Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материал и размеры датчиков

Материал и размеры датчиков  [c.55]

Электрические свойства такого диэлектрика—-диэлектрическая проницаемость и потери определяются в основном путем расчета с использованием силы тока, напряжения, сопротивления, емкости и частоты, которые измеряются путем непосредственного отсчета по прибору. Поэтому, на наш взгляд, является весьма целесообразным для измерения неэлектрических величин использовать емкость, определяемую с помощью емкостных преобразователей. Измерение плотности или содержания отдельных компонентов в стеклопластике с помощью емкостных преобразователей основано на изменении емкости преобразователя за счет изменения содержания связующего или стеклонаполнителя в стеклопластике. Однако следует отметить, что емкость преобразователя в значительной степени зависит от типа преобразователя, его геометрических размеров, диэлектрической проницаемости материала, используемой частоты переменного тока, температуры и других параметров. Поэтому при расчете и конструировании датчика, а также при составлении корреляционной связи между плотностью стеклопластика и емкостью датчика, необходимо все это учитывать.  [c.101]


Случайные погрешности размеров появляются в результате-неоднородности материала и термической обработки заготовок, изменения припусков, режимов обработки, зазоров подвижных соединений в цепи привода станка, погрешностей базирования при обработке и измерении и т.д. Суммарными характеристиками собственно случайных погрешностей являются различные показания универсальных приборов, погрешности срабатывания датчиков, характеристики мгновенного рассеяния размеров в партии деталей и др.  [c.54]

Вихретоковая (электроиндуктивная) Д. основана на регистрации изменений электрич. параметров датчика вихретокового дефектоскопа полного сопротивления его катушки или эдс), вызванных взаимодействием поля вихревых токов, возбуждённых этим датчиком в изделии из электропроводящего материала, с полем самого датчика. Результирующее поле содержит информацию об изменении электропроводности и магн. проницаемости из-за наличия в металле структурных неоднородностей или нарушений сплошности, а также о форме и размерах (толщине) изделия или покрытия.  [c.594]

На величину коэффициента тензочувствительности датчика влияют материал проволоки, качество бумаги, к которой приклеивается решета датчика, овойства клея, конфигурация и размеры решетки.  [c.18]

В процессе изготовления датчик наклеивается на изоляционную подложку. В качестве подложки использовалась лакоткань. Размеры подложки определяются размерами датчика. После наклейки датчика к подложке дается время на высыхание до следующего дня. После наклейки датчика и припайки выводных концов подложка обрезается так, чтобы удобно было наклеить готовый датчик на исследуемую поверхность. Для увеличения пористости и толщины подложку целесообразно делать составной путем наклеивания на свободную сторону лакоткани дополнительного слоя из пористого материала типа фильтровальной бумаги, мешковины или марли.  [c.57]

Коэффициент тензочувствительности является величиной безразмерной и представляет собой меру изменения омического сопротивления при данной относительной деформации. Чем больше коэффициент тензочувствительности датчика, тем выше его чувствительность или тем меньшую деформацию можно им уловить. Зависит он от ряда факторов, главными из которых являются материал проволоки, качество и свойства бумаги и клея, конфигурация и размеры решетки. Коэффициент тензочувствительности определяют опытным путем для нескольких датчиков, взятых из партии, с помощью тарировочной балочки.  [c.129]


Механический и рентгенографический методы. Эти методы применяют для изучения состояния поверхностного слоя, лежащего под обработанной поверхностью. Механический метод, разработанный Н. Н. Давиденковым, применяют для определения напряжений первого рода, уравновешивающихся в области тела, превосходящей по размерам размеры кристаллического зерна. Метод заключается в том, что с поверхности образца, вырезанного из обработанной детали, последовательно удаляют весьма тонкие слои материала и при помощи тензометрических датчиков измеряют деформацию образца. Изменение размеров образца приводит к тому, что под действием остаточных напряжений он становится неуравновешенным и деформируется. По измеренным деформациям можно судить о величине й знаке остаточных напряжений.  [c.91]

Принцип измерения положения свариваемого соединения и конструкцию датчиков выбирают исходя из таких факторов, как тип сварного соединения, размеры свободного пространства в зоне, прилегающей к соединению, материал изделия, характер его поверхности и кромок, подготовленных под сварку, особенности технологического процесса изготовления изделия, экономических факторов и т. п.  [c.192]

