Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные понятия из теории колебаний

НЕКОТОРЫЕ ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ КОЛЕБАНИЙ  [c.59]

Некоторые основные понятия теории колебаний )  [c.59]

НЕКОТОРЫЕ ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ КОЛЕБАНИИ  [c.65]

Большое внимание уделено основным понятиям теории колебаний и смежных разделов механики, выбору и обоснованию моделей колебательных систем, методам их аналитического и численного анализа приведено большое количество справочного материала, который может быть непосредственно использован в вибрационных расчетах.  [c.14]


Основные понятия теории колебаний 347  [c.10]

Чтобы иметь представление о том, каким образом можно уменьшить галопирование, познакомимся с основными положениями теории колебаний и в первую очередь с понятием о центре упругости системы.  [c.261]

Книга предназначена для широкого круга читателей, как для желающих ознакомиться с основными понятиями и методами теории нелинейных колебаний, так и для специалистов, желающих узнать о последних достижениях в этой области.  [c.2]

Эта глава, которая является вводной, содержит изложение основных понятий и положений, необходимых для изучения нелинейных колебаний. Прежде всего следует сказать несколько слов о колебательных явлениях вообще и о нелинейных колебаниях в частности. Общие закономерности, которыми обладают колебательные процессы в системах различной физической природы, составляют предмет науки, получившей название теории колебаний. Под колебательным явлением принято понимать либо то, что связано с фактом установившегося движения в рассматриваемой системе, либо то, что связано с процессом перехода от одного установившегося движения к другому. Установившееся движение характеризуется повторяемостью и определенной устойчивостью (смысл последнего понятия будет уточнен ниже). Переходные процессы характеризуются тем установившимся движением, к которому они приближаются. Множество переходных процессов данного установившегося движения образует его область притяжения. Смена установившихся движений, которая происходит в результате изменения какого-нибудь физического параметра рассматривае.мой системы при его переходе через некоторое значение, называется бифуркацией. Если при этом смена установившихся движений происходит достаточно быстро, т. е. скачкообразно, то говорят о жестком возникновении нового режима. В противном случае возникновение нового режима называют мягким . Колебательные явления, возникающие в так называемых нелинейных системах, называются нелинейными колебаниями. Однако, прежде чем определить, что такое нелинейная система, рассмотрим более общий класс систем, называемых динамическими системами.  [c.7]

Понятие устойчивости движения является в теории нелинейных колебаний одним из основных понятий, поэтому остановимся на нем подробнее. Среди многих определений устойчивости наиболее известны устойчивость по Ляпунову и орбитная устойчивость. В отношении состояния равновесия эти определения совпадают и состоят в следующем. Состояние равновесия х = х называется устойчивым, если для любого числа е > О можно указать настолько малое число б (е), что для любого другого движения х = = X (i) с начальными условиями, отличающимися от х менее чем на б, при всех последующих значениях i выполняется неравенство  [c.13]


В гл. 1 обсуждаются основы теории колебаний и виды демпфирования. В гл. 2 и 3 вводятся основные понятия о том, как описывается явление демпфирования, причем особое внимание уделяется вязкоупругому демпфированию, определяющему поведение полимерных и стекловидных материалов, а также эластомеров. В гл. 4 описывается влияние вязкоупругого демпфирования на динамическое поведение конструкций, причем основной упор сделан на описании важного для практики случая системы с одной степенью свободы. В гл. 5 рассматривается тот же вопрос применительно к исследованию влияния дискретных демпфирующих устройств типа настроенных демпферов на динамическое поведение конструкции. В гл. 6 описано влияние обширного класса демпфирующих устройств типа систем с поверхностными покрытиями или слоистой структурой, в гл. 7 приведены диаграммы для определения комплексных модулей упругости для большого числа интересных с точки зрения конструктора материалов. В каждую главу включены иллюстрации, примеры и случаи из практики, с тем чтобы показать читателю, как можно использовать теорию и справочные данные при решении практических задач подавления колебаний и шумов.  [c.9]

Для теории нелинейных колебаний теория бифуркаций состояний равновесия и периодических движений представляет интерес не только тем, что облегчает исследование конкретных систем, но и в первую очередь тем, что решает вопрос о характере смены установившегося режима при медленном изменении параметров. Можно напомнить, что именно теория бифуркаций дала математическое описание мягкого и жесткого способов возникновения колебаний в ламповом генераторе и сделала эти понятия одними из основных в теории нелинейных колебаний, а метод точечных отображений позволил решить вопрос о мягком и жестком возбуждении в многомерном случае. Методом точечных отображений была решена и аналогичная задача о возбуждении квазипериодических колебаний в автономной системе и обнаружен случай мягкого удвоения периода автоколебаний (Ю, И. Неймарк, 1958—1959).  [c.156]

