Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамика простейших движений твердого тела

ДИНАМИКА ПРОСТЕЙШИХ ДВИЖЕНИЙ ТВЕРДОГО ТЕЛА [ГЛ. ХПГ  [c.294]

Динамика простейших движений твердого тела  [c.192]

ДИНАМИКА ПРОСТЕЙШИХ ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА (ГЛ. ХШ  [c.512]

В динамике основное содержание курса Жуковского посвящено изучению теории удара, основным теоремам механики и простейшим движениям твердого тела.  [c.130]

В этой главе рассмотрено несколько простейших типовых задач, при решении которых можно использовать теоремы динамики для точки и системы материальных точек — теорему об изменении количества движения, теорему об изменении кинетической энергии и основной закон динамики для вращательного движения твердого тела (А. И. Аркуша, 1.56 и 1.58).  [c.320]


ДИНАМИКА ПРОСТЕЙШИХ ВИДОВ ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА  [c.176]

Далее, к простейшим движениям свободного твердого тела относятся поступательное движение и вращательное вокруг неподвижной оси. Поступательное движение подробно изучалось в динамике точки, как об этом уже упоминалось выше. С вращательным движением твердого тела вокруг неподвижной оси мы встречались в первой части этой книги при изучении общих теорем динамики системы. Остается только сделать некоторые дополнения.  [c.402]

Кинематика плоского движения абсолютно твердого тела была изложена в гл. XIV. Динамике этого сравнительно простого случая движения твердого тела посвящается настоящая глава.  [c.257]

Отметим здесь, как это уже было сделано в п. 28 гл. V, что условие а) будет всегда удовлетворено на основе прямых данных механической задачи, а условие б) включает в себя большей частью предварительное интегрирование системы дифференциальных уравнений, которое само по себе составляет более важную и, вообще говоря, более трудную задачу динамики. Однако достаточно представить себе технически наиболее простые случаи (маховики, балансиры, шатуны и т. п.), чтобы понять, как часто рассматриваемое нами движение твердого тела можно прямо считать известным.  [c.10]

Ои вывел общие уравнения равновесия для пространственной изогнутой кривой стержня в предположении больших прогибов. Он доказал далее, что если силы приложены только по концам стержня, то эти уравнения оказываются тождественными с уравнениями движения твердого тела относительно неподвижной точки. Благодаря этому стало возможным уже известные решения динамики твердого тела применить непосредственно к определению деформации тонкого стержня. Этот прием получил известность под наименованием динамической аналогии Кирхгоффа. В качестве простого примера применения этой аналогии сопоставим поперечное выпучивание сжатого стержня АВ (рис. 131, а) с колебанием математического маятника (рис. 131,6). Оба эти явления описываются одним и тем же дифференциальным уравнением, существующая же между ними связь сводится к следующему если точка М движется но кривой АВ с постоянной скоростью, так что дугу АВ она проходит за время, равное полупериоду маятника, и если М начинает удаляться от в тот момент, когда маятник находится в крайнем положении п касательная к кривой в А образует с вертикалью угол, равный тому, которым определяется крайнее положение маятника, то и при всяком  [c.307]


Таким образом, формулы (65.7) и (65.8) полностью описывают динамику движения твердого тела. Обычно практические вычисления и анализ движения с помощью формулы (65.8) не так просты. Положение осложняется тем, что во многих случаях трудно простым способом определить направление момента количества движения.  [c.237]

Пуансо применял геометрические методы исследования также в кинематике и в динамике твердого тела, где он дал весьма простую и наглядную геометрическую интерпретацию движения твердого тела.  [c.21]

При описании движения твердого тела используются различные системы переменных. Каждая система имеет свои преимущества и недостатки для каждой конкретной задачи. Так для поиска первых интегралов, исследования некоторых вопросов устойчивости и топологического анализа наиболее удобными являются такие переменные, в которых уравнения полиномиальны (или даже однородны). Для численного интегрирования, кроме простой системы дифференциальных уравнений желательно иметь наименьший порядок системы. Для качественного изучения, применения методов теории возмущений и нелинейной нормализации необходимы системы канонических переменных, наиболее отражающие специфику невозмущенной задачи. Здесь мы приводим основные наборы переменных, используемые в динамике твердого тела. На практике, особенно в приложениях к гироскопической технике, также используются различные комбинации и модификации этих систем, обладающих более специальными свойствами.  [c.39]

Дифференциальные уравнения движения неголономных систем применяются, главным образом, в динамике твердого тела. Приведем здесь лишь простейший пример, не относящийся к динамике твердого тела, ради конкретизации некоторых уравнений движения неголономных систем.  [c.175]