Форма асимметричного датчика, материал электродов и их размер определяются характером среды и задачами коррозионного контроля. В производственных условиях конструкцию асимметричного  [c.112]

Рассмотрим схему эксперимента, а также, кривые зависимостей динамической податливости и фазового угла от частоты (рис. 4.30). На рисунке указаны размеры образца, изготовленного из материала 3M-ISD-110, значения комплексного модуля приведены на рис. 7.17. Динамические перемещения тела с массой т = 5,355 кг измерялись с помощью акселерометра, колебания возбуждались с помощью удара, создаваемого силовым датчиком. С помощью быстрого преобразования Фурье находится податливость, измеряемая в метрах на ньютон. Из рис. 4.30 можно видеть, что ни k, ни т) нельзя найти ни методом амплитуд, ни методом определения ширины полосы резонанса, при любых значениях частот, включая резонансную. По  [c.192]

Износ и стойкость, а следовательно, стабильность работы режущего инструмента на автоматических линиях определяется комплексом факторов качеством режущего инструмента в состоянии поставки на автоматические линии точностью размера, формы и свойства обрабатываемого материала заготовок работой механизмов и датчиков автоматической линии эксплуатационными свойствами вспомогательного инструмента и др. Все это приводит к большому рассеиванию основных показателей, характеризующих эксплуатационные свойства режущего инструмента. Кроме того, трудность вынесения оценки стабильности работы режущего инструмента на автоматических линиях в настоящее время связана также с тем, что отсутствуют нормативы режимов резания для режущего инструмента при работе на автоматических линиях. Действующие нормативы режимов резания недостаточно точно отражают особенности работы режущего инструмента на автоматических линиях. Стойкость режущего инструмента, принятую при проектировании автоматических линий из-за ряда определенных условий, невозможно использовать для оценки его эксплуатационных свойств. Все это определило необходимость принятия определенного показателя при проведении исследования для вынесения оценки о стабильности режущего инструмента при работе на автоматических линиях. В качестве такого показателя было принято понятие об удельном износе по основным элементам режущей части инструмента.  [c.74]

Однако возможности такого слепого автомата с жесткой программой ограничены. Особо точных, прецизионных, деталей на нем не получишь. Ведь жесткая программа не может учесть переменные факторы, действующие на деталь и станок неравномерность припуска, колебания твердости материала, износ инструмента и т. п. Поэтому станки часто снабжают системой активного контроля. Специальные датчики все время замеряют обрабатываемую деталь, их сигналы усиливаются и подаются на управляющие органы станка. Обработка прекращается только тогда, когда деталь достигает заданного размера. Такая система позволяет существенно повысить точность при том же оборудовании и инструменте. Поэтому она широко применяется на шлифовальных станках, например при обработке подшипниковых колец, от которых требуется особая точность.  [c.238]


В верхней части цилиндра 4 прикреплен рычаг, который соединяется съемным звеном с рычагом, укрепленным на неподвижной стойке. На тонкую алюминиевую пластину рычага размером 1,1 X 0,4 X X 0,16 см с двух сторон приклеиваются тензометрические датчики. С целью изменения чувствительности системы предусмотрены четыре позиции для соединительного звена. Сигнал с тензометрических датчиков усиливается и подается на вход У двухкоординатного регистрирующего устройства. При одновременной подаче сигналов на клеммы X и У на планшайбе этого устройства воспроизводится кривая течения исследуемого материала.  [c.186]

Результаты ультразвуковой дефектоскопии представляют интерес в том случае, если разработана система оценки дефектов. Это достигается двумя способами. Первый из них предусматривает систему тарировки искусственных дефектов, которые представляют собой отверстия заданного размера, просверленные на разную глубину с обратной стороны эталонной детали. В этом случае оператор регистрирует силу сигнала, соответствующую тарированному отверстию. Изменение акустической связи между датчиком и объектом контроля требует особого внимания при использовании этого способа. Кроме того, изменения в структуре материала, например изменение размера зерна, могут поставить под сомнение некоторые результаты.  [c.126]