Прежде чем перейти к изучению этих успокоителей, рассмотрим основные понятия и определения из теории колебаний.  [c.393]

В главах IV—IX рассматриваются вопросы упругих колебаний, имеющих исключительно важное значение в современном машиностроении в связи с непрерывным повышением скоростей подвижных частей машин. В частности, в главе IV излагается теория колебаний упругих систем с одной степенью свободы. Устанавливаются основные понятия в теории колебаний, исследуются вопросы затухания колебаний.  [c.4]

Идея о колебательной общности кажущихся непохожими на первый взгляд явлений самой различной природы (механических, электромагнитных, химических, биологических и т.д.) в наше время представляется естественной не только искушенным исследователям, но даже вчерашним школьникам. Действительно, в ответ на вопрос, что такое гармонический осциллятор, многие из них приведут в качестве примера и маятник ходиков , и электрический контур, составленный из емкости и индуктивности одновременно. Тем не менее и сегодня колебательные явления и эффекты, наблюдаемые в не столь тривиальных ситуациях, зачастую не всегда легко связать с основными элементарными процессами. Особенно это относится к волновым задачам. Поэтому имеется насущная потребность в учебном курсе, в котором современная теория колебаний и волн предстала бы перед читателем своими явлениями и эффектами, обнаруживаемыми в самых различных приложениях, по допускающими единое описание и понимание. Подчеркнем, что, хотя формально единство колебательных и волновых процессов совершенно различной природы основывается на сходстве математических моделей, оно не исчерпывается им. Ничуть не менее важным является межведомственная система понятий, моделей и приближений, позволяющая ориентироваться в чрезвычайном разнообразии колебательных и волновых процессов, которые встречаются в природе и технике.  [c.11]

ОСНОВЫ ТЕОРИИ КОЛЕБАНИЙ МЕХАНИЧЕСКИХ СИСТЕМ ОСНОВНЫЕ ПОНЯТИЯ Кинематика колебательных процессов  [c.216]

Иногда применяются также еще и другие испытательные функции, например прямоугольная или треугольная, однако основную роль играют функции, изображенные на рис. 20, а и 20, г, т. е. ступенчатая и синусоидальная функции. Введенные для этих функций понятия стали ценным вспомогательным средством в теории колебаний.  [c.25]


Напомним в начале некоторые основные понятия из теории колебаний. В линейных колебательных системах известью два вида колебаний собственные и вынужденные.  [c.15]

Однако, что касается вида акустической волны, то все встречающиеся в нашем рассмотрении акустические явления могут быть, по крайней мере, в первом приближении, исследованы при помощи плоской и сферической (шаровой) волны. Для решения некоторых практически важных вопросов акустики (колебания мембран, рассеяние звука цилиндрическим телом, излучение пульсирующего цилиндра) удобно пользоваться элементами теории цилиндрических волн (см. приложение 4). К изучению перечисленных видов волн в основном сводится теория акустического поля воздушной среды, являющейся переносчиком акустической энергии. В действительных условиях передачи и приема звука, а именно, в помещениях, многократные отражения акустических волн изменяют их первичную форму в весьма значительной степени. Здесь приходится иметь дело уже с другими зависимостями, позволяющими путем задания известных граничных условий оценить акустические явления качественно и количественно. Мы увидим, что даже в таких слон ных явлениях, как акустические поля замкнутых, ограниченных со всех сторон пространств, исходными моментами служат понятия плоской и сферической волн, распространяющихся в неограниченной среде (с учетом заданных граничных условий).  [c.43]

Принято считать, что фотоэффект дает наиболее прямое экспериментальное доказательство квантовой природы излучения. Квантовая гипотеза и в самом деле позволяет непринужденно объяснить все основные экспериментальные закономерности фотоэффекта. Но тем не менее следует отметить, что эти закономерности получают исчерпывающее объяснение и в полуклассической теории взаимодействия излучения с веществом, рассматривающей вещество квантово-механически, а излучение — как классическое электромагнитное поле. Это показал Г. Вентцель в 1927 г. С аналогичным положением вещей мы сталкиваемся и в проблеме равновесного излучения. Спектральное распределение энергии (формулу Планка) можно получить, рассматривая нормальные колебания электромагнитного поля в полости как набор квантовых осцилляторов, т. е. как идеальный газ частиц излучения — фотонов (см. 9.3). Но формулу Планка можно получить и иначе, рассматривая излучение как классическое электромагнитное поле и применяя квантовую гипотезу лишь к находящемуся в равновесии с ним веществу (осцилляторам). Именно так и поступал Планк (см. 9.2). Полуклассическая теория взаимодействия света с веществом, не привлекая понятия фотона, дает количественное объяснение большинству наблюдаемых явлений. Квантований электромагнитного поля принципиально необходимо для правильного описания некоторых явлений, включающих его флуктуации спонтанного излучения, лэмбовского сдвига, аномального магнитного момента электрона.  [c.459]

