Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модифицирование связующего

Модули упругости и коэффициенты Пуассона модифицированного связующего определяют через компоненты матрицы жесткости по следующим зависимостям  [c.204]

Модифицирование связующего 0,1...0,3 % силана увеличивает прочность смеси на 70... 100 %, что позволяет снизить расход смолы в 1,5...2,о раза. В табл. 1.12 приведены составы и свойства ХЗ С на синтетических смолах кислотного отверждения, применяемых отечественной промышленностью.  [c.20]


Последовательность чтения схем. Схемы обычно читают полностью — от начала до конца, когда изображенное устройство или система рассматриваются или изучаются впервые, и выборочным порядком, когда схема уже знакома, а рассматривается только отдельная ее часть (измененная, модифицированная) для уточнения отдельных элементов, их связей и характеристик.  [c.304]

При изготовлении отливок из серого чугуна в кокилях в связи с повышенной скоростью охлаждения отливок при затвердевании начинает выделяться цементит — появляется отбел. Для предупреждения отбела па рабочую поверхность кокиля наносят малотеплопроводные защитные покрытия, кокили перед работой нагревают, а чугун подвергают модифицированию. Кроме этого, для устранения отбела отливки подвергают отжигу.  [c.160]

Как показал В. Г. Петров, модифицирование горячих цинковых покрытий рением (0,01%), церием (0,1%), теллуром (0,001%) или бором (0,001%) повышает защитные свойства покрытий в 1,7—2,0 раза и устраняет нежелательное изменение полярности цинкового покрытия по отношению к железу при повышенных температурах в связи с их меньшей электрохимической гетерогенностью (пониженное содержание фаз, обогащенных железом, и значительная протяженность ri-фазы с измельченной структурой).  [c.357]

Пример уравнений трансформаторной связи, сформированных по модифицированному узловому методу. Схема трансформаторной связи представлена на рис. 3.10, а вклад в уравнение  [c.138]

Достоинство модифицированного узлового метода — получение ММС сравнительно невысокого порядка при практически любых зависимых ветвях, недостаток — дискретизация компонентных уравнений реактивных ветвей методами интегрирования, в результате чего смена метода интегрирования может привести к необходимости смены всех подпрограмм элементов, содержащих реактивные элементы, т. е. библиотека методов интегрирования САПР в этом случае жестко связана с библиотекой моделей элементов.  [c.138]

Для получения модифицированных слоев с определенными структурами иди фазами требуется рассмотреть связь степеней свободы открытой технологической системы с формирующимися фазами, определить рациональное число и структуру взаимосвязи степеней свободы, я в результате этого, на основании оптимизации степеней свободы, сконструировать расположение конкретных фаз в поверхностных слоях изделия [1].  [c.163]


Связующее — модифицированная фенолформальдегид-ная смола наполнитель — стекловолокно  [c.550]

Расширение области применения режущего инструмента связано с разработкой методов модифицирования, сочетающих преимущества пучков заряженных частиц различных энергий и интенсивности, а также традиционных методов упрочнения, таких, как нанесение износостойких покрытий и термическая обработка. В связи с этим можно выделить два основных направления разработки. Это комбинированное модифицирование и комплексная обработка. К первому виду обработки относятся 1) комбинированная обработка на основе использования слабо-точных ионных пучков 2) комбинированная обработка на основе использования слаботочных и сильноточных ионных пучков. Второй вид модификации включает 1) комплексную обработку с использованием воздействия сильноточных ионных и электронных пучков с последующей термической обработкой 2) комплексную обработку с использованием термического, энергетического воздействия и нанесения на инструментальный материал износостойких покрытий.  [c.263]

Расчет упругих характеристик элементарного слоя содержит два этапа определение характеристик приведенной матрицы за счет усреднения упругих свойств волокон, уложенных в направлении, перпендикулярном к плоскости слоя, со связующим и расчет характеристик слоя исходя из упругих свойств волокон, параллельных плоскости слоя, и Свойств модифицированной матрицы. Таким образом, последующий расчет деформативных характеристик слоистого материала определяется выбором направлений армирования, которые усредняются при модификации свойств матрицы или являются арматурой выделенного элементарного слоя.  [c.57]