Сварочное оборудование, работающее в контуре АСУ ТП, например для другой сварки, должно оснащаться следующими датчиками скорости подачи электродного (присадочного) материала наличия и силы сварочного тока напряжения на дуге состава и расхода защитных материалов наличия достаточного запаса основных, защитных и вспомогательных материалов положения свариваемых элементов и линии их соединения величин превышения кромок, зазора, сечения разделки, глубины проплавления температуры изделия размеров сварочной ванны, положения дуги относительно линии соединения свариваемых элементов размеров элементов полученного сварного соединения наличия и количественных характеристик его внешних и внутренних дефектов положения и скорости звеньев манипуляционной системы.  [c.32]

Это вызывает изменение магнитного потока, что влечет за собой уменьшение плотности потока в магниторезистивном датчике MR1 и увеличение—в датчике MR2. При этом напряжение на выходе моста будет линейно увеличиваться по мере накопления частиц до некоторого уровня. При достижении определенного уровня линейность нарушается, включается двигатель и отводит измерительное устройство от прокладки, на которой осуществляется накопление. Частицы изнашивания покидают поверхность накопления. Затем цикл измерения повторяется. Это устройство может быть использовано в относительно чистых системах, где число частиц изнашивания является критическим. Однако при измерении содержания частиц в масле не учитываются частицы, размер которых не превышает 6 мкм, вследствие того, что градиент магнитного потока не достаточен для их захвата из потока смазочного материала.  [c.195]

Размеры безосновных датчиков таковы, что измерение деформаций может производиться практически в отдельных точках модели это позволяет применить их для измерения местных напряжений концентрации и контактных напряжений. Предложенный способ измерения может быть использован и при измерении деформаций в упруго-пластической стадии работы материала.  [c.96]

Увеличение мощности при сохранении габаритных размеров вызывает резкое увеличение нагрузки на детали и необходимость соответствующего повышения статической и динамической прочности. С этой целью необходимо широкое применение экспериментальных методов определения фактических напряжений и деформаций. В качестве примера может быть приведена втулка рабочего колеса Куйбышевской ГЭС весом 82 т, которая имеет сложную форму и подвергается действию сложной системы сил. Для ее расчета с помощью экспериментальных методов на моделях из пластмассы были уточнены распределение напряжений, деформации, влияние присоединенных деталей. Для расчета лопасти рабочего колеса был создан уточненный метод, проверенный на модели оптическим методом, а также тензометрическими датчиками кроме того, были исследованы вибрационные свойства лопасти. Это дало конструкторам большой материал для правильного конструирования турбин и снижения их конструктивной металлоемкости.  [c.7]

На U-образном образце типа TGL 050908 требуется определить зависимость максимального напряжения при растяжении от прогиба с помощью электрического тензометрического датчика. Размеры образцов могут быть выбраны также и с отклонениями от TGL 050908, если этого требуют величина имеющегося в распоряжении тензометрического датчика или механические свойства материала образцов.  [c.250]

В отношении роли пульсаций твердой фазы в процессах переноса энергии и вещества в псевдоожиженном слое в зависимости от их частоты некоторые сведения получены в Институте тепло- и массо-О бмена АН БССР (ИТМО) в опытах (Л. 307]. С помощью шара-турбулиметра Тодеса, связанного с тензометрическим чувствительным элементом, авторы (Л. 307] измеряли пульсации материала в псевдоожиженных воздухом слоях частиц песка 200—355 м/см в трубе диаметром 300 мм на решетке из четырех слоев плотной ткани, проложенных между двумя перфорированными пластинками. Собственная частота датчика составляла 150 гц. Кинетическая энергия была сосредоточена главным образом в статистически стационарных крупномасштабных низкочастотных (/<0,3 гц) вихрях, и размеры контуров циркуляции определялись размерами аппарата и высотой слоя, изменявшейся от 200 до i600 мм. Сделано заключение, что в первую очередь низкочастотные крупномасштабные вихри будут определять гидродинамику твердой и газовой фаз слоя и явления переноса энергии и вещества. Высокочастотная часть спектра пульсаций скорости потока вообще срезается при вводе в него твердых частиц [Л. 73].  [c.28]


