературной металлографии и результаты которых ассоциируются с существенно новыми представлениями.  [c.8]

Схватывание чистых металлов в основном зависит от их способности образовывать металлические связи, от свойств металлов, строения их атомов и, в первую очередь, от строения их внешних. электронных оболочек числа электронов на внешних оболочках и распределения их по энергетическим уровням, обусловливающим взаимодействие внешних электронов. Так как строение атомов различных металлов различно, то и способность металлов к взаимному схватыванию различная.  [c.6]

По современным научным воззрениям не только органические, но и неорганические неметаллические материалы имеют полимерное строение. Ковалентные, ионные и дисперсионные химические связи в полимерных материалах исключают наличие в объеме тела подвижного электронного газа, образующего металлическую связь и легко переносящего тепловую и электрическую энергию. Поэтому одним из основных отличий неметаллических материалов от металлов, сплавов и графита имеющего также металлическую связь между плоскостями кристаллической решетки) являются их тепло- и электроизоляционные свойства.  [c.7]

Смазочные слои. В обычных условиях эксплуатации поверхности контактирующих тел имеют различные виды адсорбированных слоев. В зависимости от условий трения и физико-химических свойств окружающей среды в приповерхностном слое металла имеются слои деформированного, упрочненного и разупрочненного материала, покрытого слоями окислов, отличных по своему строению и свойствам от основного металла. На слое окислов находятся адсорбированные слои газа, влаги, полярных и неполярных молекул органических веществ. Органические вещества, молекулы  [c.169]

В учебном пособии изложены современные представления о коррозии металлов и методы борьбы с ней. Наряду с основными представлениями о процессах коррозии металлов приведены особенности кристаллического строения, структуры и свойств металлов, основные физико-химические свойства растворов электролитов. Рассмотрены разновидности электрохимической коррозии и принципы защиты от нее металлических конструкций.  [c.2]

Металлурги были одними из первых исследователей, которые обратили внимание на существование структуры, т,е. внутреннего строения исследуемых объектов, и обнаружили взаимосвязь структуры и свойств металла. Было отмечено, что любое изменение структуры приводит к изменению свойств, в первую очередь прочностных и пластических. Появилась когорта ученых-металловедов, которая со временем превратилась в легион, основная задача которых, по словам академика Н.С. Курнакова [10], состоит в определении взаимосвязи структуры и свойств металлов.  [c.8]

Химический состав и физические свойства зерен и прослойки существенно различаются. Опыты показывают, что вследствие такого строения металл чаще разрушается не по границам зерен, а по самим зернам — по плоскостям скольжения кристаллов. Экспериментами установлено, что для металлов и их сплавов основным механизмом пластической деформации является скольжение — сдвиг одной части кристалла относительно другой под действием касательных напряжений. Плоскости, по которым происходит скольжение, называют плоскостями скольжения. Рассмотрим схему сжатия металлического тела (рис. 119).  [c.251]

Электронное строение. Заряд ядра и число электронов, нейтрализующих его, играют основную роль в организации структуры кристаллической решетки и большинства свойств металла. Свойства всех элементов являются периодической функцией атомной массы, т. е. числа электронов. В таблице Д. И. Менделеева наиболее типичные металлы, сравнительно легко отдающие электрон, — щелочные — находятся слева в I группе, а наиболее типичные неметаллы, энергично присоединяющие электрон для достройки электронной оболочки, — галогены — находятся справа в VII группе. Металличность элементов возрастает при перемещении влево и вниз таблицы. Вблизи правого верхнего угла находятся полуметаллы мышьяк, селен, германий, сурьма, висмут. Исходя из этого, можно полагать, что все тяжелые элементы, начиная с франция, будут обладать металлическими свойствами и хорошей пластичностью. Важно не только число электронов в атоме, по и строение их оболочек — конфигурация, определяющая кристаллическую структуру и большинство свойств металлов.  [c.193]