Упругие характеристики слоя с прямолинейным расположением волокон определяют по формулам табл. 3.1. Характеристики модифицированной матрицы, входящие в формулы, обозначены звездочкой. Для их расчета использованы зависимости, приведенные в работах [49, 86]. Относительное объемное содержание арматуры слоя в направлениях 1 и 3 обозначено соответственно Р1, рз индекс а относится к арматуре, с — к связующему.  [c.58]

В композитах с металлической и полимерной матрицами имеется много общих проблем, связанных с поверхностью раздела. Например, аппретирование в стеклопластиках обеспечивает образование переходной зоны между упрочнителем и матрицей. С другой стороны, можно убедиться в том, что для применяемых на практике металлических композитов характерно подобное же изменение свойств при переходе через поверхность раздела. Если компоиенты полностью нерастворимы, химически инертны и не смачиваются, то в композите отсутствует связь, обеспечивающая необходимые свойства. Модифицирование поверхностей в таких композитах с целью создания связи приводит к появлению градиента состава в той зоне, где формируется связь. Из этих соображений вытекает следующее определение поверхности раздела, предложенное в первой главе  [c.78]

Несмотря на то что в результате электростатического притяжения между полимерами, модифицированными силанами, и поверхностью минеральных наполнителей не возникает водостойких связей, электрокинетические силы весьма важны для ориентации полярных молекул, осаждающихся на поверхности из водной среды.  [c.190]

Несмотря на то что связи между аппретом и поверхностью наполнителя подвержены гидролизу, обратимый характер этой реакции препятствует полной потере адгезии, пока модифицированная силаном смола сохраняет целостность на межфазной границе. Под воздействием осевых или тангенциальных напряжений обратимые связи рвутся и восстанавливаются в соседних точках. Благодаря этому сохраняется подвижность молекул в двух направлениях вдоль поверхности стеклянного волокна и происходит релаксация напряжений без ухудшения адгезии. Динамическое равновесие процесса гидролиза не только предотвращает разрушительное действие воды, но делает необходимым ее присутствие на гидрофильной поверхности раздела для релаксации термических напряжений, возникающих при охлаждении стеклопластика.  [c.212]

Кремнийорганическая композиция представляет собой дисперсию неорганических наполнителей в среде кремнийорганического связующего. Получается механохимическим способом в шаровых мельницах за счет химической прививки реакционноспособных групп полимеров на активных участках наполнителя. В качестве наполнителя предложено использовать глинозем, тальк, карбид кремния, в качестве связующего 1фвмнийорганический лак, модифицированный этилсиликатом и поли-этилгвдросилоксаном. Модифицирование связующего позволяет повысить структурно-реологические и физико-химические характеристики связующего, степень взаимодействия на границе связующее-наполнитель.  [c.163]


В качестве матриц особенно часто используются эпоксидные, эпоксифе-нольные, полиимидные и другие модифицированные связующие на основе эпоксидов и полиимидов. Реже используются термостойкие термопласты. Применение обычных типов термореактивных и термопластичных матриц, как правило, не дает возможности использовать высокие механические и  [c.774]

Трещиноустойчивость характеризует способность оболочковых форм выдерживать тепловые и механические напряжения при заливке. Разрушение форм обусловлено не термодеструкцией смолы и разупрочнением смеси, а неравномерным тепловым расширением хрупкого материала оболочки. Поэтому повышение трещиноустой-чивости достигается неполным отверждением смеси, вводом пластифицирующих добавок или применением модифицированных связующих материалов.  [c.177]

Связующим элементом ретинакса является модифицированная канифолью фе-нолоформальдегидная смола, наполнителем барит, асбест и для особо тяжелых  [c.443]