Применяемый метод неразрушающего контроля с помощью ультразвука должен обеспечивать в процессе производства обнаружение дефекта такого размера, который в дальнейшем может привести к разрушению корпуса. При правильном проведении 100%-ного контроля есть возможность установить местонахождение и определить размеры трещин, как начинающихся на поверхности, так и находящихся в толще материала. При условии, что контроль проведен тщательно, на поверхности корпуса могут быть обнаружены трещины глубиной <0,6 см. Труднее осуществлять контроль, если поверхность защищена покрытием. Так, прохождение ультразвука через аустенитные стали не дает четкой картины. поверхности раздела между покрытием и металлом корпуса, в результате чего дефекты могут оказаться замаскированными или может сложиться ложное представление о них. Однако с достаточной определенностью можно установить дефект протяженностью 1,2 см, так как он будет заметен на экране прибора. Все корпуса реакторов перед сдачей в эксплуатацию испытывают гидравлической опрессовкой давлением, равным 50% рабочего давления, при комнатной температуре. Этот вид испытания помогает выявить более мелкие дефекты, которые могут привести к разрушению корпуса при рабочих температуре и давлении. Используя результаты таких испытаний, можно рассчитать число рабочих циклов, которым корпус должен противостоять в процессе работы, при условии, что напряжения, возникающие при подаче давления, доминируют, а всеми другими источниками можно пренебречь. Чтобы гарантировать надежность работы корпуса до конца срока службы, испытание можно повторить в процессе эксплуатации. Однако следует помнить, что каждое испытание давлением таким способом использует заметную часть запаса усталостной прочности корпуса. Из сказанного ясно, что если корпус тщательно изготовлен из требуемого материала и контролем не выявлены дефекты, которые могли бы вызвать его разрушение, он должен обеспечить надежную работу реактора. Для большей гарантии было предложено проверять корпуса в процессе эксплуатации, вводя с внутренней стороны автоматические ультразвуковые и сканирующие датчики, которые обеспечивают просмотр всех критических участков корпуса. Кроме того, было предложено использовать методику регистрации перепадов напряжения как средство обнаружения распространения трещин, однако до сих пор положительных результатов получено не было.  [c.169]

Прибор АФЧХ тестирования реализован в виде датчика, содержащего подводящий и отводящий электроды. С выхода датчика снимается величина падения напряжения на исследуемом участке и величина выходного сигнала, которые подаются на приемник измерительных сигналов, соединенных с компьютером. Деформирующая способность (площадь эпюры) остаточных напряжений определяется путем математической обработки результатов, полученных АФЧХ. В основу алгоритма расчета остаточных напряжений положены специальным образом сформированные массивы данных, получаемых по АФЧХ исследуемого участка поверхности детали и дающих возможность оперировать корреляционными связями между остаточными напряжениями, некоторыми физическими свойствами материала исследуемой детали, ее геометрической формой и размерами. Таким образом, после математической обработки, т.е после пересчета электрических характеристик в площадь участка эпюры остаточных напряжений (деформирующую способность), находятся величина и знак остаточных напряжений на определенной глубине от поверхности.  [c.73]

Дальнейшего улучшения работы датчика можно достигнуть путем нанесения на его внутреннюю поверхность тонкого слоя материала, поверхностная энергия которого должна составлять половину номинальной энергии бензина 22-10 з Дж/м . Например, фторированный эфир-полимета крило вой кислоты обладает требуемой энергией и, кроме того, его легко нанести [2]. Такой слой позволит устранить капиллярные эффекты и снять ограничения на минимальное расстояние между пластинами датчика. В результате поперечные размеры датчика могут быть существенно уменьшены без из1менения его емкости и рабочих характеристик. Вертикальная металлическая полоса без покрытия, не влияющая на емкость. датчика, может стать основной поверхностью для конденсации паров. Полную защиту от влаги и загрязнений, содержащихся в топливе, можно обеспечить с помощью диафрагм, расположив их поперек каждого из концов датчика, внутри которого содержится некоторое количество топлива и сухого воздуха. Диафрагмы в этом случае передают давление от внешней поверхности к внутренней среде, поэтому уровень топлива в датчике всегда соответствует уровню в баке.  [c.10]