Проводниковые материалы представляют собой металлы и сплавы. Металлы имеют кристаллическое строение. Однако основное свойство кристаллического тела — анизотропность — не наблюдается у металлов. В период охлаждения металла одновременно зарождается большое количество элементарных кристаллов, образуются кристаллиты (зерна), которые в своем росте вступают в соприкосновение друг с другом и приобретают неправильные очертания. Кристаллиты приближаются по своим свойствам к изотропным телам. Высокая тепло-и электропроводность металлов объясняется большой концентрацией свободных электронов, не принадлежащих отдельным атомам. При отсутствии электрического поля равновероятны все направления теплового движения электронов в металле. Под воздействием электрического поля в движении электронов появляется преимущественное направление. При этом, однако, составляющая скорости электрона вдоль этого направления в среднем невелика, благодаря рассеянию на узлах решетки, Рассеяние электронов возрастает при уведичении степени искажения решетки. Даже незначительное содержание примесей, таких как марганец, кремний, вызывает сильное снижение проводимости меди. Другой причиной снижения проводимости металла или сплава может явиться наклеп— т. е. волочение, штамповка и т. п. Твердотянутая проволока имеет более низкую проводимость, чем мягкая, отожженная. При отжиге происходит рекристаллизация металла, сопровождающаяся повышением проводимости. Ее величина приближается к первоначальной благодаря восстановлению правильной формы кристаллической решетки. Во многих случаях желательно получение проводникового материала с низкой проводимостью такими свойствами обладают сплавы — твердые растворы двух типов. Твердыми растворами замещения называют такие, в которых атомы одного из компонентов сплава замещают в кристаллической решетке второго компонента часть его атомов. В твердых растворах внедрения атомы одного из компонентов сплава размещаются в пространстве между атомами второго, расположенными в узлах кристаллической решетки. Если атомы первого и второго компонентов сплава близки по размерам и строению электронных оболочек  [c.272]

Изложенный в этой книге материал показывает, что исследования многообразного физико-химического влияния среды на процессы деформации и механического разрушения металлов образуют в настоящее время новую научную область на границе между молекулярной физикой, физикой твердого тела и физической и коллоидной химией. Эту область, развитую в основном работами советских ученых, можно рассматривать как крупный раздел физической механики, ставящий свос11 целью установление связи механических свойств твердых тел с их химическим составом, строением и со свойствами внешней среды, в которой протекают процессы деформации и разрушения.  [c.196]

Особенность строения металлических веществ заключается в том, что ОИН все построены в основном из таких атомов, у которых внешние электроны слабо связаны с ядром. Это обусловливает и особый характер химического взаимодействия атомов металла, и металлические свойства. Электроны имеют отрицательный заряд, и достаточно создать ничтожную разность потенциалов, чтобы началось перемещение электронов по направлению к положите.льио заряженному полюсу, создающее электрический ток. EioT почему металлы пв-ляются хорошими проводниками электрического тока, а неметаллы ими н< являются. Характерным электрическим свойством металлов является также и то, что с повышением температуры у всех без исключения металлов элокт]) -проводность уменьшается.  [c.14]

Особенности строения и физико-механические свойства пластмасс существенно влияют на технологию их обработки, конструкцию режущего инструмента и приспособлений. Пластмассы имеют более низкие механ[1ческие свойства по сравнению с металлом. Эту особенность можно было бы использовать для повышения скорости резания. Однако низкая теплопроводность пластмасс приводит к концентрации теплоты, образующейся в зоне резания. В результате этого происходит интенсивный нагрев режущего инструмента, размягчение или оплавление термопластов, обугливание или прижог реактопластов в зоне резания. При обработке деталей из термопластов максимальная температура процесса не должна превышать 60—120 С, а деталей из реактопластов 120—160 С. Образующаяся теплота при обработке пластмасс отводится в основном через инструмент.  [c.442]