Экспериментальные доказательства необходимости упомянутой связи не очень многочисленны, но весьма убедительны. Во-первых, это—изменение глубины проникновения магнитного поля с концентрацией примесей индия (последняя изменяется от нуля до 3% см. гл. VIII). Наблюдалось уменьшение глубины проникновения почти в 2 раза, хотя в критической температуре не было заметно почти никакого изменения. По мнению Пиннарда, изменение глубины проникновения поля означает уменьшение длины свободного пробега электронов благодаря наличию примесей атомов индия и соответствующее уменьшение длины когерентности. Во-вторых, это—изменение глубины проникновения поля в монокристалле олова в зависимости от его ориентации ). Глубина проникновения имеет максимум, когда угол 6 между осью кристалла и осью четвертого порядка равен 60° и уменьшается для всех других углов (см. гл. VIИ). Это изменение не может быть объяснено предположением о тензорном характере параметра Л в уравнении Лондона, поскольку такое предполоягение приводило бы к монотонной зависимости от величины угла. Пиппард наблюдал соответствующее изменение в высокочастотном сопротивлении нормального олова, что опять не может быть объяснено простым учетом тензорного характера проводимости для объяснения приходится привлекать теорию аномального скин-эффекта. В последнем случае средняя длина свободного пробега электрона больше толщины скин-слоя, так что электрическое поле, действующее на электрон, существенно изменяется на протяжении длины свободного пробега. В-третьих, это—зависимость глубины проникновения поля от параметров металла данная зависимость будет рассмотрена позднее с позиции модифицированной теории Пиппарда (см. п. 26).  [c.705]

В связи с этим остановимся специально еще на некоторых дополнительных вопросах. В действительности нет ни бесконечных, ни полубесконечных тел (так будем называть тела, ограниченные незамкнутыми поверхностями). Однако с точки зрения эффективности реализации того или иного расчетного алгоритма довольно часто оказывается целесообразным пойти на дополнение области таким образом, чтобы модифицированная задача оказалась проще. Действительно, допустим, что рассматривается область, расположенная между двумя замкнутыми поверхностями (одна из которых расположена внутри другой), причем расстояние между поверхностями существенно больше характерных размеров внутренней поверхности. Пусть, кроме того, по постановке задачи требуется лишь достоверное определение напряженного состояния в окрестности внутренней поверхности. Тогда целесообразно перейти к рассмотрению пpo tpaн твa с полостью в виде внутренней поверхности. К сожалению, нет строгих оценок, позволяющих обосновать переход к вспомогательной задаче для бесконечной области, но расчетная практика свиде-  [c.303]

Из уравнения (6-32) видно, что при росте р уравнение Тэйт4 в форме (6-32) приводит к отрицательным значениям удельных объемов. В связи с этим предложен ряд модификаций уравнения Тэйта. Наиболее удачные из этих модификаций используют линейную зависимость (др/ди)т от р на изотерме, следующую из (6-31) и подтверждаемую опытными риГ-данными для многих жидкостей вдали от критической точки, а в качестве ачала отсчета используют кривую затвердевания. Модифицированное таким образом уравнение Тэйта хорошо согласуется с опытными данными для жидкостей в ншрокой области параметров состояния, за исключением области вблизи критической точки.  [c.123]

Вместе с тем сравнительные исследования режущих свойств модифицированных твердосплавных инструментов выявили высокие потенциальные возможности комплексной обработки на основе износостойких покрытий с использованием пучков заряженных частиц. Имплантация ионами химически активных элементов приводит к существенному повышению износостойкости инструментальных твердых сплавов, что связано с формированием твердых, термоустойчивых химических соединений в поверхностных слоях покрытий. Другие эффекты модификации связаны со снижением пористости покрытий, а также с устранением отрицательного влияния на прочностные характеристики капельной фазы, что подтверждается улучшением режущих свойств твердых сплавов с покрытием после модификации ионным пучком состава Al -N , имеющей целью образование фаз по типу TiAl3. Весьма перспективна комплексная обработка с использованием в качестве износостойкого покрытия нитрида гафния. Однако превышение дозы свыше  [c.230]

Диапазон плотностей мощности лазерного воздействия определяется верхним и нижним пределами, которые связаны соответственно с началом плавления и отпуска материала. При обработке на оптимальном режиме достигается наибольший упрочняющий эффект и глубина модифицированного слоя. Следует отметить, что из-за различающихся химических составов модифицируемых сталей и сплавов, несоблюдения режимов предварительной термической обработки рекомендуется использовать образцы-свидетели для каждой партии облучаемых изделий. Образцы-свидетели необходимы для конкретизации режимов лазерного термоупрочнения и исключения разупрочняю-щих эффектов. Подбор режимов лазерного воздействия проводят, исходя из размеров обрабатываемого образца или изделия. При выборе схемы обработки и соответствую1цего технологического оборудования [145] (табл. 8.4) учитывают геометрию изделия и возможности локал1,ного термоупрочнения  [c.259]