Наиболее совершенным из отечественных приборов для определения непроклеев является прибор ИАД-2, работающий по принципу акустического импедансного метода и дающий возможность определять непроклеи в соединениях металла с металлом, листового металла с сотовым запол)нителем или с пенопластом. Акустический импе-дансный метод контроля основан на зависимости шеханического сопротивления (импеданса), измеренного с поверхности изделия, от наличия и величины зон нарушения сцепления между отдельными его элементами. Механический импеданс сложным образом зависит от размеров, плотности, упругих свойств материала и степени поглощения им упругих колебаний. Увеличение толщины изделия, повышение его жесткости и плотности, как правило, повышает механический импеданс, а дефект соединения вызывает его резкое уменьшение. Прибор состоит из генератора, усилителя, блока питания и датчика.  [c.268]

В связи с этим есть основания полагать, что в лонжероне № 1 датчик зафиксировал наличие трещины до нескольких полетов, после которых произошел обрыв лопасти. Это подтверждается еще одним случаем обнаружения трещины в лонжероне лопасти несущего винта вертолета Ми-8МТВ-1 НК 3908 при наработке вертолета в эксплуатации 1354 ч 36 мин. Согласно техническому акту датчиком-сигнализатором была выявлена трещина между 7-м и 8-м хвостовыми отсеками лонасти, что соответствует относительному радиусу около 0,5. Трещина была расположена на задней стенке лонжерона и но нижней полке имела длину около 32 мм. Эта трещина близка по размеру к трещине в лонжероне № 2. Причем нагружен-ность сечения лонжерона на относительном радиусе около 0,5 является промежуточной между лонжеронами № 1 и 2. Из этого следует, что при прочих равных условиях датчик-сигнализатор в рассматриваемых лонжеронах вертолетов типа Ми-8МТВ позволяет выявлять трещины достаточно небольших размеров на относительных радиусах лопасти, где имеет место большая и меньшая на-груженность материала. После срабатывания дат-  [c.663]

Современная теория вихретокового накладного датчика (преобразователя) построена в предположении постоянства магнитной проницаемости контролируемого ферромагнитного материала ( .i= onst). Линейные расчеты дают зависимость выходной э. д. с. датчика от удельной электропроводности и магнитной проницаемости вещества испытуемого объекта, геометрических размеров катушек датчика, а также от способа и характера воздействия первичного поля возбуждения.  [c.5]

Упругие напряжения играют значительную роль в процессах перемапшчивания кремнистого железа. В связи с этим определение величины и знака упругих остаточных напряжений I рода в текстурованиых листах указанного материала является актуальной задачей. В работе [1] упругие остаточные напряжения определяли путем разрезания целых листов на квадраты сравнительно небольших размеров. Частичное снятие и перераспределение упругих напряжений фиксировали магнитоупругими и тензо.метрическими датчиками. Установлено, что величина упругих остаточных напряжений после разрезки листов размерами 1500X750 мм на квадраты со стороной 150 мм уменьшилась в среднем на 50—90 кгс/ u .  [c.105]


Целью расчета упругих элементов является увязка требуемых измерительных параметров (например, номинальной измеряемой силы, номинальной деформации, номинального хода для преобразователя) с основными геометрическими размерами и параметрами материала (постоянными упругости, максимально допустимыми напряжениями), с учетом действия неизмеряемых сил, т. е. действующих под углом к оси датчика.  [c.359]

Но оптическая прозрачность не всегда обязательна. Поэтому большинство литиевых ситаллов получают глушеными (например, i2 i4). Увеличение размеров кристаллов и их количества позволяет повысить прочность материала. В глушеных литиевых ситаллах основной кристаллической фазой является Р-сподумен. Близкий к нулю коэффициент термического расширения, устойчивый в интервале температур от —30 до 60—120° С дает возможность применять их в измерительной технике в качестве эталонных мер, а высокая термостойкость — в конструкциях, работающих в условиях резко переменных температур, в качестве различных теплозащитных деталей. Из ситаллов изготовляют температурные датчики, резонаторы, потенциометры, высокотемпературные шунтирующие сопротивления. Ситаллы некоторых марок могут иметь к. т. р., доходящий до —90 l0 ° " , и могут быть использованы в качестве снижающих к. т. р. наполнителей различных органических соединений, в частности эпоксидных смол, при производстве компаундов для изготовления деталей приборов.  [c.484]