В предыдущей главе при рассмотрении динамики плоского движения абсолютно твердого тела, при котором ось вращения тела сохраняет перпендикулярное к плоскости движения направление, можно было довольствоваться простейшим понятием момента инерции тела относительно данной оси или оси, ей параллельной, как мер инертности тел а в его вращении вокруг оси.  [c.281]

Типы квазичастиц. Атомная динамика идеального (беспримесного, бездефектного) кристалла описывается коллективными волновыми движениями. С квантовой точки зрения эти движения эквивалентны газу неких частиц, энергия е и импульс р которых выражаются через частоту волн и волновой вектор с помощью известных соотношений е=Ай и p=flq. Частицы, сопоставляемые с коллективными волновыми движениями в кристалле, называют квазичастицами. Формально мы получаем квазичастицы, производя квантование волн, распространяющихся по кристаллу. Представление кристалла в виде газа квазичастиц составляет сущность метода квазичастиц (метода элементарных возбуждений). Этот метод является основным в современной теории твердого тела он позволяет свести крайне сложную динамику огромного коллектива взаимодействующих реальных частиц (атомов кристалла) к относительно простой динамике газа квазичастиц.  [c.146]

Появление теории механизмов как науки, имеющей характерные для нее методы исследования и проектирования механизмов, относится ко второй половине восемнадцатого столетия. Сначала развивались методы анализа механизмов как более простые. Лишь с середины девятнадцатого столетия стали развиваться также методы синтеза механизмов. Особенно плодотворным оказался общий метод аналитического синтеза механизмов, предложенный П. Л. Чебышевым . Постановка задачи синтеза по Чебышеву и возможности, которые предоставляют современные ЭВМ, обеспечивают практически решение любой задачи синтеза механизмов по заданным кинематическим свойствам. Значительно сложнее решать задачи синтеза механизмов по заданным динамическим свойствам. Необходимость их учета вызывается непрерывным ростом нагруженности и быстроходности механизмов, а также общим повышением требований к качеству выполнения рабочего процесса. Учет динамических свойств потребовал рассмотрения влияния на движение механизма упругости его частей, переменности их масс, зазоров в подвижных соединениях и т. п. В связи с появлением механизмов, в которых для преобразования движения используются жидкости и газы, динамика механизмов стала основываться не только на законах механики твердого тела, но и на законах течения жидкости и газов. Неудивительно поэтому, что, несмотря на большое число публикуемых работ по динамике механизмов, решение проблемы синтеза механи.шов по их динамическим свойствам еще далеко до завершения.  [c.7]


Сравнение векторного и вариационного методов в механике. Векторная и вариационная механики — это два различных математических описания одной и той же совокупности явлений природы. Теория Ньютона базируется на двух основных векторах на импульсе и на силе вариационная теория, основанная Эйлером и Лагранжем, базируется на двух скалярных величинах на кинетической энергии и силовой функции . Помимо математической целесообразности возникает вопрос об эквивалентности этих двух теорий. В случае свободных частиц, движение которых не ограничено заданными связями , эти два способа описания приводят к аналогичным результатам. Однако для систем со связями аналитический подход оказывается более экономичным и простым. Заданные связи учитываются здесь естественным путем, так как рассматриваются движения системы лишь вдоль таких траекторий, которые не противоречат связям. При векторном подходе нужно учитывать силы, поддерживающие связи, а потому приходится вводить различные гипотезы относительно этих сил. Третий закон движения Ньютона ( действие равно противодействию ) не охватывает всех случаев. Он оправдывается лишь в динамике твердого тела.  [c.19]

ДИНАМИКА ПРОСТЕЙШИХ ДВИЖЕНИЙ ТВЕРДОГО ТЕЛА ГГЛ. Х1ГГ  [c.298]

Перейдем непосредственно к динамике твердого тела. В главе VIII были указаны два простейших движения твердого тела поступательное и вращательное. Кинематически изучение поступательного движения тела сводится к изучению движения любой его точки, в частности центра масс. По теореме о движении центра масс (п. 1.3 гл. XIX, формулы (19.9) и (19.13)) динамически изучение поступательного движения тела сводится к соответствующей задаче динамики точки. Поэтому для самостоятельного изучения остается лишь второе простейшее движение твердого тела — вращение вокруг неподвижной оси, к изучению динамики которого мы и приступим.  [c.377]