Для покрытий, характеризующихся отсутствием явно выраженных функциональных групп (полиэтилен, пентопласт, фторопласт), образование хемосорбированной адгезионной связи полимера с металлом может достигаться оптимальным режимом термической обработки, а также за счет химического модифицирования поверхности, приводящего к повьпиению стабильности адгезии в воде и электролитах. Например, термообработка фторлонового покрытия на основе сополимера 32Л приводит к деструкции полимера с образованием реакционноспособных центров, взаимодействующих с активными центрами металла прочность сцепления покрытия с основой достигает 12-20 МПа [47].  [c.130]

Наибольшей механической прочностью обладают материалы из полимеров резольного типа с длинноволокнистым наполнителем. Наиболее высокими электрическими параметрами — материалы высокочастотного назначения из ани-линфенолформальдегидного полимера с наполнителями кварц и слюда, tg б при 50 Гц обычно определяют для материалов, предназначенных для электроизоляционных низкочастотных деталей, tg б и е, при 10 Гц —для деталей высокочастотного назначения. Наибольшее значение теплостойкости по Мартенсу имеет материал на основе резольного полимера с асбестовым волокнистым наполнителем. Модификация фенолформальдегидных полимеров полиамидами, поливинилхлоридами и синтетическим каучуком улуч- нает некоторые параметры, например удельную ударную вязкость, влагостойкость. Материалы на основе анилинфе-ыолформальдегидного полимера в эксплуатации не выделяют аммиака,< что иногда имеет место с материалами на чисто фенольных смолах. Повышенную механическую прочность имеет материал на основе модифицированного фенол-формальдегидного связующего с наполнителем из длинных стеклянных волокон. Эта масса марки АГ-4 широко используется для изготовления сравнительно крупных коллекторов без миканитовых манжет.  [c.200]

Возникла необходимость детального рассмотрения структурных схем каждого класса материалов и выявления в них наиболее характерных составляющих (элементов), определяющих деформативные свойства материалов. Вопрос о выборе и выделении таких элементов требует соответствующего обоснования. Известно, например, что переход к некоторой квазиоднородной анизотропной среде по всему объему материала соответствует частичному сглаживанию неоднородности материала часть арматуры усредняется со связующим в модифицированную матрицу. Получается одномерный материал с модифицированной матрицей, для которого достаточно просто учитывается кинематическая связь компонентов материала при нх совместном деформн-рованнн. Такой подход не является универсальным, так как нрн изменении ориентации волокон одного из направлений запись кинематических ус-  [c.48]

Вывод формул для упругих характеристик ортогонально-армированного слоя основан на принципе частичного сглаживания структуры материала. Он содержит, во-первых, определение характеристик анизотропного связующего — модифицированной матрицы, во-вторых, определение свойств однонаправленного слоя с модифицированной матрицей. Последняя получается усреднением (в этом и состоит принцип частичного сглаживания) арматуры, расположенной ортогонально по отношению к слою, со связующим. Плоскость изотропии приведенной матрицы совпадает с плоскостью слоя.  [c.58]

Варианты расчета упругих характеристик. Рассмотренные ранее приближенные методы расчета упругих характеристик слоя нетрудно распространить на вычисление констант трехмер-ноармированного композиционного материала. Реализацию этих методов можно представить в трех вариантах. Первый вариант но существу является модификацией метода усреднения, где расчет двухмериоармирован-ного в ортогональных направлениях волокнистого материала сводится к расчету однонаправленной структуры с более жесткой анизотропной матрицей. Естественно, что введение третьего ортогонального направления не вносит принципиальных трудностей в расчет констант материала. Основным преимуществом указанного подхода является простота вычисления, однако сведение части арматуры в модифицированное ортотропное связующее позволяет лишь с очень большой погрешностью учитывать кинематическую связь между компонентами материала.  [c.64]

Варианты моделей. Материалы, армированные системой трех нитей, создаются, как правило, с ориентацией волокон вдоль осей прямоугольной ИЛИ цилиндрической системы координат. Указанные особенности создания пространственного каркаса открывают возможности построения упрощенных моделей для расчета упругих характеристик рассматриваемого класса материалов как приведенной ортотроп-ной среды. Так как волокна одного из направлений перпендикулярны плоскости, проходящей через волокна двух других направлений, то в приближенном подходе представляется возможным ввести модифицированную матрицу. Ее деформативные характеристики определяют по известным формулам для трансверсально-изотропной среды, составленной из связующего и волокон одного из трех направлений армирования (техника введения модифицированной матрицы подробно описана на с. 58).  [c.121]