До сих пор от металлорежущих станков требовалась в основном точность. Теперь этого уже недостаточно. Особенно при обработке титана и других дорогостоящих и чувствительных к нагреву металлов. Дело в том, что испортить деталь можно не только, обработав ее не в размер. Если усилия резания превысят определенную величину, деталь сломается. Если деталь разогреется слишком сильно, может быть испорчена ее металлографическая структура. Размеры деталей современных ракет и сверхзвуковых самолетов могут быть столь велики, а материал настолько дорог, что общая стоимость необработанной заготовки может доходить до многих тысяч рублей. Так что порча одной единственной детали может принести заводу заметный убыток. Таким образом, необходимы станки, которые во время работы непрерывно следили бы за температурой и напряжениями в каждой точке обрабатывемой заготовки и соответственно корректировали бы технологический процесс. К разработке таких станков приступили специалисты во многих странах. Дорогостоящие заготовки они собираются облепить во всех опасных точках тензометрическими и темпе )а-турными датчиками, а снимаемые с них электрические сигналы после усиления подать на управляющие органы станка. Такие станки, помимо размерной точности, смогут учитывать изменения механических свойств материалов, связанные с температурой и с продолжительностью ее действия, прочность, пластические деформации, ползучесть и в соответствии со всеми этими многочисленными факторами автоматически настраиваться на оптимальную стратегию обработки.  [c.253]

В производственных условиях перед контролером часто возникает вопрос о возможности применения того или иного ш,упового прибора для измерения шероховатости поверхности изделий из мягких материалов. Профилометрам и профилографам присущи определенные погрешности, объясняемые природой контактного метода измерений. Основными пара-.метрами прибора, которые в первую очередь определяют величину искажений при ощупывании поверхности, являются, как указывалось выше, радиус закругления щупа г и усилие Р. Если радиус закругления иглы. можно рассматривать на определенном отрезке времени как величину постоянную для данного прибора, то измерительное усилие, в зависимости от динамических характеристик ощупывающей системы, скорости ощупывания и характера профиля контролируемой поверхности, может сильно изменяться- Это обстоятельство учитывается при конструировании приборов, В современных профилометрах и профилографах, благодаря рациональной конструкции датчиков, а также уменьшению скорости ощупывания добиваются значительного снижения доли динамической составляющей Р,) в общей величине усилия Р. Если радиус закругления иглы у большинства профилометров принят равным 10—15 мк. то измерительное усилие колеблется в весьма широких пределах и достигает в некоторых конструкциях 1—2 гс. Естественно, что при таких уси- лиях на поверхности контролируемого изде.лия, в зависимости от меха нических свойств, и в первую очередь, от твердости материала, будут оставаться более или менее глубокие царапины. Царапание, как следует из анализа, приводимого в главе VI, может по-разному сказаться на показаниях щуповых приборов. Когда размеры впадин велики по сравнению с размерами щупа (при пологом профиле с большим шагом неровностей), а перепад усилия ощупывания на дне впадины и на выступе характеризуется небольшой величиной, погрешности измерения незначительны. При узких микронеровностях, вследствие различных условий деформаций материала на гребешке и во впадине, происходит сглаживание профиля и соответствующее уменьшение измеренной высоты. Это уменьшение тем значительней, чем мягче материал контролируемого изделия и чище его поверхность. На фиг. 115 схематически показаны общие соотношения мелкду данными, получающимися при ощупывании, поверхности иглами с радиусами закруглений г= 10 мк при измерительных усилиях — 2 с С и показаниями оптических бесконтактных приборов. По оси абсцисс графика отложены классы чистоты, установленные с помощью оптических приборов по оси ординат — классы, получающиеся при ощупывании иглами, имеющими указанные выше г и Р. Кривая Т относится к теоретической поверхности абсолютно твердого тела с весь ма пологими неровностями кривая Л4 —- к поверхности изделий с твердостью Ял <20 кгс1мм и углом раскрытия впадин 100°. Между этими двумя кривыми располагаются кривые, относящиеся к поверхностям изделий из стали (С), бронзы (б) и т. п. При контроле профилометрами, имеющими значительные усилия ощупывания чистых поверх-  [c.154]