В книге сделана попытка изложить основные вопросы теории нелинейных колебаний, начиная исходных понятий и методов, прочно вошедших в науку, и кончая вопросами, вводящими читателя в ее современное состояние. Для того чтобы не увеличивать объем книги, пришлось ограничиться основными вопросами, привлекая описание деталей лишь в той мере, в какой это необходимо для понимания целого. Авторы стремились отразить то огромное развитие, которое получили идеи теории нелинэйных колебаний. Значительное место в книге занимают методы научной школы Мандельштама — Андронова, к которой принадлежат авторы. Особое внимание уделено методу точечных отображений и его применению в теории нелинейных колебаний. Вместе с тем в книге нашли определенное отражение идеи и методы, развиваемые другими научными школами.  [c.6]

Книга предназначена для широкого круга читателей, как для желающих ознакомиться с основными понятиями и методами теории нелинейных колебаний, так и для специалистов, которые хотели бы узнать о последних достижениях в этой области. Она может служить дополнением к курсу теоретической механики Н. В. Бутенина, Я. Л. Лунца и Д. Р. Меркина ( Наука , 1970—71).  [c.6]

При выводе уравнения (ос) величина h рассматривается как малая. Но большая или малая глубина потока есть понятие относительное мы говорим, что поток — малой глубины, если эта глубина мала по сравнению с длинами волн, распространяющихся на поверхности Поэтому теория Лагранжа есть теория длинных волн, как и принято ее сейчас называть. Сам Лагранж приписывал ей чрезмерную общность он ссылается на то, что волнение на поверхности жидкости ненамного проникает в ее глубь (в океанах, например, на глубине около 30 м почти не ощутимы самые мощные бури), и поэтому полагал, что можно считать волны распространяющимися на поверхности потока 272 незначительной глубины. Однако теория и опыт показывают, что выводы Лагранжа применимы как хорошее приближение лишь при малых глубинах. Во всяком случае теория Лагранжа является первой успешной попыткой гидродинамического анализа одного из видов волн на поверхности тяжелой жидкости. Вместе с работами о колебаниях упругих тел она составляет основное, что дал XVIII в. в теории колебаний и волн.  [c.272]

В работах XVIII в. использовалось понятие устойчивости равновесия или движения без уточнения его содержания и без введения для него количественной меры. Это в значительной мере верно и для работ дальнейшего периода, охватывающего почти весь XIX в. — от Лагранжа до Пуанкаре и Ляпунова. Теория малых колебаний около положения равновесия или движения оставалась основным аппаратом теории устойчивости. Она была усовершенствована за это время математически Дж. Сильвестр, К. Вейерштрасс, К. Жордан дали полный анализ всех случаев, которые могут представиться при решении однородной системы линейных дифференциальных уравнений с постоянными коэффициентами. К. Вейерштрасс и, независимо от него.  [c.119]


Примеры различных Маятников (осцилляторов) от механического до химического, экологического, экономического. Линейный осциллятор - основная модель линейной теории колебаний. Свойства линейных систем. Квантовый осциллятор Что такое динамическая система Понятие о фазовам пространстве. Фазовый портрет линейного осщилятора.  [c.54]

Как видно, современная техника все чаще ставит перед проектными организациями и конструкторскими бюро вопросы, решение которых относится к компетенции теории колебаний механических систем. Разумеется, втуз не может обеспечить подготовки, достаточной для решения динамических задач, встречающихся в практике ироектирования, однако он обязан научить правильному пониманию положений динамики и в частности теории, колебаний. Вследствие ограниченности объема часов, запланированных на динамику, студентам излагаются обычно только основные понятия элементарной теории колебаний системы с одной сте-пенью свободы. Современная же техника требует, чтобы студентов знакомили с более широким кругом вопросов теории колебаний. Целесообразно излагать действие произвольной периодической силы и импульсивных нагрузок, колебания систем с несколькими степенями свободы, основы теории виброизоляции, теории случайных колебаний и друг,ие вопросы.  [c.35]

Понятие, определяемое выражением (7), служит основным в теории частичной когерентности. Мы будем называть его взаимной когерентностью световых колебаний в точках Рг и Р2, причем колебания в точке Рг рассматриваются в момент времени, запаздывающий иа величину т по сравне 1ию с моментом времени колебаний в точке Р . Мы будем называть )уикщпо Гх2(т) взаимной функцией когерентности ) волнового поля. Когда обе точки совпадают Рг= Р ), получим  [c.459]