Модифицированная матрица. Модификация матрицы может осуществляться путем усреднения свойств как волокон со связующим, так и нитевидных кристаллов. Модификация матрицы за счет нитевидных кристаллов имеет отличительные особенности по сравнению с рассмотренной модифика-  [c.203]

Упругие характеристики композиционных материалов с учетом усредненных свойств матрицы рассчитывают по формулам, полученным для слоистых композиционных материалов с соответствующей укладкой волокон (однонаправленной или ортотропной) [25, 88]. Упругие постоянные связующего, входящие в эти формулы, заменяют упругими характеристиками модифицированной матрицы, которые вычисляют по зависимостям (7.2), (7.3), (7.6)—(7.9) в случае хаотического распределения нитевидных кристаллов в одной плоскости, перпендикулярной к направлению волокон. В случае же распределения кристаллов во всем объеме характеристики модифицированной матрицы определяют по зависимостям (3.83), (3.84) при коэффициенте армирования р = рдр. Выражения для упругих характеристик композиционного материала, армированного вискеризо-ванными волокнами в направлении оси 1, согласно зависимостям, приведенным на с. 59, имеют вид  [c.205]

Свойства модифицированной матрицы. Эффект упрочнения матрицы нитевидными кристаллами был исследован на материалах, изготовленных на основе эпоксидного связующего, армированного четырьмя типами нитевидных кристаллов. Материалы, армированные нитевидными кристаллами TIO2 и SI3N4, получали методом  [c.206]

В связи о этим в работе [170] был предложен еще один вариант дальнейшего модифицирования теории Орована, который заключается в следующем.  [c.77]

Если модуль упрочнителя меньше модуля матрицы, то прочная связь между упрочнителем и матрицей может повысить вязкость-разрушения. Мак-Гэрри и Уиллнер [26], а также Салтэн и Мак-Гэрри [46] детально обсудили возможные механизмы, обусловливающие вязкость разрушения пластиков, модифицированных резиной. Сферические частицы резины в полимерной матрице действуют как концентраторы напряжений. При приложении нагрузки к композиту концентрация напряжений у резиновых сфер может вызвать деформацию и пластическое течение матрицы на начальной стадии нагружения аналогично влияли бы сферические полости. С ростом нагрузки резина, прочно связанная с матрицей, начинает деформироваться, что также приводит к стеснению матрицы. Картина локальной деформации усложняется, и частицы резины испытывают состояние трехосного растяжения. В резуль-  [c.303]


Установлено, что силановые аппреты улучшают степень дисперсности пигментов и физические свойства большинства термопластов с минеральными наполнителями, а также способствуют сохранению этих свойств при воздействии влаги [19, 36, 37, 43, 42]. Использование силановых аппретов позволяет вводить во многие системы большое количество дешевого наполнителя практически без ухудшения физических свойств композита. При возрастании стоимости полимерного связующего становится очевидной большая экономическая эффективность применения дешевого наполнителя, модифицированного силаном.  [c.159]

Полное отверждение смолы на границе раздела является только одним из факторов, определяющих свойства композитов. Например, при аппретировании стеклянного наполнителя фенилсила-ном достигается полное отверждение полиэфирной смолы, но фенилсилан неэффективен как аппрет, поскольку не реагирует со смолой. Вторым фактором, определяющим свойства композитов, является взаимодействие силана со смолой, в результате чего смола наряду с силанолом присутствует на поверхности минерала. Модифицированная силанолом смола оказывается связанной с наполнителем гидролизуемыми связями, что придает материалу пластичность с сохранением его водостойкости.  [c.205]


Смотреть страницы где упоминается термин Модифицирование связующего : [c.204]    [c.331]    [c.58]    [c.277]    [c.118]    [c.261]    [c.355]    [c.221]    [c.244]    [c.13]    [c.107]    [c.50]   
Смотреть главы в:

Углеграфитовые материалы  -> Модифицирование связующего



ПОИСК



Модифицирование

Модифицированные конструкции, получаемые путем введения связи между двумя произвольными точками

Регулятор адаптивный с прямой связью модифицированный

Фенольные связующие, модифицированные винильными соединениями, каучуками или эпоксидными смолами



© 2025 Mash-xxl.info Реклама на сайте