Приборы с проходными датчиками могут быть настроены (с использованием фазовой селекции) для измерения диаметров проволоки, прутков, роликов, шариков и т. п., а также для бесконтактного контроля размеров (с автоматич. записью результатов или сортировкой по размерам) быстро движущихся через датчики изделий. Для этой цели используются и спец. приборы, работающие па более высоких частотах, чем применяемые при контроле качества, благодаря чему практически ликвидируется влияние колебаний электропроводности материала па результаты измерения. Спец. электроиндуктпвные приборы применяются также для непрерывного измерения и регистрации толщины труб, фольги, лент, тонких листов из немагнитных металлов.  [c.473]

Материал, изготовленный а основе эпоксидной смолы ЭД-6, удовлетворяет осно виым требованиям, предъявляемым к материалам для изготовления моделей. Этот материал имеет сравнительно высокие прочностные характеристики, при деформациях подчиняется закону Гука, является хорошим диэлектриком, легко обрабатывается на обычных металлорежущих станках, дает возможность делать отливки достаточно большого размера и любой конфигурации, после шлифовки и полировки достаточно прозрачен, что позволяет проверить расположение датчиков и др.  [c.75]

Третье условие явл>яегся специальным для датчиков, предназначенных для измерения напряжений внутри деталей. При измерении напряжений на поверхности деталей датчики, практически лЮ бых размеров и Очертаний, Не, нарушают структуры материала, а значит и направления силовых линий внутри всего объема детали, включая по1верхностные слои.  [c.83]

Постановка задачи об интерпретации показаний датчика конвекции. Рассмотрим замкнутую полость в виде куба, закрепленную на корпусе искусственного спутника Земли и целиком заполненную вязкой несжимаемой жидкостью. Корпус спутника и стенки полости представляют собой единое твердое тело. Размеры полости и масса жидкости существенно меньше размеров и массы спутника. С полостью свяжем систему координат Oxyz, начало которой будем считать рассматривавшейся в предыдущем разделе точкой О. В этой системе полость задается соотношениями О х,у, z L. На гранях куба z = Ои z = L поддерживаются постоянные не равные между собой значения температуры То и Ti соответственно, на остальных гранях температура линейно зависит от координаты 2 — материал стенок идеально проводит тепло. Внутри полости крестообразно расположены две дифференциальные термопары. Одна термопара измеряет разность температур в точках ai = L/A, L/2, L/2) и а2 = (3L/4, L/2, L/2), другая — в точках аз = = (L/2, L/4, L/2) и а4 = ( /2,3L/4, Ь/2). Описанный прибор представляет собой несколько идеализированный вариант реального датчика конвекции. Идеализация состоит, в основном, в предположении об идеальной теплопроводности стенок полости. Это предположение упрощает исследование, но, как показывает анализ расчетов [2], не влияет на получаемые результаты.  [c.608]

Изготовление сочленяющихся деталей по шаблонам. Этот вид работы на установке 2ЭФУ-М наиболее надежен и точен, так как освещение копира осуществляется нижним проходящим пучком света и контраст изображения кромки получается наибольшим, что создает наилучшие условия для датчика. Царапины на копируемой поверхности в этом случае не оказывают никакого влияния. Шаблон изготавливается из любого непрозрачного материала толщиной 2—5 мм (сталь, медь, латунь, пластмасса и др.). Шаблоном может служить готовая деталь с цилиндрической образующей (например, пуансон без уступов и конусности высотой до 50 мм). Размеры шаблона могут быть заранее скорректированы для получения деталей заданных размеров либо точно равны чертежным, тогда для компенсации ширины реза применяют метод дубль-шаблона. Боковая поверхность копира должна иметь чистоту не ниже 8—9-го класса, так как благодаря высокой чувствительности следящей системы каждая неровность и заусеница копира будет копироваться и ухудшать поверхность. Для повышения контраста изображения копируемую плоскость протирают карбидом бора для получения темной поверхности. Копир тщательно обезжиривают, промывая в спирте или бензине Б-70, и приклеивают к предметному стеклу оптического столика. Заход на линию копи-  [c.200]



Смотреть страницы где упоминается термин Материал и размеры датчиков : [c.75]    [c.200]    [c.176]    [c.104]    [c.82]    [c.365]    [c.15]    [c.32]    [c.74]    [c.436]    [c.84]    [c.615]    [c.135]   
Смотреть главы в:

Тепловые измерения методом текущей компенсации  -> Материал и размеры датчиков



ПОИСК



Датчик

Датчик размера

Материалы для размер



© 2025 Mash-xxl.info Реклама на сайте