Довольно быстро выяснилось, что возникновение сложных образований в нелинейных средах или пространственных ансамблях различной природы описывается сходными математическими моделями и решениями [5, 6, 9]. Это позволило (как уже не раз было в теории колебаний и волн) перенести опыт и знания, накопленные, например, при исследовании реакции горения, на анализ распространения популяций в экологической задаче или распространения возбуждения в сердечной ткани. В результате выработались новые понятия и образы диссипативная структура, бегущий импульс, ревербератор и т. д. - и начали выкристаллизовываться основные универсальные модели, описывающие возникновение и существование структур [7, 8, 15, 19-21, 29, 33, 34]. Фактически возникло новое направление в нелинейных науках , которое называют неравновесной термодинамикой [5, 2], синергетикой [6, 28], теорией самоорганизации [9, 27], теорией автоволн [7, 30].  [c.513]

А priori мыслима, конечно, непротиворечивая теория, которая использовала бы в качестве вспомогательных средств не непосредственно измеримые величины. Однако, как раз то обстоятельство, что в теории Дирака пояеляется трудность с состояниями отрицательной энергии, указывает, по нашему мнению, на то, что упомянутые ограничения в возможностях измерения найдут более непосредственное выражение в аппарате будущей теории и что с этой новой теорией будет свя- -зано существенное и глубокое изменение основных понятий и формального аппарата современной квантовой теории ). Ограничения в измерении координат и времени, формулированные в уравнениях (110) и (111), как раз таковы, что колебания средней точки и общего тока в случае свободной частицы (для волнового пакета, составленного из состояний положительной и отрицательной энергии), дающиеся уравнениями (54) и (57), являются ненаблюдаемыми. Будущая теория должна будет так же, как особенно настойчиво подчёркивает -Бор ), установить связь между атомистической структурой электрического заряда и существованием-кванта действия и, кроме того, разрешить проблему устойчивости электрона и соотношения масс электрона и протона.  [c.288]

Рассмотрены основные понятия и методы нелинейной теории динамических систем устойчивость, качественные методы исследования систем на фазовой плоскости, методы расчета автоколебаний и колебаний под действием внешних периодических сил. Изложение теории иллюстрировано многочисленными примерами. Задания для самостоятельной работы сопровождаются соответствующими указаниями и частично подробными решениями. Гфикпадные задачи представлены оригинальными и имеющими самостоятельный интерес н познавательное значение исследованиями математических моделей систем ядерной энергетики и математической экологии. Второе издание (1-е вышло в 1995 г.) переработано и дополнено новым материалом.  [c.4]

Обсуждая в этих статьях основные допущения, на которых строится теория упругости, Томсон разъясняет, что свойства реальных материалов иногда заметно отличаются от предписываемых им. Он отмечает, что строительные материалы не являются идеально упругими, и, исследуя их несовершенства, вводит понятие внутреннего трения, которое он изучает по затухающим колебаниям упругих систем. Из своих опытов он заключает, что это трение непропорционально скорости, как это имеет место в жидкостях. По вопросу о модулях упругости автор подвергает строгой критике рариконстантную теорию (см. стр. 262), пользовавшуюся  [c.316]

Для изучения приливных волн в течение XIX в. был проведен ряд исследований, Каналовая теория , разработанная Эри не вытеснила, а дополнила (для каналов) теорию Лапласа. Разрабатывалась теория вынужденных колебаний тяжелой жидкости в полностью закрытых бассейнах при сравнительно малых размерах бассейна — это дало теорию сейшей Но, как ни суш,ественны эти работы, вследствие практического значения и благодаря развиваемым в них методам, общую теорию волн они в основном не изменили. Объем физических понятий и представлений, используемых в теории волн, остался прежним. То же самое можно сказать о теории капиллярных волн, где принимается во внимание поверхностное натяжение жидкости наиболее суш,ественные результаты были получены Кельвином и Рэйли, а до них исследованием капиллярной ряби занимался Фарадей. Учет капиллярности важен в задаче о волнах на поверхности раздела двух жидкостей. Основные характеристики капиллярных волн можно теоретически получить, используя энергетические соображения и понятие групповой скорости (для капиллярных волн групповая скорость превосходит фазовую, что дает объяснение ряда своеобразных эффектов).  [c.281]


Смотреть страницы где упоминается термин Основные понятия из теории колебаний : [c.71]    [c.80]    [c.8]    [c.7]    [c.14]    [c.158]    [c.32]    [c.58]    [c.271]   
Смотреть главы в:

Теория механизмов и детали точных приборов  -> Основные понятия из теории колебаний



ПОИСК



Колебание основное

Колебания основные

Некоторые основные понятия теории колебаний

Основные понятия теории собственных и вынужденных колебаний надрессорного строения вагонов

Теория колебаний



© 2025 Mash-xxl.info Реклама на сайте