Электрохимическая защита состоит в том, что при смещении электродного потенциала металла коррозионные процессы тормозятся. При этом различают два вида электрохимической защиты анодную и катодную. При анодной защите потенциал смещается в положительную сторону. Защитный эффект обусловлен пассивацией, при которой высокие положительные потенциалы достигаются очень малой анодной плотностью тока. Эффективность анодной защиты зависит от свойств металла и электролита. Основной конструкционный материал, применяемый в нефтегазовой промышленности, это низкоуглеродистая малолегированная сталь, которая слабо пассивируется в таких электролитах, как дренажная (подтоварная) вода в резервуарах, почвенная (грунтовая) влага. Изменчивость характеристики грунтов (минерализация водной фазы, состав газов и строение твердой основы) не позволяет успешно применять анодную защиту в таких условиях. Особое значение в анодной защите имеют ионы галогенов, способствующие образованию питтингов. В силу того, что в грунтах (например, солончаки). и пластовых водах содержится большое количество хлоридов, анодная защита для подземного оборудования нефтегазовой промышленности не применяется.  [c.73]

Классическим примером в этом отношении может служить теория напряжений и деформаций в идеальном однородном теле, когда в точке тела выделяется бесконечно малый элемент в виде параллелепипеда и рассматривается его напряженное состояние. Связь между деформациями и напряжениями описывает закон Гука. Развитие этого подхода с учетом возникновения пластических деформаций позволяет найти зависимости между напряжениями и деформациями и за пределами упругости [111]. Необходимость учитывать реальные особенности строения материалов привела к созданию таких наук, как металловедение, которая изучает и устанавливает связь между составом, строением и свойствами металлов и сплавов. Для материаловедения как раз характерно рассмотрение явлений, происходящих в пределах данного участка (зерна, участка с типичной структурой), обладающего основными признаками всего материала. Изучение микроструктур сплавов и их формирования явлений, происходящих по границам зерен, термических превращений и других процессов, проводится в первую очередь на уровне, который описывает микрокартину явлений.  [c.60]

Металлы, применяемые на практике, имеют поликристалли-ческое строение, и затухание волн в них предопределяется дву.мя основными факторами рефракцией и рассеянием ультразвука вследствие анизотропии механических свойств металла. В результате рефракции фронт ультразвуковой волны отклоняется от прямолинейного направления распространения и амплитуда принимаемых сигналов резко падает. Помимо рефракции волна, падающая на границу кристаллов (.зерен), испытывает частичное отражение, преломление ультразвука и трансформацию, что и определяет механизм рассеяния. Рассеяние в отличие от рефракции приводит не только к ослаблению сигнала, но и образованию  [c.21]


Развитие основных отраслей современного машиностроения в значительной мере определяется созданием новых конструкционных материалов, повышением свойств металлов и сплавов, а также усовершенствованием процессов их производства и упрочнения. Это в свою очередь требует глубокого изучения строения и свойств металлических материалов, как применяюш,ихся в машиностроении в настояш ее время, так и перспективных для промышленного использования.  [c.5]

Производственная практика все с большей очевидностью доказывала, что химический состав металлического сплапва является не единственным, а во многих случаях далеко не главным фактором, определяющим качество стального изделия. Еще П. П. Аносов указал на влияние внутреннего строения (структуры) стали на ее механические свойства. Д. К. Чернов и его ученики разработали основные положения науки о строении металлов. Они показали, что, сознательно выбирая химический состав стали и соответствующие способы ев тепловой и механической обработки, можно в широких пределах влиять на свойства металлов и сплавов и даже создавать сплавы с наперед заданными свойствами.  [c.151]

От редакции. Настояа1ая глава не исчерп . -вает всех данных из области современной химии, применяемых в машиностроении. Ряд дополнительных данных содержится в главах 2-го тома (физико-химические и механические свойства чистых металлов, Теория и расчеты процессов горения) б-го тома (Чугун, Сталь, Цветные металлы и сплавы),5-го тома (Электрические и химико-механические способы размерной обработки металлов. Технология термической и химико-термической обработки металлов, Технология покрытий деталей машин, Технология производства металлоке-рамнческих деталей). Подробные данные по ряду вопросов можно найти в приведенных ниже литературных источниках. Так, например, общие законы химии и свойства химических элементов и их соединений изложены в источнике [29] основные положения органической химии и общие свойства органических соединений — в (9], [38] строение атома, свойства элементарных частиц, теория  [c.315]