Введение. Твердое тело представляет собой частный случай механической системы точек, когда расстояния между любыми двумя точками системы остаются постоянными во все время движения. Одним из наиболее эффективных методов изу-чершя движения твердого тела под действием приложенных к нему сил является метод, основанный на применении основных теорем динамики системы. Для изучения поступательного движения тела мы будем исходить из теоремы о движении центра масс при изучении вращения твердого тела около неподвижной оси наиболее рационально пользоваться теоремой об изменении кинетического момента. На примерах изучения простейших движений твердого тела под действием приложенных сил весьма отчетливо выявляется значение основных теорем динамики системы, позволяющих исследовать свойства движений систем ма-териальных точек, подчиненных некоторым дополнительным условиям (связям). Основные теоремы динамики системы были исторически первым, наиболее простым и естественным методом изучения движения несвободных механических систем точек, и в частности изучения динамики твердого тела В последующем развитии механики Лагранжем был создан метод обобщенных координат, позволяющий свести составление дифференциальных уравнений движения системы с 5 степенями свободы к ясной, логически безупречной последовательности алгебраических преобразований, однако физическая наглядность рассуждений была в значительной мере утрачена  [c.400]

Кинематика оформилась как самостоятельная наука сравнительно недавно. Уже Даламбер указал на важность изучения законов движения как такового. Но первый, кто показал необходимость предпослать динамике теорию геометрических свойств движения тел, был Ампер. Эти свойства были представлены в 1838 г. Факультету наук в Париже Понселе. В этом представлении содержались, в частности, и теоремы о непрерывном перемещении твердого тела в пространстве, за исключением понятия мгновенной винтовой оси, которое было введено Шалем. Формулы, дающие вариации координат точек движущегося в пространстве тела, принадлежат Эйлеру (Берлинская Академия, 1750). Кинематика допускает многочисленные геометрические приложения. К ним относится, например, метод Роберваля построения касательных, теория мгновенных центров вращения, введенная Шалем, частный случай которой был дан уже Декартом в связи с задачей о касательной к циклоиде. К ним же относятся установленные Шалем свойства систем прямых, плоскостей и точек, связанные с движением твердого тела и приводящие наиболее простым образом к понятию комплекса прямых первого порядка. В 1862 г. Резаль выпустил курс Чистой кинематики . С появлением этого курса кинематика окончательно утвердилась в качестве самостоятельной науки.  [c.56]

В этой главе, после установления общих уравнений, на которых основана вся динамика неизменяемых систем, мы будем рассматривать, в частности, более простые случаи, а именно твердые тела, вращающиеся вокруг некоторой оси или движущиеся параллельно неподвижной плоскости. В двух следующих главах мы рассмотрим классические вопросы, относящиеся к движению твердого тела около одной из своих точек, с приложением их к гироскопам (гл. VIII), и некоторые типичные задачи о качении (гл. IX) и закончим указанием на исследования Вольтерра о неизменяемых системах с циклическими внутренними движениями.  [c.7]

Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]


Величина I заранее неизвестна. Это отличает рассматриваемую задачу о соударении двух тел от рассмотренной в предыдущем параграфе задачи об импульсивном движении твердого тела под действием заданных ударных импульсов. Задача о соударении тел состоит в нахождении послеударного кинематического состояния тел и величины ударного импульса при известном доударном кинематическом состоянии тел. Но, оказывается, что даже в простейших случаях соударения тел число неизвестных превосходит число уравнений, выражающих общие теоремы динамики. Поэтому необходимы дополнительные физические предположения.  [c.424]

Динамика вращающегося тела. Движение твердого тела вокруг центра масс обсуждается в большинстве монографий по механике (например, в [34]). Точное решение уравнений движения известно, но оно не слишком простое, чтобы можно было непосредственно воспользоваться им. Благодаря одной из недавних работ Вейтена [84] представляется возможным исследовать вращательное движение твердого тела с помощью явных решений, полученных методами возмущений. В противоположность этому графический метод анализа динамики вращающихся тел, разработанный Пуансо [34, 68], дает ясную физическую картину явлений. Графи-  [c.218]


Смотреть страницы где упоминается термин Динамика простейших движений твердого тела : [c.293]    [c.492]    [c.186]    [c.179]    [c.11]   
Смотреть главы в:

Курс теоретической механики Том2 Изд2  -> Динамика простейших движений твердого тела

Техническая механика Изд2  -> Динамика простейших движений твердого тела

Курс теоретической механики  -> Динамика простейших движений твердого тела



ПОИСК



117, 156 простое —, 92 —тела

Движение твердого тела

Движение твердых тел

Динамика простейших видов движения твердого тела

Динамика твердого тела

Динамика твердых тел

Простейшие движения твердого тела

Простейшие тела

Простые движения твердого тела



© 2025 Mash-xxl.info Реклама на сайте