Дисульфид титана TiS имеет гексагональную решетку и обладает слоистым строением, но при этом у него отсутствуют другие необходимые свойства для использования его в качестве твердой смазки [7]. Образуясь при сульфидировании в тончайших поверхностных пленках окислов, дисульфид титана не обладает достаточной адгезией, и вследствие различия постоянных решеток окислов и основного металла диспергируется и удаляется с поверхности при достижении соответствующих деформаций и температур при трении. Вследствие этого увеличение противозадир-ных свойств при сульфидировании для титана невелико.  [c.128]

Начальной стадией деформации металла является упругая деформация (участок АВ рис. 2.8). С точки зрения кристаллического строения, упругая деформация проявляется в некотором увеличении расстояния между атомами в кристаллической решетке. После снятия нафузки атомы возвращаются в прежнее положение и деформация исчезает. Другими словами, упругая деформация не вызывает никаких последствий в металле. Чем меньшую деформацию вызывают напряжения, тем более жесткий и более упругий металл. Характеристикой упругости металла являются дна вида модуля упругости модуль нормальной упругости (модуль Юкга) - характеризует силы, стремящиеся оторвать атомы друг от друга, и модуль касательной упругости (модуль Гука) - характеризует силы, стремящиеся сдвинуть атомы относительно друг друга. Значения модулей упругости являются константами материала и зависят от сил межатомного взаимодействия. Все конструкции и изделия из металлов эксплуатируются, как правило, в упругой области. Таким образом, упругость - это свойство твердого тела восстанавливать свою первоначальнуто фор.му и объем после прекращения действия внешней нагрузки. Модуль упругости практически не зависит от структуры металла и определяется, в основном, типом кристаллической решетки. Так, например, модуль Юнга для магния (кристаллическая решетка ГП% ) равен 45-10 Па, для меди (ГКЦ) - 105-10 Па, для железа (ОЦК) - 21010 Па.  [c.28]

Предлагаемая вниманию читателя монография посвящена одной из самых актуальных современных научных проблем, лежащей на стыке материаловедения, физики и химии твердого тела, — нанокристаллическому состоянию вещества. Это первое в отечественной и мировой литературе обобщение экспериментальных результатов и теоретических представлений о строении и свойствах не только дисперсного, но и компактного твердого тела с нанометровым размером частиц, зерен, кристаллитов или других элементов микроструктуры. До сих пор основная масса научной информации по этой тематике публиковалась в различных научных журналах и в материалах конференций. А. И. Гусев, автор первого в мире обзора по компактным наноматериалам ( Эффекты нанокристаллического состояния в металлах и сплавах // УФН. 1998. Т. 168, № 1), взял на себя нелегкий труд познакомиться с сотнями оригинальных исследований по нанокристаллическому состоянию, сгруппировать их по изучаемым материалам и свойствам, выявить общее и частное в результатах этих работ, заострить внимание на самых интересных и практически важных эффектах наносостояния.  [c.4]


Смотреть страницы где упоминается термин Строение и основные свойства металлов : [c.181]    [c.213]    [c.38]    [c.3]   
Смотреть главы в:

Материаловедение (по санитарной технике)  -> Строение и основные свойства металлов

Материаловедение  -> Строение и основные свойства металлов



ПОИСК



28—31 — Строение

Глава 1 Основные сведения о строении, свойствах металлов к сплавов и методах их испытаний

Мер основные свойства

Металлов Свойства

СТРОЕНИЕ II СВОЙСТВА МЕТАЛЛОВ Строение металлов

СТРОЕНИЕ И СВОЙСТВА МЕТАЛЛОВ

Свойства основного металла

Строение и основные свойства металлов и сплавов

Строение и свойства

Строение металлов

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ МЕТАЛЛОВЕДЕНИЯ Строение и свойства твердого тела. Основные свойства металлов

Ф Основные свойства металлов



© 2025 Mash-xxl.info Реклама на сайте